
ONLINEAPPF 11/25/2014 15:14:13 Page 1

Appendix F: MATLAB’s Symbolic
Math Toolbox Tutorial

F.1 Introduction
Readers who are studying MATLAB may want to explore the additional functionality of
MATLAB’s Symbolic Math Toolbox. Before proceeding, the reader should have studied
Appendix B, the MATLAB tutorial, including Section B.1, which is applicable to this
appendix.

MATLAB’s SymbolicMath ToolboxVersion 6.0 in addition toMATLABVersion 8.3
(R2014a) and the Control System Toolbox Version 9.7 is required in order to add symbolic
mathematics capability to your M-files.

The M-files in this appendix are available elsewhere on this Web site.
Symbolic math commands are used in your MATLAB M-files right along with your

standard MATLAB statements. The only additional requirement is to declare symbolic
variables before they are used with the statement syms x1 x2..., where xi are symbolic
variables.

Some of the added capabilities that the Symbolic Math Toolbox yields for control
systems analysis and design include the following:

1. Functions and equations can be entered symbolically. That is, alpha characters as
well as numerical characters can be used in your M-files. For example, you can enter
B=x^2+3∗x+7, instead of B=[1 3 7]. You could even enter B=a∗x^2+b∗x+c and
obtain its factors as

[2 1/2]
[-b + (b - 4 a c)]
[1/2 ———————————————————]
[a]
[]
[2 1/2]
[-b - (b - 4 a c)]
[1/2 ———————————————————]
[a]

2. Symbolic expressions can be manipulated algebraically and simplified.

3. Transfer functions can be typed almost as written, making your M-files more readable.
For example, the statement, G=(s+1)∗(s+2)/[(s^2+3∗s+10)∗(s+4)]would re-
place the three statements, numg=poly([�1 �2]), deng=conv([1 3 10),[1 4]),
and G=tf(numg,deng).

1

ONLINEAPPF 11/25/2014 15:14:13 Page 2

4. Laplace and z-transforms as well as their inverses can be entered and found in symbolic
form.

5. Functions can be “pretty printed” for clarity in theMATLAB Command Window and
printed output.

These are only a few advantages of using the Symbolic Math Toolbox. This appendix
will explore more. The reader is encouraged not to stop exploration at the end of
Appendix F, since there is so much more than can be covered here. The Bibliography
at the end of this appendix gives references for further pursuit.

The format of the examples in this appendix follows Appendix B. Symbolic
programs use the designation: chapter <number> symbolic program<number>, that is,
ch2sp3. Thus, the programs in this appendix can be distinguished fromAppendix B programs
by the use of “sp” (symbolic program) before the program number, rather than “p” (program),
that is, ch2p3. Symbolic Math Toolbox examples are included for Chapters 2, 3, 4, 6, and 13.
The reader is encouraged, however, to apply what is learned to other chapters.

F.2 Symbolic Math Toolbox Examples

Chapter 2: Modeling in the Frequency Domain
ch2sp1 MATLAB’s calculating power is greatly enhanced using the Symbolic Math
Toolbox. In this example we demonstrate its power by calculating inverse Laplace trans-
forms of F(s). The beginning of any symbolic calculation requires defining the symbolic
objects. For example, the Laplace transform variable, s, or the time variable, t, must be
defined as a symbolic object. This definition is performed using the syms command.
Thus, syms s defines s as a symbolic object; syms t defines t as a symbolic object;
and syms s t defines both s and t as symbolic objects. We need only define objects
that we input to the program. Variables produced by the program need not be defined.
Thus, if we are finding inverse Laplace transforms, we need only define s as a symbolic
object, since t results from the calculation. Once the object is defined, we can then type F
as a function of s as we normally would write it. We do not have to use vectors to
represent the numerator and denominator. The Laplace transforms or time functions can
also be printed in the MATLAB Command Window as we normally would write it.
This form is called pretty printing. The command is pretty(F), where F is the function
we want to pretty print. In the code below, you can see the difference between normal
printing and pretty printing if you run the code without the semicolons at the steps where
the functions, F or f, are defined. Once F is defined as F(s), we can find the inverse Laplace
transformusing the commandilaplace(F). In the following example,wefind the inverse
Laplace transforms of the frequency functions in the examples used for Cases 2 and 3 in
Section 2.2 in the text.

'(ch2sp1)' % Display label.
syms s % Construct symbolic object for

% Laplace variable 's'.
'Inverse Laplace transform' % Display label.
F=2/[(s+1)*(s+2)^2]; % Define F(s) form case 2 example.
'F(s) from case 2' % Display label.
pretty (F) % Pretty print F(s)
f=ilaplace(F); % Find inverse Laplace transform.
'f(t) for case 2' % Display label.
pretty(f) % Pretty print f(t) for Case 2.
F=3/[s*(s^2+2*s+5)]; % Define F(s) from Case 3 example.
'F(s) for Case 3' % Display label.
pretty(F) % Pretty print F(s) for Case 3.

2 Appendix F: MATLAB’s Symbolic Math Toolbox Tutorial

ONLINEAPPF 11/25/2014 15:14:13 Page 3

f=ilaplace(F); % Find inverse Laplace transform.
'f(t) for Case 3' % Display label.
pretty(f) % Pretty print f(t) for Case 3.
Pause

ch2sp2 In this example, we find Laplace transforms of time functions using the
command, laplace(f), where f is a time function, f(t). As an example, we use
the time functions that resulted from the calculations in Cases 2 and 3 in Section 2.2 in
the text and work in reverse to obtain their Laplace transforms. We will see that the
command, laplace(f), yields F(s) in partial fractions. In addition to pretty printing
discussed in the previous example, the Symbolic Math Toolbox contains other commands
that can change the look of the displayed result for readability and form. Some of these
commands are: collect(F)—collect common coefficient terms of F; expand(F)—
expands product of factors of F; factor(F)—factors F; simple(F)—finds
simplest form of F with the least number of terms; simplify(F)—simplifies
F; vpa(expression, places)—standing for variable precision arithmetic, this
command converts fractional symbolic terms into decimal terms with a specified number
of decimal places. For example, the symbolic fraction, 3/16, would be converted to 0.1875 if
the argument, places, were 4. In the example below, we find the Laplace transform of a
time function. The result is displayed as partial fractions. To combine the partial fractions,
we use the command, simplify(F), where F is the Laplace transform of f(t) found using
laplace(f). Finally, we use F=vpa(F,3) to convert the symbolic fractions to
decimals in the displayed result.

'(ch2sp2)' % Display label.
syms t % Construct symbolic object for

% time variable 't'.
'Laplace transform' % Display label.
'f(t) from Case 2' % Display label.
f=2*exp(-t)-2*t*exp(-2*t)-2*exp(-2*t);

% Define f(t) from Case 2 example.
pretty(f) % Pretty print f(t) from Case 2

% example.
'F(s) for Case 2' % Display label.
F=laplace(f); % Find Laplace transform.
pretty(F) % Pretty print partial fractions of

% F(s) for Case 2.
F=simplify(F); % Combine partial fractions.
pretty(F) % Pretty print combined partial

% fractions.
'f(t) for Case 3' % Display label.
f=3/5-3/5*exp(-t)* [cos(2 * t)+(1/2)*sin(2 * t)];

% Define f(t) from Case 3 example.
pretty (f) % Pretty print f(t) for Case 3.
'F(s) for Case 3 - Symbolic fractions'

% Display label.
F=laplace(f); % Find Laplace transform.
pretty(F) % Pretty print partial fraction of

% F(s) for Case 3.
'F(s) for Case 3 - Decimal representation'

% Display label.
F=vpa(F,3); % Convert symbolic numerical

% fractions to 3-place decimal
% representation for F(s).

pretty(F) % Pretty print decimal
% representation.

F.2 Symbolic Math Toolbox Examples 3

ONLINEAPPF 11/25/2014 15:14:14 Page 4

'F(s) for Case 3 - Simplified % Display label.
F=simplify(F); % Combine partial fractions.
pretty(F) % Pretty print combined partial

% fractions.
pause

ch2sp3 MATLAB’s Symbolic Math Toolbox may be used to simplify the input of
complicated transfer functions as follows: Initially, input the transfer function G(s) =
numg/deng via symbolic math statements. Then convert G(s) to an LTI transfer function
object. This conversion is done in two steps. The first step uses the command [numg,
deng]=numden(G) to extract the symbolic numerator and denominator of G. The
second step converts, separately, the numerator and denominator to vectors using the
command sym2poly(S), where S is a symbolic polynomial. The last step consists
of forming the LTI transfer function object by using the vector representation of the
transfer function’s numerator and denominator. As an example, we form the LTI object
G�s� � �54�s � 27��s3�52s2�37s �73��=�s�s4�872s3� 437s2� 89s� 65� �s2 � 79s �36��,
making use of MATLAB’s Symbolic Math Toolbox for simplicity and readability.

'(ch2sp3)' % Display label.
syms s % Construct symbolic object for

% frequency variable's'.
G=54*(s+27)*(s^3+52*s^2+37*s+73)...
/(s*(s^4+872*s^3+437*s^2+89*s+65)*(s^2+79*s+36));

% Form symbolic G(s).
'Symbolic G(s)' % Display label.
pretty(G) % Pretty print symbolic G(s).
[numg,deng]=numden(G); % Extract symbolic numerator and

% denominator.
numg=sym2poly(numg); % Form vector for numerator of

% G(s).
deng=sym2poly(deng); % Form vector for denominator of

% G(s).
'LTI G(s) in Polynomial Form' % Display label.
Gtf=tf(numg,deng) % Form and display LTI object for

% G(s) in polynomial form.
'LTI G(s) in Factored Form' % Display label.
Gzpk=zpk(Gtf) % Convert G(s) to factored form.
pause

ch2sp4 (Example 2.10) MATLAB’s Symbolic Math Toolbox may be used to simplify
the solution of simultaneous equations by using Cramer’s rule. A system of simultaneous
equations can be represented in matrix form by Ax�B, where A is the matrix formed from
the coefficients of the unknowns in the simultaneous equations, x is a vector containing the
unknowns, and B is a vector containing the inputs. Cramer’s rule states that xk the kth
element of the solution vector, x, is found using xk � det�Ak�=det�A�, whereAk is the matrix
formed by replacing the kth column of matrixAwith the input vector, B. In the text we refer
to det(A) as “delta.” In MATLAB, matrices are written with a space or comma separating
the elements of each row. The next row is indicated with a semicolon or carriage return.
The entire matrix is then enclosed in a pair of square brackets. Applying the above to the
solution of Example 2.10: A=[(R1+L∗s)�L∗s;�L∗s (L∗s+R2+(1/(c∗s)))] and
Ak=[(R1+L∗s) V;�L∗s 0]. The function det(matrix) evaluates the determinant of
the square matrix argument. Let us now find the transfer function G�s� � I2�s�=V�s�, asked
for in Example 2.10. The command simplify(S), where S is a symbolic function, is
introduced in the solution. Simplify(S) simplifies the solution by shortening the length

4 Appendix F: MATLAB’s Symbolic Math Toolbox Tutorial

ONLINEAPPF 11/25/2014 15:14:14 Page 5

of S. The use of simplify(I2) shortens the solution by combining like powers of the
Laplace variable, s.

'(ch2sp4) Example 2.10' % Display label.
syms s R1 R2 L c V % Construct symbolic objects for

% frequency variable 's', and
%'R1','R2', 'L','c', and 'V'.
% Note: Use lower-case 'c'
% in declaration for
% capacitor.

A2=[(R1+L*s)V;-L*s 0] % Form Ak = A2.
A=[(R1+L*s)-L*s;-L*s (L*s+R2+(1/(c*s)))]

% Form A.
I2=det(A2)/det(A); % Use Cramer's rule to solve for

% I2(s).
I2=simplify(I2); % Reduce complexity of I2(s)
G=I2/V; % Form transfer function,

% G(s) = I2(s)/V(s).
'G(s)' % Display label.
pretty (G) % Pretty print G(s).
pause

Chapter 3: Modeling in the Time Domain
ch3sp1 (Example 3.6) MATLAB’s Symbolic Math Toolbox may be used to perform
matrix operations. The code for these operations is intuitive and readable. The operations
are addition(+), subraction (�), inverse (^�1), andmatrix raised to a power n (^n).We
demonstrate by solving Example 3.6 in the text using Eq. 3.73 directly.

'(ch3sp1) Example 3.6' % Display label.
syms s % Construct symbolic object for

% frequency variable's'.
A=[0 1 0;0 0 1;-1 -2 -3]; % Create matrix A.
B=[10;0;0]; % Create vector B.
C=[1 0 0]; % Create vector C.
D=0; % Create D.
I=[1 0 0;0 1 0;0 0 1]; % Create identity matrix.
'T(s)' % Display label.
T=C*((s*I-A)^-1)* B+D; % Find transfer function.
pretty(T) % Pretty print transfer function.
pause

Chapter 4: Time Response
Ch4sp1 (Example 4.11) MATLAB’s SymbolicMath Toolbox,with its ability to perform
matrix operations, lends itself to the Laplace transform solution of state equations. Also, the
command [V,D]=eig(A) allows us to find the eigenvalues of a square matrix, A, which are
the diagonal elements of diagonal matrix D. We demonstrate by solving Example 4.11.

'(ch4sp1) Example 4.11' % Display label.
syms s % Construct symbolic object for

% frequency variable 's'.
'a' % Display label.
A=[0 1 0;0 0 1;-24 -26 -9]; % Create matrix A.
B=[0;0;1]; % Create vector B.
X0=[1;0;2]; % Create initial condition vector,

% X(0).

F.2 Symbolic Math Toolbox Examples 5

ONLINEAPPF 11/25/2014 15:14:14 Page 6

U=1/(s+1); % Create U(s).
I=[1 0 0;0 1 0;0 0 1]; % Create identity matrix.
X=((s*I-A)^-1)*(X0+B*U); % Find Laplace transform of state

% vector.
x1=ilaplace(X(1)); % Solve for X1(t).
x2=ilaplace(X(2)); % Solve for X2(t).
x3=ilaplace(X(3)); % Solve for X3(t).
y=x1+x2; % Solve for output, y(t).
y=vpa(y,3); % Convert fractions to decimals.
'y(t)' % Display label.
pretty(y) % Pretty print y(t).
'b' % Display label.
[V,D]=eig(A); % Find eigenvalues, which are the

% diagonal elements of D.
'Eigenvalues on diagonal' % Display label.
D % Display D.
pause

ch4sp2 (Example 4.12/4.13) In this example we use MATLAB’s Symbolic Math
Toolbox to solve state equations in the time domain. We make use of the Symbolic
Math Toolbox’s ability to perform integration. We first solve for the state-transition matrix
by taking the inverse Laplace transform of �sI � A��1. We then use the convolution integral
to obtain the solution. Integration is performed using the command int(S,v,a,b),
where S is the function to be integrated, v is the variable of integration, a is the lower limit
of integration, and b is the upper limit of integration. As an example we solve Example 4.12
in the text. The state-transition matrix is obtained by the method demonstrated in Example
4.13 in the text.

'(ch4sp2) Example 4.12/4.13' % Display label.
syms s t tau % Construct symbolic object for

% frequency variable 's','t',
% and 'tau'.

'a' % Display label.
A=[0 1;-8 -6] % Create matrix A.
B=[0;1] % Create vector B.
X0=[1;0] % Create initial condition vector,

% X(0).
U=1 % Create u(t).
I=[1 0;0 1]; % Create identity matrix.
'E=(s*I-A)^-1' % Display label.
E=((s*I-A)^-1) % Find Laplace transform of state-

% transition matrix,(sI-A)^-1.
Fi11=ilaplace(E(1,1)); % Take inverse Laplace transform
Fi12=ilaplace(E(1,2)); % of each element
Fi21=ilaplace(E(2,1)); % of (sI-A)^-1
Fi22=ilaplace(E(2,2)); % to find state-transition matrix.
'Fi(t)' % Display label.
Fi=[Fi11 Fi12;Fi21 Fi22]; % Form state-transition matrix,

% Fi(t).
pretty(Fi) % Pretty print state-transition

% matrix, Fi(t).
Fitmtau=subs(Fi,t,t-tau); % Form Fi(t-tau).
'Fi(t-tau)' % Display label.
pretty(Fitmtau) % Pretty print Fi(t-tau).
X=Fi*X0+int(Fitmtau*B*1,tau,0,t); % Solve for X(t).
X=expand(X); % Expand X for clearer display.

6 Appendix F: MATLAB’s Symbolic Math Toolbox Tutorial

ONLINEAPPF 11/25/2014 15:14:14 Page 7

'X(t)' % Display label.
pretty(X) % Pretty print X (t).
pause

Chapter 6: Stability
ch6sp1 (Example 6.2) MATLAB’s Symbolic Math Toolbox may be used conveniently
to calculate the values in a Routh table. The toolbox is particularly useful for more
complicated tables, where symbolic objects, such as epsilon, are used. In this example we
represent each row of the Routh table by a vector. Expressions are written for subsequent
row elements by using the equations given in Table 6.2 of the text. TheMATLAB command
det(M) is used to find the determinant of the square matrix, M, as shown for each row
element in Table 6.2. Further, we test the previous row’s first element to see if it is zero.
If it is zero, it is replaced by epsilon, e, in the next row’s calculation. The preceding logic is
performed using MATLAB’s IF/ELSE/END as shown in the code below.

We now demonstrate the making of a Routh table using the Symbolic Math Toolbox
for a problem that requires the epsilon method to complete the table. The following program
produces the Routh table for Example 6.2 in the text. Also, for clarity, we convert all rows to
symbolic objects, simplify, and pretty print after forming the table. CAUTION: In general,
the results of this program are not valid if an entire row is zero as e approaches zero, such
as[e 0 0 0]. This case must be handled differently, as discussed in text Section 6.3 in the
subsection, “Entire Row Is Zero.”

'(ch6sp1) Example 6.2' % Display label.
% -det([si() si(); sj() sj()])/sj()

% Template for use in each cell.
syms e % Construct a symbolic object for

% epsilon.
%%
s5=[1 3 5 0 0]; % Create s^5 row of Routh table.
%%
s4=[2 6 3 0 0]; % Create s^4 row of Routh table.
%%
if -det([s5(1) s5(2);s4(1) s4(2)])/s4(1)==0

s3=[e...
-det([s5(1) s5(3);s4(1) s4(3)])/s4(1) 0 0];

% Create s^3 row of Routh table
% if 1st element is 0.

else
s3=[-det([s5(1) s5(2);s4(1) s4(2)])/s4(1)...
-det([s5(1) s5(3);s4(1) s4(3)])/s4(1) 0 0];

% Create s^3 row of routh table
% if 1st element is not zero.

end
%%
if -det([s4(1) s4(2);s3(1) s3(2)])/s3(1)==0

s2=[e...
-det([s4(1) s4(3);s3(1) s3(3)])/s3(1) 0 0];

% Create s^2 row of Routh table
% If 1st element is 0.

else
s2=[-det([s4(1) s4(2);s3(1) s3(2)])/s3(1)...
-det([s4(1) s4(3);s3(1) s3(3)])/s3(1) 0 0];

% Create s^2 row of Routh table
% if 1st element is not zero.

end

F.2 Symbolic Math Toolbox Examples 7

ONLINEAPPF 11/25/2014 15:14:15 Page 8

%%
if -det([s3(1) s3(2);s2(1) s2(2)])/s2(1)==0
s1=[e...
-det([s3(1) s3(3);s2(1) s2(3)])/s2(1) 0 0];

% Create s^1 row of Routh table
% if 1st element is 0.

else
s1=[-det([s3(1) s3(2);s2(1) s2(2)])/s2(1)...
-det([s3(1) s3(3);s2(1) s2(3)])/s2(1) 0 0];

% Create s^1 row of Routh table
% if 1st element is not zero.

end
%%%
s0=[-det([s2(1) s2(2);s1(1) s1(2)])/s1(1)...
-det([s2(1) s2(3);s1(1) s1(3)])/s1(1) 0 0];

% Create s^0 row of Routh table.
%%%
's5' % Display label.
s5=sym(s5); % Convert s5 to a symbolic object.
s5=simplify(s5); % Simplify terms in s^5 row.
pretty(s5) % Pretty print s^5 row.
's4' % Display label.
s4=sym(s4); % Convert s4 to a symbolic object.
s4=simplify(s4); % Simplify terms in s^4 row.
pretty(s4) % Pretty print s^4 row.
's3' % Display label.
s3=sym(s3); % Convert s3 to a symbolic object.
s3=simplify(s3); % Simplify terms in s^3 row.
pretty(s3) % Pretty print s^3 row.
's2' % Display label.
s2=sym(s2); % Convert s2 to a symbolic object.
s2=simplify(s2); % Simplify terms in s^2 row.
pretty(s2) % Pretty print s^2 row.
's1' % Display label.
s1=sym(s1); % Convert s1 to a symbolic object.
s1=simplify(s1); % Simplify terms in s^1 row.
pretty(s1) % Pretty print s^1 row.
's0' % Display label.
s0=sym(s0); % Convert s0 to a symbolic object.
s0=simplify(s0); % Simplify terms in s^0 row.
pretty(s0) % Pretty print s^0 row.
pause

ch6sp2 (Example 6.9)
MATLAB’s Symbolic Math Toolbox also may be used conveniently to calculate the values
in a Routh table that contains a variable gain, K. The technique is similar to the previous
example, ch6sp1, except that K, rather than e, is used as the symbolic object. We now
demonstrate the solution of Example 6.9 in the text using MATLAB and MATLAB’s
Symbolic Math Toolbox.

'(ch6sp2) Example 6.9' % Display label.
% -det([si() si();sj() sj()])/sj()

% Template for use in each cell.
syms K % Construct a symbolic object for

% gain, K.
s3=[1 77 0 0]; % Create s^3 row of Routh table.

8 Appendix F: MATLAB’s Symbolic Math Toolbox Tutorial

ONLINEAPPF 11/25/2014 15:14:15 Page 9

s2=[18 K 0 0]; % Create s^2 row of Routh table.
s1=[-det([s3(1) s3(2);s2(1) s2(2)])/s2(1)...

-det([s3(1) s3(3);s2(1) s2(3)])/s2(1) 0 0];
% Create s^1 row of Routh table.

s0=[-det([s2(1) s2(2);s1(1) s1(2)])/s1(1)...
-det([s2(1) s2(3);s1(1) s1(3)])/s1(1) 0 0];

% Create s^0 row of Routh table.
's3' % Display label.
s3=sym(s3); % Convert s3 to a symbolic object.
s3=simplify(s3); % Simplify terms in s^3 row.
pretty(s3) % Pretty print s^3 row.
's2' % Display label.
s2=sym(s2); % Convert s2 to a symbolic object.
s2=simplify(s2); % Simplify terms in s^2 row.
pretty(s2) % Pretty print s^2 row.
's1' % Display label.
s1=sym(s1); % Convert s1 to a symbolic object.
s1=simplify(s1); % Simplify terms in s^1 row.
pretty(s1) % Pretty print s^1 row.
's0' % Display label.
s0=sym(s0); % Convert s0 to a symbolic object.
s0=simplify(s0); % Simplify terms in s^0 row.
pretty(s0) % Pretty print s^0 row.
pause

Chapter 13: Digital Control Systems
ch13sp1 (Example 13.1) MATLAB’s Symbolic Math Toolbox and the command
ztrans(f) can be used to find the z-transform of a time function, f, represented as
f(nT). MATLAB assumes that the default sampled-time independent variable is n and the
default transform independent variable is z. If you want to use k instead of n, that is, f(kT),
use ztrans(f,k,z). This command overrides MATLAB’s defaults and assumes the
sampled-time independent variable to be k. Let us solve Example 13.1 using MATLAB’s
Symbolic Math Toolbox.

'(ch13sp1) Example 13.1' % Display label.
syms n T % Construct symbolic objects for

%'n' and 'T'.
'f(nT)' % Display label.
f=n*T; % Define f(nT).
pretty(f) % Pretty print f(nT).
'F(z)' % Display label.
F=ztrans(f); % Find z-transform, F(z).
pretty(F) % Pretty print F(z).
pause

ch13sp2 (Example 13.2) MATLAB’s Symbolic Math Toolbox and the command
iztrans(F) can be used to find the time-sampled function represented as f(nT), given
its z-transform, F(z). If you want the sampled time function returned as f(kT), then
change MATLAB’s default independent sampled-time variable by using the command
iztrans(F,k). Let us solve Example 13.2 using MATLAB’s Symbolic Math Toolbox.

'(ch13sp2) Example 13.2' % Display label.
syms z k % Construct symbolic objects for

%'z' and 'k'.
'F(z)' % Display label.

F.2 Symbolic Math Toolbox Examples 9

ONLINEAPPF 11/25/2014 15:14:15 Page 10

F=0.5*z/((z-0.5)*(z-0.7)); % Define F(z).
pretty (F) % Pretty print F(z).
'f(kT)' % Display label.
f=iztrans(F,k); % Find inverse z-transform, f(kT).
pretty(f) % Pretty print f(kT).
'f(nT)' % Display label.
f=iztrans(F); % Find inverse z-transform, f(nT).
pretty(f) % Pretty print f(nT).
pause

ch13sp3 (Example 13.4) MATLAB’s Symbolic Math Tolbox can be used to find the
z-tansform of a transfer function, G(s), in cascade with a z.o.h. Two new commands
are introduced. The first, compose(f,g), allows a variable g to replace the variable t in
f(t).We use this command to replace t in g2(t) with nT before taking the z-transform. The other
new command is subs(S,old,new). Subs stands for symbolic substitution. Old is a
variable contained inS.New is a numerical or symbolic quantity to replaceold.Weusesubs
to replace T inG(z) with a numerical value. Tofind the z-transform of a transfer function,G(s),
in cascade with a z.o.h. by using MATLAB’s Symbolic Math Toolbox, we perform the
following steps: (1) Construct G2�s� � G�s�=s; (2) find the inverse Laplace transform of
G2(s); (3) replace t with nT in g2(t); (4) find G�z� � �1 � z�1�G2�z�; (5) substitue a numerical
value for T. Let us solve Example 13.4 using MATLAB’s Symbolic Math Toolbox.

'(ch13sp3) Example 13.4' % Display label.
syms s z n T % Construct symbolic objects for

% 's', 'z', 'n', and 'T'.
G2s=(s+2)/(s*(s+1)); % Form G2(s)=G(s)/s.
'G2(s)=G(s)/s' % Display label.
pretty(G2s) % Pretty print G2(s).
'g2(t)' % Display label.
g2t=ilaplace(G2s); % Find g2(t).
pretty(g2t) % Pretty print g2(t).
g2nT=compose(g2t,n*T); % Find g2 (nT).
'g2(nT)' % Display label.
pretty(g2nT) % Pretty print g2(nT).
Gz=(1-z^-1)* ztrans(g2nT); % Find G(z)=(1-z^-1)G2(z).
Gz=simplify(Gz); % simplify G(z).
'G(z)=(1-z^-1)G2(z)' % Display label.
pretty(Gz) % Pretty print G(z).
Gz=subs(Gz,T,0.5); % Let T=0.5 in G(z).
Gz=vpa(simplify(Gz),4); % Simplify G(z) and evaluate

% numerical values to 4 places.
'G(z) evaluated for T=0.5' % Display label.
pretty(Gz) % Pretty print G(z) with numerical

% values.
pause

F.3 Command Summary
diff (S,'x') Differentiate the symbolic function, S, with respect to variable, x.

compose(f,g) Substitute g(y) for x in f(x).

expand(x) Expand a symbolic function.

ilaplace(X) Find inverse Laplace transform of X(s).

int(S,v,a,b) Integrate S with respect to v from lower limit a to upper limit b.

10 Appendix F: MATLAB’s Symbolic Math Toolbox Tutorial

ONLINEAPPF 11/25/2014 15:14:16 Page 11

iztrans(F,k) Find inverse z-transform. Finds f(kT) given F(z).

Without optional field, k, finds f(nT).

laplace(x) Find Laplace transform of x(t).

numden(G) Extract symbolic numerator and denominator from G(s).

pretty(x) Pretty print x.

simple(x) Find simplest from of symbolic object x.

simplify(x) Simplify x.

subs(S,old,new) Substitute new for old in symbolic S.

sym(v) Convert v to a symbolic object.

syms x y z Declare x, y, and z to be symbolic objects.

sym2poly(P) Convert symbolic polynomial, P, to a vector.

vpa(x,D) Use variable precision arithmetic. Convert fractional symbolic
values to decimal with D places.

ztrans(f) Find z-transform of f(nT).

Bibliography
MathWorks. Control System ToolboxTM Getting Started Guide R1024a. MathWorks, Natick, MA,

2000–2014.
MathWorks. MATLAB Primer R2014. MathWorks, Natick, MA, 1984–2014.
MathWorks. Symbolic Math ToolboxTM User’s Guide R2014a.MathWorks, Natick, MA, 1993–2014.

Bibliography 11

ONLINEAPPF 11/25/2014 15:14:16 Page 12

Copyright 2015 John Wiley & Sons, Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or
108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or
authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc. 222 Rosewood
Drive, Danvers, MA 01923, website www.copyright.com. Requests to the Publisher for permission should be addressed
to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, (201)748-6011,
fax (201)748-6008, website http://www.wiley.com/go/permissions.

Founded in 1807, John Wiley & Sons, Inc. has been a valued source of knowledge and understanding for more than
200 years, helping people around the world meet their needs and fulfill their aspirations. Our company is built on a
foundation of principles that include responsibility to the communities we serve and where we live and work. In 2008,
we launched a Corporate Citizenship Initiative, a global effort to address the environmental, social, economic, and
ethical challenges we face in our business. Among the issues we are addressing are carbon impact, paper specifications
and procurement, ethical conduct within our business and among our vendors, and community and charitable support.
For more information, please visit our website: www.wiley.com/go/citizenship.

The software programs and experiments available with this book have been included for their instructional value. They
have been tested with care but are not guaranteed for any particular purpose. The publisher and author do not offer any
warranties or restrictions, nor do they accept any liabilities with respect to the programs and experiments.

AMTRAK is a registered trademark of National Railroad Passenger Corporation. Adobe and Acrobat are trademarks
of Adobe Systems, Inc. which may be registered in some jurisdictions. FANUC is a registered trademark of FANUC,
Ltd. Microsoft, Visual Basic, and PowerPoint are registered trademarks of Microsoft Corporation. QuickBasic is a
trademark of Microsoft Corporation. MATLAB and SIMULINK are registered trademarks of The MathWorks, Inc.
The Control System Toolbox, LTI Viewer, Root Locus Design GUI, Symbolic Math Toolbox, Simulink Control
Design, and MathWorks are trademarks of The MathWorks, Inc. LabVIEW is a registered trademark of National
Instruments Corporation. Segway is a registered trademark of Segway, Inc. in the United States and/or other countries.
Chevrolet Volt is a trademark of General Motors LLC. Virtual plant simulations pictured and referred to herein are
trademarks or registered trademarks of Quanser Inc. and/or its affiliates. 2010 Quanser Inc. All rights reserved.
Quanser virtual plant simulations pictured and referred to herein may be subject to change without notice. ASIMO is a
registered trademark of Honda.

Evaluation copies are provided to qualified academics and professionals for review purposes only, for use in their
courses during the next academic year. These copies are licensed and may not be sold or transferred to a third party.
Upon completion of the review period, please return the evaluation copy to Wiley. Return instructions and a free of
charge return shipping label are available at www.wiley.com/go/returnlabel. Outside of the United States, please contact
your local representative.

Library of Congress Cataloging-in-Publication Data

Nise, Norman S.
Control systems engineering / Norman S. Nise, California State Polytechnic University, Pomona. — Seventh edition.

1 online resource.
Includes bibliographical references and index.
Description based on print version record and CIP data provided by publisher; resource not viewed.
ISBN 978-1-118-80082-9 (pdf) — ISBN 978-1-118-17051-9 (cloth : alk. paper)
1. Automatic control–Textbooks. 2. Systems engineering–Textbooks. I. Title.
TJ213
629.8–dc23

2014037468

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

