First Course on Power Systems

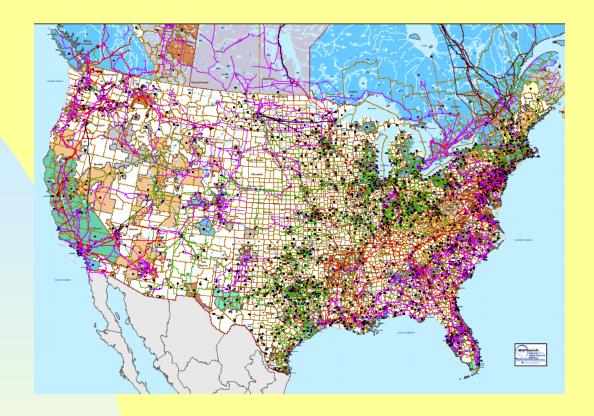
Module 1: (a) Overview and (b) Review

By
Ned Mohan
Professor of ECE
University of Minnesota

Reference Textbook:
First Course on Power Systems by Ned Mohan,
www.mnpere.com

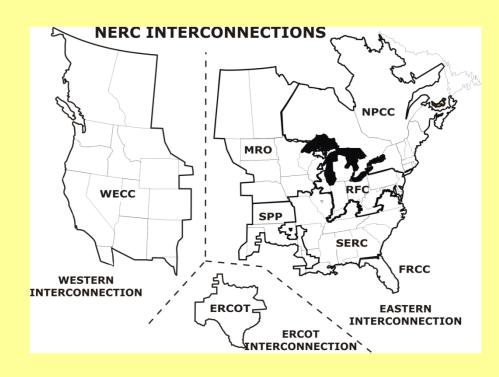
Module 1: (a) Overview

Chapt	ter 1 POWER SYSTEMS: A CHANGING LANDSCAPE	1-1
1-1	NATURE OF POWER SYSTEMS	1-1
1-2	CHANGING LANDSCAPE OF POWER SYSTEMS AND UTILITY	1-3
	DEREGULATION	
1-3	TOPICS IN POWER SYSTEMS	1-4
	REFERENCES	1-6
	PROBLEMS	1-6


Module 1: (b) Review

Chapt	ter 2 <mark>REVIEW OF</mark>	BASIC ELECTRIC CIRCUITS AND	2-1
	ELECTROM	AGNETIC CONCEPTS	
2-1	INTROD <mark>UCTION</mark>		2-1
2-2	PHASOR REPRES	SENTATION IN SINUSOIDAL STEADY STATE	2-1
2-3	POWER, R <mark>EACT</mark>	IVE POWER, AND POWER FACTOR	2-5
2-4	THREE-PHA <mark>SE C</mark>	CIRCUITS	2-10
2-5	REAL AND REAC	CTIVE POWER TRANSFER BETWEEN AC	2-17
	SYSTEMS		
2-6	APPARATUS R <mark>A</mark>	TINGS, BASE VALUES AND PER-UNIT	2-18
	QUANTITIES		
2-7	ENERGY EFFIC <mark>I</mark>	ENCIES OF POWER SYSTEM APPARATUS	2-20
2-8	ELECTROMAGN	ETIC CONCEPTS	2-20
	REFERENCES		2-30
	PROBLEMS		2-30

Chapter 1


POWER SYSTEMS: A CHANGING LANDSCAPE

NATURE OF POWER SYSTEMS

- Thousands of Generators operating in synchronism
- Over 200,000 miles of Transmission Lines over 230 kV
- Advantages of an interconnected system
 - Continuity of service
 - Lowest cost

Interconnections and Control Areas

NERC's Mission

- Bulk Electric System is Reliable, Adequate and Secure
- Three interconnections are divided into 152 Control Areas
 - Each control area controls its own generation
 - maintain its interchange schedule
 - contributes to frequency regulation of interconnection

One-line Diagram

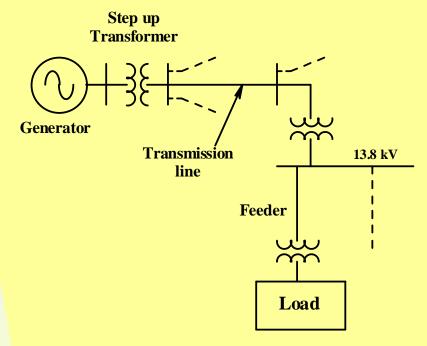


Fig. 1-3 One-line diagram as an example.

CHANGING LANDSCAPE OF POWER SYSTEMS AND UTILITY DEREGULATION

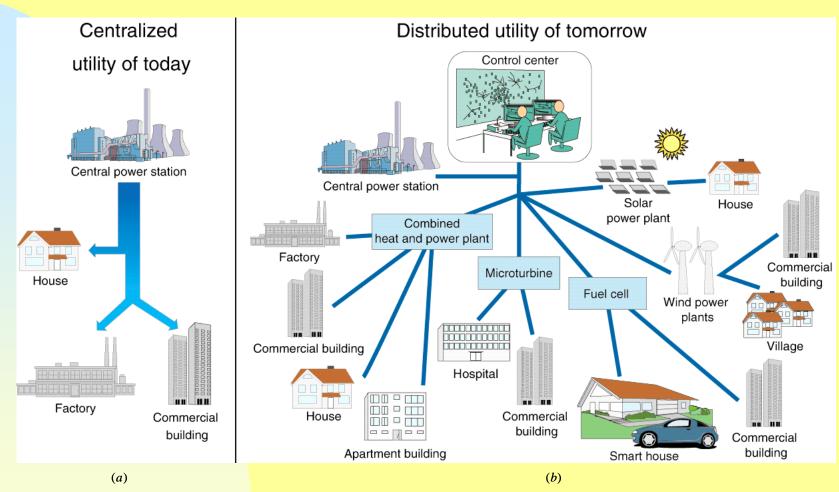


Fig. 1-4 Changing landscape [4]. Source: ABB.

Module 1: (b) Review

Chapter 2 REVIEW OF BASIC ELECTRIC CIRCUITS AND				
	ELECTROM	AGNETIC CONCEPTS		
2-1	INTROD <mark>UCTION</mark>		2-1	
2-2	PHASOR REPRES	SENTATION IN SINUSOIDAL STEADY STATE	2-1	
2-3	POWER, R <mark>EACT</mark>	IVE POWER, AND POWER FACTOR	2-5	
2-4	THREE-PHA <mark>SE C</mark>	CIRCUITS	2-10	
2-5	REAL AND REAC	CTIVE POWER TRANSFER BETWEEN AC	2-17	
	SYSTEMS			
2-6	APPARATUS R <mark>A</mark>	TINGS, BASE VALUES AND PER-UNIT	2-18	
	QUANTITIES			
2-7	ENERGY EFFIC <mark>I</mark>	ENCIES OF POWER SYSTEM APPARATUS	2-20	
2-8	ELECTROMAGN	ETIC CONCEPTS	2-20	
	REFERENCES		2-30	
	PROBLEMS		2-30	

Symbols and Conventions

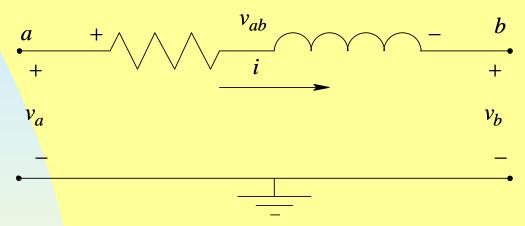


Fig. 2-1 Convention for voltages and currents.

Phasors

$$v(t) = \sqrt{2} V \cos \omega t$$

$$i(t) = \sqrt{2} I \cos(\omega t - \phi)$$

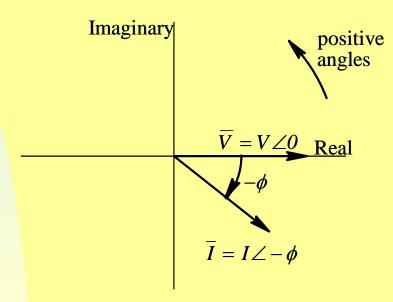


Fig. 2-2 Phasor diagram.

Phasor Analysis

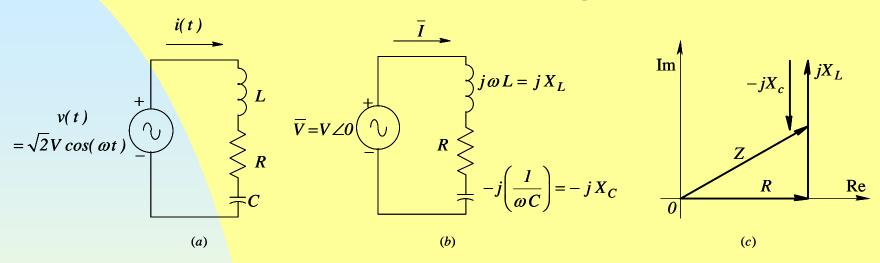


Fig. 2-3 A circuit (a) in time-domain and (b) in phasor-domain; (c) impedance triangle.

Instantaneous Power Flow

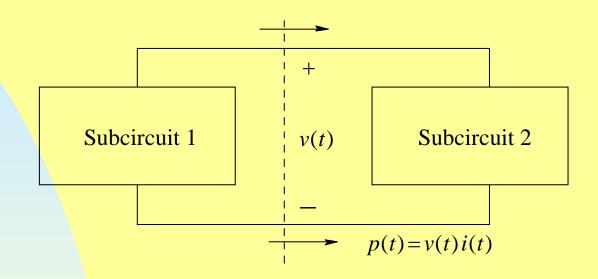
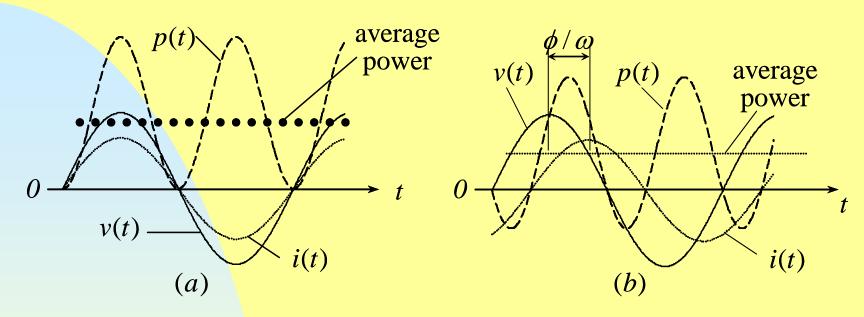
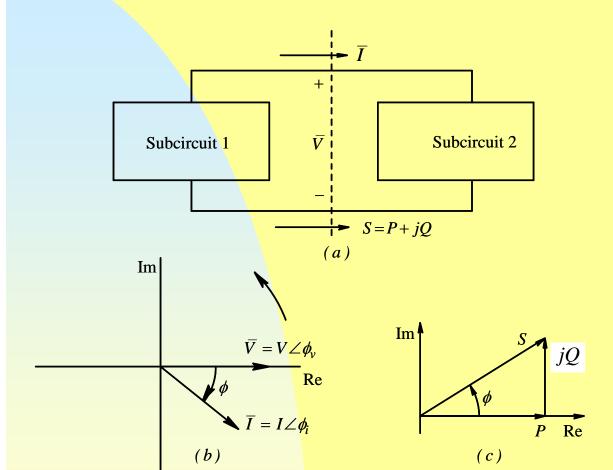



Figure 2-6 A generic circuit divided into two sub-circuits.


Real and Reactive Power

(a)
$$p(t) = \sqrt{2}V \cos \omega t \cdot \sqrt{2}I \cos \omega t = 2VI\cos^2 \omega t = VI + VI\cos 2\omega t$$

(b)
$$p(t) = \sqrt{2}V \cos \omega t \cdot \sqrt{2}I \cos(\omega t - \phi) = VI \cos \phi + VI \cos(2\omega t - \phi)$$

P, Q, VA and Power Factor

$$S = \overline{V} \overline{I}^*$$

$$S = V I \angle \phi = P + jQ$$

$$P = V I \cos \phi$$

$$Q = V I \sin \phi$$

$$|S| = \sqrt{P^2 + Q^2}$$

$$\phi = \tan^{-1} \left(\frac{Q}{P} \right)$$

Power Factor =
$$\frac{P}{VI} = \cos \phi$$

Example of Power Factor Correction

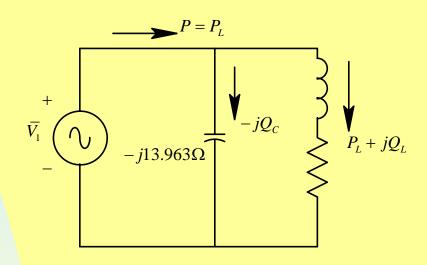
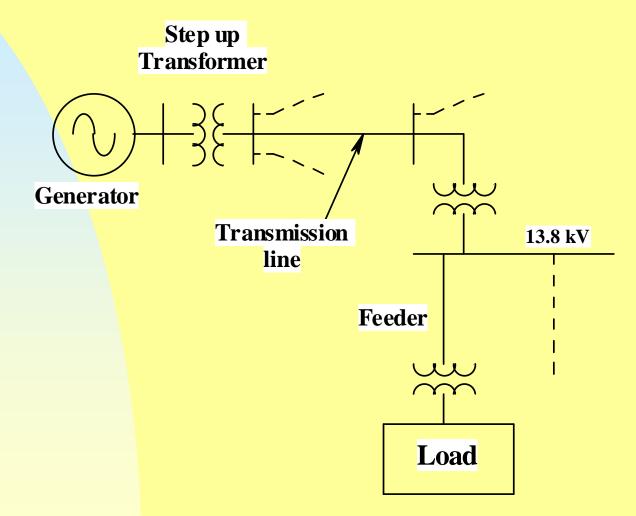



Fig. 2-9 Power factor correction in Example 2-5.

One-line Diagram

