
ONLINEAPPH 11/22/2014 13:1:20 Page 1

Appendix H: Control System
Computational Aids

H.1 Step Response of a System Represented in State Space
In this section we will discuss how to obtain the step response of systems represented in state
space. We will begin by discussing how state equations can be used to program a digital
computer and progress to a computer program that you can use to perform step-response
simulations.

Using State Equations for Computer Simulations
One advantage of state equations is the ability to use this representation to simulate control
systems on the digital computer. This section is devoted to demonstrating this concept.
Consider the system represented in state-space by Eqs. (H.1).

_x1
_x2

� �
� 0 1

�2 �3
� �

x1
x2

� �
� 0

1

� �
u t� � �H:1a�

y t� � � 2 3
� � x1

x2

� �
�H:1b�

x1 0� �
x2 0� �

� �
� 1

�2
� �

�H:1c�

This system is represented in phase-variable form and has a unit step input, u(t). We are
about to formulate a solution for the system output, y(t), by numerically integrating the
differential equation on the digital computer. We will use a method called Euler’s
approximation, where the area to be integrated is approximated as a rectangle. The solution
obtained on the computer is an actual time waveform plot rather than the closed-form
expression we arrived at via the Laplace transform.

Writing the state equations explicitly, we have

dx1
dt

� x2 �H:2a�
dx2
dt

� �2x1 � 3x2 � 1 �H:2b�

1

ONLINEAPPH 11/22/2014 13:1:20 Page 2

If we approximate dx by Δx and dt by Δt, and multiply through by Δt

Δx1 � x2Δt �H:3a�
Δx2 � �2x1 � 3x2 � 1� �Δt �H:3b�

We can say that the value at the next interval for either state variable is approximately the
current value plus the change. Thus,

x1 t � Δt� � � x1 t� � � Δx1 �H:4a�
x2 t � Δt� � � x2 t� � � Δx2 �H:4b�

Finally, from the output equation (H.1b), y(t) at the next time interval, y(t + Δt), is

y t � Δt� � � 2x1 t � Δt� � � 3x2 t � Δt� � �H:5�
Let us see how this would work on the digital computer. From the problem statement, x1
and x2 begin at t = 0 with values 1 and �2, respectively. If we assume a Δt interval of
0.1 second1, the change in x1 and x2 from 0 to 0.1 second is found from Eqs. (H.3) to be,

Δx1 � x2 0� �Δt � �0:2 �H:6a�
Δx2 � �2x1 0� � � 3x2 0� � � 1� �Δt � 0:5 �H:6b�

from which the state variables at t = 0.1 second are found from Eqs. (H.4) to be

x1 0:1� � � x1 0� � � Δx1 � 0:8 �H:7a�
x2 0:1� � � x2 0� � � Δx2 � �1:5 �H:7b�

Finally, the output at t = 0.1 second is calculated from Eq. (H.5) to be,

y 0:1� � � 2x1 0:1� � � 3x2 0:1� � � �2:9 �H:8�
The values of the state variables at t = 0.1 second are used to calculate the values of the state
variables and the output at the next interval of time, t = 0.2 second. Once again the changes
in x1 and x2 are,

Δx1 � x2 0:1� �Δt � �0:15 �H:9a�
Δx2 � �2x1 0:1� � � 3x2 0:1� � � 1� �Δt � 0:39 �H:9b�

from which the state variables at t = 0.2 second are found to be

x1 0:2� � � x1 0:1� � � Δx1 � 0:65 �H:10a�
x2 0:2� � � x2 0:1� � � Δx2 � �1:11 �H:10b�

1Δt is selected to be small and, initially, at least an order of magnitude less than the system’s time constants. In order
to determine, empirically, how small Δt should be, the value of Δt can be successively reduced after each response
has been calculated by the computer until the difference between the current response and the previous response is
negligible. IfΔt is too large, then error results from inaccurately representing the area under the state variable curve.
If Δt is too small, then round-off error will accumulate during the computation because of the numerous
calculations.

2 Appendix H: Control System Computational Aids

ONLINEAPPH 11/22/2014 13:1:21 Page 3

Finally, the output at t = 0.2 second is calculated as,

y 0:2� � � 2x1 0:2� � � 3x2 0:2� � � �2:03 �H:11�

The results are summarized in Figure H.1. Continuing in like manner until t = tf, the
maximum desired time, the response for 0 � t � tf can be obtained.

Computer Program for Step Response
In this subsection we will design a computer program that simulates a system’s step response
using state equations. The code was developed using Visual Basic Version 6 and converted
to a stand-alone application that runs on a PC2. The resulting application, recommended for
readers who do not have access to MATLAB, can be found in the Appendix H folder on
www.wiley.com/college/nise3. To run the setup program, open the folder labeled Step
Response inside the Appendix H folder and double-click on setup icon. For directions on
running the program see the README file inside the Appendix H folder. Let us now
summarize the design of the step response software.

First, we enumerate the software requirements as follows:

1. The user will input (1) system order, (2) components of the system, input, and output
matrix.

2. The user will input the initial conditions.

3. The user will input the following plot parameters: (1) iteration interval, (2) plot interval,
and (3) maximum time.

4. The program will plot the step response as well as listing the response data.

5. The program will replot the step response after allowing the user to change the initial
conditions as well as the plot parameters without reentering the system.

The program plots the step response of a system represented in state space and
permits the user to choose an iteration interval. A helpful technique of finding the
iteration interval is to run the program with successively diminishing iteration intervals

FIGURE H.1 State variables
and output for the system of
Eqs. H.1

2Visual Basic is a registered trademark of Microsoft Corporation.
3MATLAB is a registered trademark of The Math Works, Inc.

H.1 Step Response of a System Represented in State Space 3

ONLINEAPPH 11/22/2014 13:1:21 Page 4

until reaching an iteration interval below which there is no appreciable change in the
results.

Another parameter the user can select is the print interval which allows the user to
print at a larger time interval than the iteration interval.

The execution time of the program is also an input parameter. The user should choose
a time for which the output has already reached a steady-state value.

A simplified flow-chart for the program is shown in Figure H.2 and uses the system of
Eqs. (H.1).

Code Module
We now present a sample implementation of the flow-chart of Figure H.2. The routine can
run independently, as part of a Visual Basic Code Module, or tailored to another
programming language or other machines, such as hand-held calculators.

FIGURE H.2 Flow-chart for
step response program

Input
System:

Store plot point

Solve state equations for next point

Maximum
time

exceeded?

Time to
store
plot

point?

Plot

End

No

Yes

No

Yes

x Ax Bu; y = Cx

A
a11 a12

a21 a22

 10

2 3

Start

B
b1

b2

0

1 ; C = 2 3

Iteration interval: T 0.001 second

Initial state vector: x (0) –21

Plot interval: 0.1 second
Maximum time: 2 seconds
Maximum amplitude: 4

x1 (a11 x1 a12 x2 b)1 T; x2 (a21x1 a22 x2 b)2 T

x1 x1 x ; x1 2 x 2 x ; y2 c x1 1 c x2 2

• =

= = − −

= =

∆ =
=

∆ = + + ∆ ∆ = + + ∆

= + ∆ = + ∆ = +

4 Appendix H: Control System Computational Aids

ONLINEAPPH 11/22/2014 13:1:21 Page 5

The routine can obtain its input variable values through the Visual Basic GUI
interface, as presented in the sample run below, or through another program written to
pass this code the input variables. The same is true of the output variables. In the sample run
below, output variables are passed to the Visual Basic GUI interface for display, but could
just as well be passed to another program.

We now list the sample subroutine, which we call CalcStateSpace:

' ********** Input Variables**************
'Although the following arrays are being dimensioned for a
'100th order system, only a portion of the array, defined by
'the sys_order variable, is used.

Public X(100) As Single 'X vector input.
Public A(100, 100) As Single 'A matrix Input.
Public B(100) As Single 'B matrix Input.
Public C(100) As Single 'C vector Input

Public PRNT_Int 'Print interval input.
Public sys_order 'System order input.
Public DELTAT 'Delta time input.
Public MAXTIME 'Total run-time input.

' ************** Output Variables***********************
Public DELTAX (1000) As Single 'Array holding the time for

'each point calculated.
Public Y (1000) As Single 'Array holding the output

'response value for each
'point calculated.

' **************Subroutine CalcStateSpace***************
Public Sub CalcStateSpace ()
On Error GoTo errorHandle

' *************Store initial value for plot*************
Let cx=0
For i=1 To sys_order

cx=cx + C(i-1)*X(i - 1)
Next i
Y(0)=cx

' ******************** Start plot loop******************
For K=1 To CInt(MAXTIME/PRNT_Int) Step 1

'Index for Printing interval

' **************** Start iteration loop******************
For n=1 To CInt (PRNT_Int/DELTAT) Step 1

'Index for iteration interval
For i=1 To sys_order

Let ax=0
For j=1 To sys_order

ax=ax + A(i - 1, j - 1)*X(j - 1)
Next j
DELTAX (i - 1)=(ax+B (i - 1))*DELTAT

'Calculate delta X1
Next i

H.1 Step Response of a System Represented in State Space 5

ONLINEAPPH 11/22/2014 13:1:21 Page 6

For i = 1 To sys_order
X(i - 1) = X(i - 1) + DELTAX (i - 1)

'Calculate next x
Next i
Let cx = 0
For i = 1 To sys_order

cx = cx + C(i - l)*X(i - 1)
Next I

Next n

' ***************** End iteration loop******************
Y(K) = cx

Next K
' ***************** End plot loop***********************

Exit Sub
errorHandle:

message = "System Error: " + Err.Description
MsgBox (message)
On Error GoTo 0

End Sub

As an example, data entry and results for the code shown above are via a graphical
user interface (GUI) developed in Visual Basic 6 and produced by the stand-alone
application enclosed in this folder. Figure H.3 shows the GUI interface for data entry
using the system of Eqs. H.1 as an example. Figure H.4 shows the output window for the
example.

FIGURE H.3 Step response
program: GUI interface for data
entry

6 Appendix H: Control System Computational Aids

ONLINEAPPH 11/22/2014 13:1:21 Page 7

H.2 Root Locus and Frequency Response
In this section we will develop a computer program that can be used as an alternative to
MATLAB to search for points on the root locus and obtain magnitude and phase frequency
response data. The code was developed using Visual Basic Version 6 and converted to a
stand-alone application that runs on a PC. The resulting application, recommended for
readers who do not have access to MATLAB, can be found in the Appendix H folder on
www.wiley.com/college/nise. To run the setup program, open the folder labeled Root Locus
inside the Appendix H folder and double-click on setup icon. For directions on running the
program see the README file inside the Root Locus folder. The program also can be
adapted to hand-help calculators. Let us now summarize the design of the step response
software.

First, we enumerate the software requirements as follows:

1. The user will input the number of open-loop poles and zeros.

2. The user will input the values of the open-loop poles and zeros.

3. The user will select polar or Cartesian coordinates for the test point.

4. The user will input the coordinates of the test point.

5. The user will initiate the calculation.

6. The program will display the angle and magnitude of the open-loop transfer function at
the test point as well as the gain.

7. The user can change the open-loop poles and zeros and the test point before initiating
another calculation.

A simplified flow-chart for the program is shown in Figure H.5.

Code Module
We now present a sample implementation of the flow-chart of Figure H.5. The routine can
run independently, as part of a Visual Basic Code Module, or tailored to another
programming language or other machines, such as hand-held calculators.

The routine can obtain its input variable values through the Visual Basic GUI
interface, as presented in the sample run below, or through another program written to
pass this code the input variables. The same is true of the output variables. In the sample run
below, output variables are passed to the Visual Basic GUI interface for display, but could
just as well be passed to another program.

FIGURE H.4 Step response
program: output window

H.2 Root Locus and Frequency Response 7

ONLINEAPPH 11/22/2014 13:1:21 Page 8

We now list the sample subroutine, which we call RootLocusCalc:

' ************************* Input Variables *************************
Public Polar 'True or False. Determines if input test

'point is interpreted as polar coordinates
'(Polar = True or Cartesian Coordinates
'(Polar = False).

Public testAVal 'Test point x coordinate (Polar = False) or
'test point magnitude (Polar = True).

Public testBVal 'Test point y coordinate (Polar = False) or
'test point angle (Polar = True).

Public NumPolesVal 'Number of poles in system (0 to 10).
Public NumZerosVal 'Number of Zeros in system (0 to 10).

'The following variables have enough space for 10 poles,
'but only the number of data points referred to by NumPolesVal
'are stored in the array starting at the 0th element.

FIGURE H.5 Flow-chart for
root locus and frequency
response program

• Input number of poles
• Input number of zeros
• Input coordinates of poles
• Input coordinates of zeros
• Select polar or Cartesian
 coordinates for test point

Start

Begin calculation

Test point=
pole or zero?

Input test point

Give error message

Yes

poles angleszero angles -Angle = ∑∑
Gain = Π pole lengths / Π zero lengths

Magnitude = 1 / Gain

End

8 Appendix H: Control System Computational Aids

ONLINEAPPH 11/22/2014 13:1:22 Page 9

Public RLPoleRe (10) 'Stores each open-loop poles's real part.
Public RLPoleI (10) 'Stores each open-loop poles'simaginary part.

'The following variables haveenough space for 10zeros,
'but only thenumberof data pointsreferred to byNumZerosVal
'are stored inthe array starting atthe 0th element.

PublicRLZeroRe(10) 'Stores each open-loop zero'sreal part.
PublicRLZeroIm(10) 'Stores each open-loop zero'simaginary part.

' ************************** Output Variables **************************
PublicRLKval 'Returns the Gain atthe given testpoint.
PublicRLMagVal 'Returns the magnitude atthe given testpoint.
PublicRLAngleVal 'Returnstheangleindegreesatthe given

'testpoint.

PublicErrorFlag 'Ifthisvariableisset to True, then
'anerroroccurredduringcalculation
'and theoutputdataisdisregarded.

' **********************SubroutineRootLocusCalc**********************
Constpi= 3.14159265358979

PublicSub RootLocusCalc()
DimdeltaX As Single
DimdeltaY As Single
ErrorFlag= False
RecGain=1
angle =0

IfPolar= TrueThen'Convert polar testpointtoCartesian.
testReVal=testAVal*Cos(testBVal*pi/180)
testImVal=testAVal*Sin(testBVal*pi/180)

Else 'TestpointisCartesian-useasis.
testReVal=testAVal
testImVal=testBVal

EndIf

ForK =0ToNumPolesVal- 1
ReVal=RLPoleRe(K)
ImVal=RLPoleI(K)

deltaX=testReVal -ReVal
deltaY=testImVal -ImVal

If Abs(deltaX) <0.0000000001 And_
Abs(deltaY)<0.0000000001Then
MsgBox ("ERROR: Testpoint is thesame as an "&_

"open-looppole.Enternew testpoint.")
ErrorFlag =1
GoToexitrootlocus

Else
RecGain= RecGain*CartToMag(deltaX,deltaY)
angle=angle- CartToAngle (deltaX,deltaY)

EndIf
NextK

H.2 Root Locus and Frequency Response 9

ONLINEAPPH 11/22/2014 13:1:22 Page 10

ForK =0ToNumZerosVal- 1
ReVal=RLZeroRe(K)
ImVal= RLZeroIm(K)

deltaX =testReVal- ReVal
deltaY =testImVal- ImVal

IfAbs(deltaX)<0.0000000001And_
Abs(deltaY)< 0.0000000001Then
MsgBox("ERROR:Testpointisthe sameasan"&_

"open-loopzero.Enternewtestpoint.")
ErrorFlag=1
GoTo exitrootlocus

Else
RecGain =RecGain/CartToMag(deltaX,deltaY)
angle= angle +CartToAngle(deltaX,deltaY)

End If
NextK

angle=angle*180/pi
angle=(angle/360- Fix(angle/360))* 360

exitrootlocus:
IfErrorFlag< >1Then

RLKval= RecGain
RLMagVal=1/RecGain
RLAngleVal= angle

EndIf

EndSub

'*********************Function CartToMag*********************
PublicFunctionCartToMag(XAsSingle,Y As Single)AsSingle

CartToMag =Sqr(Abs(X^ 2+Y ^2))
EndFunction

'*********************FunctionCartToAngle*********************
PublicFunctionCartToAngle(deltaX,deltaY)AsSingle

IfdeltaX =0Then angle= pi/2_
Elseangle= Atn(Abs(deltaY)/Abs(deltaX))
IfdeltaY >= 0And deltaX>=0Then angle =angle
IfdeltaY >= 0And deltaX<0 Thenangle=(pi-angle)
IfdeltaY <0AnddeltaX<=0 Thenangle=-(pi -angle)
IfdeltaY <0AnddeltaX> 0Thenangle= -angle
CartToAngle=angle

EndFunction

Data entry and results for the code shown above are via a graphical user interface (GUI)
developed in Visual Basic 6 and produced by the stand-alone application included in the
Appendix H folder. Figure H.6 shows the GUI interface for data entry and results using

G s� � � s � 1� �
s s � 3� � s � 5� � and a test point = �2 + j3 as an example.

10 Appendix H: Control System Computational Aids

ONLINEAPPH 11/22/2014 13:1:22 Page 11

FIGURE H.6 Root locus
program: GUI interface for data
entry and results

H.2 Root Locus and Frequency Response 11

ONLINEAPPH 11/22/2014 13:1:22 Page 12

Acknowledegment: The author wants to express appreciation to Alan H. Nise for the programming and GUI design of the
Step Response Program and the Root Locus and Frequency Response Utility. These programs were based upon the
original programs published in Control Systems Engineering, 2nd ed.

Copyright 2015 John Wiley & Sons, Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or
108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or
authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc. 222 Rosewood
Drive, Danvers, MA 01923, website www.copyright.com. Requests to the Publisher for permission should be addressed
to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, (201)748-6011,
fax (201)748-6008, website http://www.wiley.com/go/permissions.

Founded in 1807, John Wiley & Sons, Inc. has been a valued source of knowledge and understanding for more than
200 years, helping people around the world meet their needs and fulfill their aspirations. Our company is built on a
foundation of principles that include responsibility to the communities we serve and where we live and work. In 2008,
we launched a Corporate Citizenship Initiative, a global effort to address the environmental, social, economic, and
ethical challenges we face in our business. Among the issues we are addressing are carbon impact, paper specifications
and procurement, ethical conduct within our business and among our vendors, and community and charitable support.
For more information, please visit our website: www.wiley.com/go/citizenship.

The software programs and experiments available with this book have been included for their instructional value. They
have been tested with care but are not guaranteed for any particular purpose. The publisher and author do not offer any
warranties or restrictions, nor do they accept any liabilities with respect to the programs and experiments.

AMTRAK is a registered trademark of National Railroad Passenger Corporation. Adobe and Acrobat are trademarks
of Adobe Systems, Inc. which may be registered in some jurisdictions. FANUC is a registered trademark of FANUC,
Ltd. Microsoft, Visual Basic, and PowerPoint are registered trademarks of Microsoft Corporation. QuickBasic is a
trademark of Microsoft Corporation. MATLAB and SIMULINK are registered trademarks of The MathWorks, Inc.
The Control System Toolbox, LTI Viewer, Root Locus Design GUI, Symbolic Math Toolbox, Simulink Control
Design, and MathWorks are trademarks of The MathWorks, Inc. LabVIEW is a registered trademark of National
Instruments Corporation. Segway is a registered trademark of Segway, Inc. in the United States and/or other countries.
Chevrolet Volt is a trademark of General Motors LLC. Virtual plant simulations pictured and referred to herein are
trademarks or registered trademarks of Quanser Inc. and/or its affiliates. 2010 Quanser Inc. All rights reserved.
Quanser virtual plant simulations pictured and referred to herein may be subject to change without notice. ASIMO is a
registered trademark of Honda.

Evaluation copies are provided to qualified academics and professionals for review purposes only, for use in their
courses during the next academic year. These copies are licensed and may not be sold or transferred to a third party.
Upon completion of the review period, please return the evaluation copy to Wiley. Return instructions and a free of
charge return shipping label are available at www.wiley.com/go/returnlabel. Outside of the United States, please contact
your local representative.

Library of Congress Cataloging-in-Publication Data

Nise, Norman S.
Control systems engineering / Norman S. Nise, California State Polytechnic University, Pomona. — Seventh edition.

1 online resource.
Includes bibliographical references and index.
Description based on print version record and CIP data provided by publisher; resource not viewed.
ISBN 978-1-118-80082-9 (pdf) — ISBN 978-1-118-17051-9 (cloth : alk. paper)
1. Automatic control–Textbooks. 2. Systems engineering–Textbooks. I. Title.
TJ213
629.8–dc23

2014037468

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

