L-Channel QMF Banks

- The basic structure of the L-channel QMF bank is shown below

- The expressions for the z-transforms of various intermediate signals in the above 1 structure are given by

L-Channel QMF Banks

$$
\begin{aligned}
V_{k}(z) & =H_{k}(z) X(z) \\
U_{k}(z) & =\frac{1}{L} \sum_{\ell=0}^{L-1} H_{k}\left(z^{1 / L} W_{L}^{\ell}\right) X\left(z^{1 / L} W_{L}^{\ell}\right) \\
\hat{V}_{k}(z) & =U_{k}\left(z^{L}\right)
\end{aligned}
$$

where $0 \leq k \leq L-1$

- Define the vector of down-sampled subband signals as

$$
\mathbf{u}(z)=\left[\begin{array}{llll}
U_{0}(z) & U_{1}(z) & \cdots & U_{L-1}(z)
\end{array}\right]^{T}
$$

L-Channel QMF Banks

- Define the modulation vector of the input signals as
$\mathbf{x}^{(m)}(z)=\left[\begin{array}{llll}X(z) & X\left(z W_{L}\right) & \cdots & X\left(z W_{L}^{L-1}\right)\end{array}\right]^{T}$
- Define the analysis filter bank modulation matrix as

$$
\mathbf{H}^{(m)}(z)=\left[\begin{array}{cccc}
H_{0}(z) & H_{1}(z) & \cdots & H_{L-1}(z) \\
H_{0}\left(z W_{L}\right) & H_{1}\left(z W_{L}\right) & \cdots & H_{L-1}\left(z W_{L}\right) \\
\vdots & \vdots & \ddots & \vdots \\
H_{0}\left(z W_{L}^{L-1}\right) & H_{1}\left(z W_{L}^{L-1}\right) & \cdots & H_{L-1}\left(z W_{L}^{L-1}\right)
\end{array}\right]
$$

L-Channel QMF Banks

- Then we can write the set of L equations

$$
U_{k}(z)=\frac{1}{L} \sum_{\ell=0}^{L-1} H_{k}\left(z^{1 / L} W_{L}^{\ell}\right) X\left(z^{1 / L} W_{L}^{\ell}\right)
$$

as

$$
\mathbf{u}(z)=\frac{1}{L}\left[\mathbf{H}^{(m)}\left(z^{1 / L}\right)\right]^{T} \mathbf{x}^{(m)}\left(z^{1 / L}\right)
$$

- The output of the QMF bank is given by

$$
Y(z)=\sum_{k=0}^{L-1} G_{k}(z) \hat{V}_{k}(z)
$$

L-Channel QMF Banks

- In matrix form we can write

$$
Y(z)=\mathbf{g}^{T}(z) \mathbf{u}\left(z^{L}\right)
$$

where

$$
\mathbf{g}(z)=\left[\begin{array}{llll}
G_{0}(z) & G_{1}(z) & \cdots & G_{L-1}(z)
\end{array}\right]^{T}
$$

Alias-Free L-Channel QMF Banks

- From the output equation

$$
Y(z)=\mathbf{g}^{T}(z) \mathbf{u}\left(z^{L}\right)
$$

the modulated versions of the output signal are given by
$Y\left(z W_{L}^{k}\right)=\mathbf{g}^{T}\left(z W_{L}^{k}\right) \mathbf{u}\left(z^{L} W_{L}^{k L}\right)=\mathbf{g}^{T}\left(z W_{L}^{k}\right) \mathbf{u}\left(z^{L}\right)$,

$$
0 \leq k \leq L-1
$$

Alias-Free L-Channel QMF Banks

- Define the modulation vector of the output signal as
$\mathbf{y}^{(m)}(z)=\left[\begin{array}{llll}Y(z) & Y\left(z W_{L}\right) & \cdots & Y\left(z W_{L}^{L-1}\right)\end{array}\right]^{T}$
- Define the synthesis filter bank modulation matrix as

$$
\mathbf{G}^{(m)}(z)=\left[\begin{array}{cccc}
G_{0}(z) & G_{1}(z) & \cdots & G_{L-1}(z) \\
G_{0}\left(z W_{L}\right) & G_{1}\left(z W_{L}\right) & \cdots & G_{L-1}\left(z W_{L}\right) \\
\vdots & \vdots & \ddots & \vdots \\
G_{0}\left(z W_{L}^{L-1}\right) & G_{1}\left(z W_{L}^{L-1}\right) & \cdots & G_{L-1}\left(z W_{L}^{L-1}\right)
\end{array}\right]
$$

Alias-Free L-Channel QMF Banks

- Then the modulation vector of the output signal can be expressed as

$$
\mathbf{y}^{(m)}(z)=\mathbf{G}^{(m)}(z) \mathbf{u}\left(z^{L}\right)
$$

- Combining the above and

$$
\mathbf{u}(z)=\frac{1}{L}\left[\mathbf{H}^{(m)}\left(z^{1 / L}\right)\right]^{T} \mathbf{x}^{(m)}\left(z^{1 / L}\right)
$$

we arrive at

$$
\mathbf{y}^{(m)}(z)=\frac{1}{L} \mathbf{G}^{(m)}(z)\left[\mathbf{H}^{(m)}(z)\right]^{T} \mathbf{x}^{(m)}(z)
$$

Alias-Free L-Channel QMF Banks

- Using the notation

$$
\mathbf{T}(z)=\frac{1}{L} \mathbf{G}^{(m)}(z)\left[\mathbf{H}^{(m)}(z)\right]^{T}
$$

we can write

$$
\mathbf{y}^{(m)}(z)=\mathbf{T}(z) \mathbf{x}^{(m)}(z)
$$

- $\mathbf{T}(z)$ is called the transfer matrix relating the input signal $X(z)$ and its modulated versions $X\left(z W_{L}^{k}\right)$ with the output signal $Y(z)$ and its modulated versions $Y\left(z W_{L}^{k}\right)$

Alias-Free L-Channel QMF Banks

- The filter bank is alias-free if the transfer matrix $\mathbf{T}(z)$ is a diagonal matrix of the form

$$
\mathbf{T}(z)=\operatorname{diag}\left[T(z) \quad T\left(z W_{L}\right) \cdots c T\left(z W_{L}^{L-1}\right)\right]
$$

- The first element $T(z)$ of the above diagonal matrix is called the distortion transfer function of the L-channel filter bank

Alias-Free L-Channel QMF Banks

- Substituting

$$
\begin{aligned}
V_{k}(z) & =H_{k}(z) X(z) \\
U_{k}(z) & =\frac{1}{L} \sum_{\ell=0}^{L-1} H_{k}\left(z^{1 / L} W_{L}^{\ell}\right) X\left(z^{1 / L} W_{L}^{\ell}\right) \\
\hat{V}_{k}(z) & =U_{k}\left(z^{L}\right) \\
\text { in } \quad Y(z) & =\sum_{k=0}^{L-1} G_{k}(z) \hat{V}_{k}(z)
\end{aligned}
$$

Alias-Free L-Channel QMF Banks

we arrive at

$$
Y(z)=\sum_{\ell=0}^{L-1} a_{\ell}(z) X\left(z W_{L}^{\ell}\right)
$$

where

$$
a_{\ell}(z)=\frac{1}{L} \sum_{k=0}^{L-1} H_{k}\left(z W_{L}^{\ell}\right) G_{k}(z), \quad 0 \leq \ell \leq L-1
$$

- On the unit circle the term $X\left(z W_{L}^{\ell}\right)$ becomes

$$
X\left(e^{j \omega} W_{L}^{\ell}\right)=X\left(e^{j(\omega-2 \pi \ell / L)}\right)
$$

Alias-Free L-Channel QMF Banks

- Thus, from

$$
Y(z)=\sum_{\ell=0}^{L-1} a_{\ell}(z) X\left(z W_{L}^{\ell}\right)
$$

we observe that the output spectrum $Y\left(e^{j \omega}\right)$
is a weighted sum of $X\left(e^{j \omega}\right)$ and its
uniformly shifted versions $X\left(e^{j(\omega-2 \pi \ell / L)}\right)$
for $\ell=1,2, \ldots, L-1$ which are caused by the sampling rate alteration operations

Alias-Free L-Channel QMF

Banks

- The term $X\left(z W_{L}^{\ell}\right)$ is called the ℓ-th aliasing term, with $a_{\ell}(z)$ representing its gain at the output
- In general, the L-channel QMF bank is a linear, time-varying system with a period L
- It follows from $Y(z)=\sum_{\ell=0}^{L-1} a_{\ell}(z) X\left(z W_{L}^{\ell}\right)$ that the aliasing effect at the output can be completely eliminated if and only if

$$
a_{\ell}(z)=0,1 \leq \ell \leq L-1
$$

Alias-Free L-Channel QMF Banks

- Note: The aliasing cancellation condition given above must hold for all possible inputs
- If the aliasing cancellation condition holds then the L-channel QMF bank becomes a linear, time-invariant system with an inputoutput relation given by

$$
Y(z)=T(z) X(z)
$$

Alias-Free L-Channel QMF

Banks

- The distortion transfer function $T(z)$ is given by

$$
T(z)=a_{0}(z)=\frac{1}{L} \sum_{k=0}^{L-1} H_{k}(z) G_{k}(z)
$$

- If $T(z)$ has a constant magnitude, then the L channel QMF bank is magnitude-preserving
- If $T(z)$ has a linear phase, then the L-channel QMF bank is phase-preserving
- If $T(z)$ is a pure delay, then it is a perfect reconstruction filter bank

Alias-Free L-Channel QMF Banks

- Define

$$
\mathbf{A}(z)=\left[\begin{array}{llll}
a_{0}(z) & a_{1}(z) & \cdots & a_{L-1}(z)
\end{array}\right]
$$

- Then

$$
a_{\ell}(z)=\frac{1}{L} \sum_{k=0}^{L-1} H_{k}\left(z W_{L}^{\ell}\right) G_{k}(z), \quad 0 \leq \ell \leq L-1
$$

can be expressed as

$$
L \cdot \mathbf{A}(z)=\mathbf{H}^{(m)}(z) \mathbf{g}(z)
$$

Alias-Free L-Channel QMF Banks

- The aliasing cancellation condition can now be rewritten as

$$
\mathbf{H}^{(m)}(z) \mathbf{g}(z)=\mathbf{t}(z)
$$

where

$$
\mathfrak{t}(z)=\left[\begin{array}{llll}
L a_{0}(z) & 0 & \cdots & 0
\end{array}\right]^{T}
$$

Alias-Free L-Channel QMF Banks

- Hence, knowing the set of analysis filters $\left\{H_{k}(z)\right\}$, we can determine the desired set of synthesis filters $\left\{G_{k}(z)\right\}$ as

$$
\mathbf{g}(z)=\left[\mathbf{H}^{(m)}(z)\right]^{-1} \mathbf{t}(z)
$$

provided $\left[\operatorname{det} \mathbf{H}^{(m)}(z)\right] \neq 0$

- Moreover, a perfect reconstruction QMF bank results if we set $T(z)=z^{-n_{o}}$ in the expression for $\mathbf{t}(z)$

Alias-Free L-Channel QMF Banks

- In practice, the above approach is difficult to carry out for a number of reasons
- A more practical solution to the design of a perfect reconstruction QMF bank is based on a polyphase representation

Polyphase Representation

- Consider the L-band Type I polyphase representation of the k-th analysis filter:

$$
H_{k}(z)=\sum_{\ell=0}^{L-1} z^{-\ell} E_{k \ell}\left(z^{L}\right), \quad 0 \leq k \leq L-1
$$

- A matrix representation of the above set of equations is given by

$$
\mathbf{h}(z)=\mathbf{E}\left(z^{L}\right) \mathbf{e}(z)
$$

where

$$
\mathbf{h}(z)=\left[\begin{array}{llll}
H_{0}(z) & H_{1}(z) & \cdots & H_{L-1}(z)
\end{array}\right]^{T}
$$

Polyphase Representation

$$
\mathbf{e}(z)=\left[\begin{array}{llll}
1 & z^{-1} & \cdots & z^{-(L-1)}
\end{array}\right]^{T}
$$

and

$$
\mathbf{E}(z)=\left[\begin{array}{cccc}
E_{00}(z) & E_{01}(z) & \cdots & E_{0, L-1}(z) \\
E_{10}(z) & E_{11}(z) & \cdots & E_{1, L-1}(z) \\
\vdots & \vdots & \ddots & \vdots \\
E_{L-1,0}(z) & E_{L-1,1}(z) & \cdots & E_{L-1, L-1}(z)
\end{array}\right]
$$

- $\mathbf{E}(z)$ is called the Type I polyphase component matrix

Polyphase Representation

- Likewise, we can represent the L synthesis filters in a L-band Type II polyphase form: $G_{k}(z)=\sum_{\ell=0}^{L-1} z^{-(L-1-\ell)} R_{\ell k}\left(z^{L}\right), \quad 0 \leq k \leq L-1$
- In matrix form the above set of equations can be rewritten as

$$
\mathbf{g}^{T}(z)=z^{-(L-1)} \tilde{\mathbf{e}}(z) \mathbf{R}\left(z^{L}\right)
$$

where

$$
\mathbf{g}(z)=\left[\begin{array}{llll}
G_{0}(z) & G_{1}(z) & \cdots & G_{L-1}(z)
\end{array}\right]^{T}
$$

Polyphase Representation

$$
\mathbf{e}(z)=\left[\begin{array}{llll}
1 & z & \cdots & z^{L-1}
\end{array}\right]=\mathbf{e}^{T}\left(z^{-1}\right)
$$

and

$$
\mathbf{R}(z)=\left[\begin{array}{cccc}
R_{00}(z) & R_{01}(z) & \cdots & R_{0, L-1}(z) \\
R_{10}(z) & R_{11}(z) & \cdots & R_{1, L-1}(z) \\
\vdots & \vdots & \ddots & \vdots \\
R_{L-1,0}(z) & R_{L-1,1}(z) & \cdots & R_{L-1, L-1}(z)
\end{array}\right]
$$

- $\mathbf{R}(z)$ is called the Type II polyphase component matrix

Polyphase Representation

- The polyphase representations of the L channel analysis and the L-channel synthesis filter banks are shown below

Analysis filter bank

Synthesis filter bank

Polyphase Representation

- Substituting the polyphase representations of the analysis and synthesis filter banks in the original structure of the L-channel QMF bank, and making use of the cascade equivalences we arrive at

Polyphase Representation

- From

$$
\mathbf{H}^{(m)}(z)=\left[\begin{array}{cccc}
H_{0}(z) & H_{1}(z) & \cdots & H_{L-1}(z) \\
H_{0}\left(z W_{L}\right) & H_{1}\left(z W_{L}\right) & \cdots & H_{L-1}\left(z W_{L}\right) \\
\vdots & \vdots & \ddots & \vdots \\
H_{0}\left(z W_{L}^{L-1}\right) & H_{1}\left(z W_{L}^{L-1}\right) & \cdots & H_{L-1}\left(z W_{L}^{L-1}\right)
\end{array}\right]
$$

and $\mathbf{h}(z)=\left[\begin{array}{llll}H_{0}(z) & H_{1}(z) & \cdots & H_{L-1}(z)\end{array}\right]^{T}$
it can be seen that

$$
\left[\mathbf{H}^{(m)}(z)\right]^{T}=\left[\begin{array}{lllll}
\mathbf{h}(z) & \mathbf{h}\left(z W_{L}\right) & \cdots & \mathbf{h}\left(z W_{L}^{L-1}\right)
\end{array}\right]
$$

Polyphase Representation

- Making use of $\mathbf{h}(z)=\mathbf{E}\left(z^{L}\right) \mathbf{e}(z)$ in the previous equation we get
$\left[\mathbf{H}^{(m)}(z)\right]^{T}=\mathbf{E}\left(z^{L}\right)\left[\begin{array}{llll}\mathbf{e}(z) & \mathbf{e}\left(z W_{L}\right) & \cdots & \mathbf{e}\left(z W_{L}^{L-1}\right)\end{array}\right]$
- Now, from $\mathbf{e}(z)=\left[\begin{array}{llll}1 & z^{-1} & \cdots & z^{-(L-1)}\end{array}\right]^{T}$ we have

$$
\left[\begin{array}{c}
1 \\
W_{L}^{-k} \\
\vdots \\
W_{L}^{-k(L-1)}
\end{array}\right]
$$

Polyphase Representation

where we have used the notation

$$
\Delta(z)=\operatorname{diag}\left[\begin{array}{llll}
1 & z^{-1} & \cdots & z^{-(L-1)}
\end{array}\right]
$$

- Making use of the above notation in
$\left[\mathbf{H}^{(m)}(z)\right]^{T}=\mathbf{E}\left(z^{L}\right)\left[\begin{array}{llll}\mathbf{e}(z) & \mathbf{e}\left(z W_{L}\right) & \cdots & \mathbf{e}\left(z W_{L}^{L-1}\right)\end{array}\right]$
we arrive at

$$
\mathbf{H}(z)=\mathbf{D}^{\dagger} \Delta(z) \mathbf{E}^{T}\left(z^{L}\right)
$$

where \mathbf{D}^{\dagger} is the conjugate transpose of the $L \times L$ DFT matrix \mathbf{D}

Condition for Perfect Reconstruction

- Consider the L-channel QMF structure repeated below for convenience

Condition for Perfect Reconstruction

- Assume that the polyphase component matrices satisfy the relation

$$
\mathbf{R}(z) \mathbf{E}(z)=c \mathbf{I}
$$

where \mathbf{I} is an $L \times L$ identity matrix and c is a constant

- Then the QMF structure on the previous slide reduces to the one shown on the next slide

Condition for Perfect Reconstruction

- Note: The structure can be considered as a special case of the most general L-channel QMF bank shown earlier if we set

$$
H_{k}(z)=z^{-k}, \quad G_{k}(z)=z^{-(L-1-k)}, 0 \leq k \leq L-1
$$

Condition for Perfect Reconstruction

- Substituting

$$
H_{k}(z)=z^{-k}, \quad G_{k}(z)=z^{-(L-1-k)}, \quad 0 \leq k \leq L-1
$$ in

$$
a_{\ell}(z)=\frac{1}{L} \sum_{k=0}^{L-1} H_{k}\left(z W_{L}^{\ell}\right) G_{k}(z), \quad 0 \leq \ell \leq L-1
$$

we get

$$
a_{\ell}(z)=z^{-(L-1)}\left(\frac{1}{L} \sum_{\ell=0}^{L-1} W_{L}^{-\ell k}\right), \quad 0 \leq \ell \leq L-1
$$

Condition for Perfect

 Reconstruction- Now, $\frac{1}{L} \sum_{\ell=0}^{L-1} W_{L}^{-\ell k}=\left\{\begin{array}{lc}1, & \ell=0 \\ 0, & 1 \leq \ell \leq L-1\end{array}\right.$
- Hence, from the last equation on the previous slide it follows that

$$
a_{0}(z)=1, \quad a_{\ell}(z)=0 \text { for } \ell \neq 0
$$

- As a result, $T(z)=z^{-(L-1)}$ or in other words, the simplified QMF structure satisfies the perfect reconstruction property

Condition for Perfect Reconstruction

- The analysis and synthesis filters of the perfect reconstruction L-channel QMF bank can be easily determined from known polyphase component matrices
- Example - The structure shown below is by construction a perfect reconstruction filter bank

Condition for Perfect Reconstruction

- The output of the filter bank is simply

$$
y[n]=d x[n-2]
$$

- Note: In this structure $\mathbf{E}\left(z^{3}\right)=\mathbf{P}$ and $\mathbf{R}\left(z^{3}\right)=d \mathbf{P}^{-1}$
- Consider

$$
\mathbf{P}=\left[\begin{array}{rrr}
1 & 1 & 1 \\
1 & -1 & 1 \\
1 & 0 & -1
\end{array}\right]
$$

Condition for Perfect Reconstruction

- From $\mathbf{h}(z)=\mathbf{E}\left(z^{3}\right) \mathbf{e}(z)$ we get

$$
\begin{aligned}
& \begin{aligned}
{\left[\begin{array}{l}
H_{0}(z) \\
H_{1}(z) \\
H_{2}(z)
\end{array}\right] } & =\left[\begin{array}{lll}
E_{00}(z) & E_{01}(z) & E_{02}(z) \\
E_{10}(z) & E_{11}(z) & E_{12}(z) \\
E_{20}(z) & E_{21}(z) & E_{22}(z)
\end{array}\right]\left[\begin{array}{c}
1 \\
z^{-1} \\
z^{-2}
\end{array}\right] \\
& =\left[\begin{array}{rrr}
1 & 1 & 1 \\
1 & -1 & 1 \\
1 & 0 & -1
\end{array}\right]\left[\begin{array}{c}
1 \\
z^{-1} \\
z^{-2}
\end{array}\right]
\end{aligned} \\
& \text { - Hence, }
\end{aligned}
$$

$$
\begin{gathered}
H_{0}(z)=1+z^{-1}+z^{-2}, \quad H_{1}(z)=1-z^{-1}+z^{-2}, \\
H_{2}(z)=1-z^{-2}
\end{gathered}
$$

Condition for Perfect Reconstruction

- With $d=4$ we have $d \mathbf{P}^{-1}=\left[\begin{array}{rrr}1 & 1 & 2 \\ 2 & -2 & 0 \\ 1 & 1 & -2\end{array}\right]$
- Then from $\mathbf{g}^{T}(z)=z^{-(L-1)} \tilde{\mathbf{e}}(z) \mathbf{R}\left(z^{3}\right)$ we get

$$
\left[\begin{array}{l}
G_{0}(z) \\
G_{1}(z) \\
G_{2}(z)
\end{array}\right]=\left[\begin{array}{lll}
z^{-2} & z^{-1} & 1
\end{array}\right]\left[\begin{array}{rrr}
1 & 1 & 2 \\
2 & -2 & 0 \\
1 & 1 & -2
\end{array}\right]
$$

which leads to

$$
\begin{gathered}
G_{0}(z)=1+2 z^{-1}+z^{-2}, \quad G_{1}(z)=1-2 z^{-1}+z^{-2} \\
G_{2}(z)=-2+2 z^{-2}
\end{gathered}
$$

Polyphase Representation

- For a given L-channel analysis filter bank, the polyphase component matrix $\mathbf{E}(z)$ is known

$$
\mathbf{E}(z) E(z)=c \mathbf{I},
$$

- Hence, a perfect reconstruction L-channel QMF bank can be designed by constructing a synthesis filter bank with a polyphase component matrix

$$
\mathbf{R}(z)=[\mathbf{E}(z)]^{-1}
$$

Polyphase Representation

- In general, it is not easy to compute the inverse of a rational $L \times L$ matrix
- An alternative elegant approach is to design the analysis filter bank with an invertible polyphase matrix $\mathbf{E}(z)$
- For example, $\mathbf{E}(z)$ can be chosen to be a paraunitary matrix satisfying the condition

$$
\tilde{\mathbf{E}}(z) \mathbf{E}(z)=c \mathbf{I}, \quad \text { for all } z
$$

Polyphase Representation

- Note: $\tilde{\mathbf{E}}(z)$ is the paraconjugate of $\mathbf{E}(z)$ given by the transpose of $\mathbf{E}\left(z^{-1}\right)$, with each coefficient replaced by its conjugate
- A perfect reconstruction L-channel QMF bank is then obtained by choosing

$$
\mathbf{R}(z)=\tilde{\mathbf{E}}(z)
$$

Polyphase Representation

- For the design of a perfect reconstruction L channel QMF bank, the matrix $\mathbf{E}(z)$ can be expressed in a product form

$$
\mathbf{E}(z)=\mathbf{E}_{R}(z) \mathbf{E}_{R-1}(z) \cdots \mathbf{E}_{1}(z) \mathbf{E}_{0}
$$

where \mathbf{E}_{0} is a constant unitary matrix, and

$$
\mathbf{E}_{\ell}(z)=\mathbf{I}-\mathbf{v}_{\ell}\left[\mathbf{v}_{\ell}^{*}\right]^{T}+z^{-1} \mathbf{v}_{\ell}\left[\mathbf{v}_{\ell}^{*}\right]^{T}
$$

- In the above \mathbf{v}_{ℓ} is a column vector of order L with unit norm, i.e., $\left[\mathbf{v}_{\ell}^{*}\right]^{T} \mathbf{v}_{\ell}=1$

Polyphase Representation

- With $\mathbf{E}(z)$ expressed in the product form, one can set up an appropriate objective function that can be minimized to arrive at a set of analysis filters meeting the desired specifications
- To this end, a suitable objective function is given by

$$
\phi=\sum_{k=0}^{L-1} \int_{k-\text { th stopband }}\left|H\left(e^{j \omega}\right)\right|^{2} d \omega
$$

Polyphase Representation

- The optimization parameters are the elements of \mathbf{v}_{ℓ} and \mathbf{E}_{0}
- Example - Consider the design of a 3channel FIR perfect reconstruction QMF bank with a passband width $\pi / 3$
- The passband width of the lowpass filter is from 0 to $\pi / 3$, that of the bandpass filter is from $\pi / 3$ to $2 \pi / 3$, and that of the highpass filter is from $2 \pi / 3$ to π

Polyphase Representation

- The objective function to be minimized here is thus of the form

$$
\begin{aligned}
\phi= & \left.\int_{\frac{\pi}{3}+\varepsilon}^{\pi}\left|H_{0}\left(e^{j \omega}\right)\right|^{2} d \omega+\int_{0}^{\frac{\pi}{3}-\varepsilon} H_{1}\left(e^{j \omega}\right)\right)^{2} d \omega \\
& \left.+\int_{\frac{2 \pi}{3}+\varepsilon}^{\pi}\left|H_{1}\left(e^{j \omega}\right)\right|^{2} d \omega+\int_{0}^{2 \pi-\varepsilon} \right\rvert\, H_{2}\left(e^{j \omega}\right)^{2} d \omega
\end{aligned}
$$

- The gain responses of the 3 analysis filters of length 15 are shown on the next slide

Polyphase Representation

- The coefficients of the corresponding synthesis filters are given by

$$
g_{k}[n]=h_{k}[14-n], k=1,2,3
$$

