Appendix L: Derivation of Similarity Transformations

L. 1 Introduction

In Section 5.7 in the text we saw that systems can be represented with different state variables even though the transfer function relating the output to the input remains the same. The various forms of the state equations were found by manipulating the transfer function, drawing a signal-flow graph, and then writing the state equations from the signal-flow diagram. These systems are called similar systems. Although their state-space representations are different, similar systems have the same transfer function and hence the same poles or eigenvalues.

The question now arises whether we can make transformations among similar systems from one set of state equations to another without using the transfer function and signal-flow graphs. In this Appendix we will derive this transformation.

L. 2 Expressing Any Vector in Terms of Basis Vectors

Let us begin by reviewing the representation of vector quantities in space. In Chapter 3, we learned that the state variables form the axes of the state space. Using a second-order system as an example, Figure L. 1 shows two sets of axes, $x_{1} x_{2}$ and $z_{1} z_{2} .{ }^{1}$

Thus a state vector, \mathbf{x}, in state space can be written either in terms of the state variables or axes, x_{1} and x_{2}, or if we call it \mathbf{z}, the state variables or axes, z_{1} and z_{2}. In other words, the same vector is expressed in terms of different state variables. From this discussion we begin to see that the transformation from one set of state equations to another may be simply the transformation from one set of axes to another set of axes. Let us look further into this possibility by first clarifying the ways in which vectors can be represented in space.

Unit vectors, $\mathbf{U}_{\mathbf{x}_{1}}$, and $\mathbf{U}_{\mathbf{x}_{2}}$, which are collinear with the axes x_{1} and x_{2}, form linearly independent vectors called basis vectors for the space, $x_{1} x_{2}$. Any vector in the space can be written in two ways. First, it can be written as a linear combination of the basis vectors. This linear combination implies vector summation of the basis vectors to form that vector. Second, any vector can be written in terms of its components along the axes. Summarizing these two ways of writing a vector, we have

$$
\mathbf{x}=x_{1} \mathbf{U}_{\mathbf{x}_{1}}+x_{2} \mathbf{U}_{\mathbf{x}_{2}}=\left[\begin{array}{l}
x_{1} \tag{L.1}\\
x_{2}
\end{array}\right]
$$

[^0]

FIGURE L. 1 State-space transformations

Similarly, the same vector, which will now be called \mathbf{z}, can be written in terms of the basis vectors in the $z_{1} z_{2}$ space,

$$
\mathbf{z}=z_{1} \mathbf{U}_{\mathbf{z}_{1}}+z_{2} \mathbf{U}_{\mathbf{z}_{2}}=\left[\begin{array}{l}
z_{1} \tag{L.2}\\
z_{2}
\end{array}\right]
$$

L. 3 Vector Transformations

What is the relationship between the components of \mathbf{x} and \mathbf{z} in Eqs. (L.1) and (L.2)? In other words, how do we transform vector \mathbf{x} into vector \mathbf{z} and vice versa? To begin we realize that unit vectors $\mathbf{U}_{\mathbf{z}_{1}}$, and $\mathbf{U}_{\mathbf{z}_{2}}$, which are collinear with z_{1} and z_{2} and are basis vectors for the space, $z_{1} z_{2}$, can be also written in terms of the basis vectors of the $x_{1} x_{2}$ space. Hence,

$$
\begin{align*}
& \mathbf{U}_{\mathbf{z}_{1}}=p_{11} \mathbf{U}_{\mathbf{x}_{1}}+p_{21} \mathbf{U}_{\mathbf{x}_{2}} \tag{L.3a}\\
& \mathbf{U}_{\mathbf{z}_{2}}=p_{12} \mathbf{U}_{\mathbf{x}_{1}}+p_{22} \mathbf{U}_{\mathbf{x}_{2}} \tag{L.3b}
\end{align*}
$$

Substituting Eqs. (L.3) into Eq. (L.2), and realizing that the vectors \mathbf{z} and \mathbf{x} are the same, yields \mathbf{x} in terms of the components of \mathbf{z}, or

$$
\begin{equation*}
\mathbf{x}=\left(z_{1} p_{11}+z_{2} p_{12}\right) \mathbf{U}_{\mathbf{x}_{1}}+\left(z_{1} p_{21}+z_{2} p_{22}\right) \mathbf{U}_{\mathbf{x}_{2}} \tag{L.4}
\end{equation*}
$$

which is equivalent to

$$
\mathbf{x}=\left[\begin{array}{ll}
p_{11} & p_{12} \tag{L.5}\\
p_{21} & p_{22}
\end{array}\right]\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right]=\mathbf{P z}
$$

and

$$
\begin{equation*}
\mathbf{z}=\mathbf{P}^{-1} \mathbf{x} \tag{L.6}
\end{equation*}
$$

We can think of Eq. (L.5) as a transformation that takes \mathbf{z} in the $z_{1} z_{2}$ plane and transforms it to \mathbf{x} in the $x_{1} x_{2}$ plane. Hence, if we can find \mathbf{P}, we can make the transformation between the two state-space representations.

L. 4 Finding the Transformation Matrix, P

We can find the transformation matrix, \mathbf{P}, from Eqs. (L.3). Since we know all vector quantities in the equation, we can then solve for $p_{i j}$'s. Notice that the columns of \mathbf{P} are the coordinates of the basis vectors of the $z_{1} z_{2}$ space expressed as linear combinations of the basis vectors of the $x_{1} x_{2}$ space as shown in Eqs. (L.3). Thus the first column of \mathbf{P} is $\mathbf{U}_{\mathbf{z}_{1}}$ and
the second column is $\mathbf{U}_{\mathbf{z}_{2}}$. Partitioning \mathbf{P}, we get

$$
\mathbf{P}=\left[\begin{array}{ll}
\mathbf{U}_{\mathbf{z}_{1}} & \mathbf{U}_{\mathbf{z}_{2}} \tag{L.7}
\end{array}\right]
$$

Let us look at an example of the transformation of a vector from one space to another.

Example L. 1

Vector Transformations to New Basis

PROBLEM: Transform the vector

$$
\mathbf{x}=\left[\begin{array}{l}
1 \tag{L.8}\\
2 \\
2
\end{array}\right]
$$

expressed with its basis vectors,

$$
\mathbf{U}_{\mathbf{x}_{1}}=\left[\begin{array}{l}
1 \tag{L.9}\\
0 \\
0
\end{array}\right] ; \quad \mathbf{U}_{\mathbf{x}_{2}}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] ; \quad \mathbf{U}_{\mathbf{x}_{3}}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

to a vector expressed in the system,

$$
\mathbf{U}_{\mathbf{z}_{1}}=\left[\begin{array}{c}
0 \tag{L.10}\\
1 / \sqrt{2} \\
1 / \sqrt{2}
\end{array}\right] ; \quad \mathbf{U}_{\mathbf{z}_{2}}=\left[\begin{array}{c}
0 \\
-1 / \sqrt{2} \\
1 / \sqrt{2}
\end{array}\right] ; \quad \mathbf{U}_{\mathbf{z}_{3}}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

SOLUTION: Using Eq. (L.2) as a guide, the vector \mathbf{z} can be written in terms of the basis vectors, $\mathbf{U}_{\mathbf{z}_{i}}$.

$$
\begin{equation*}
\mathbf{z}=z_{1} \mathbf{U}_{\mathbf{z}_{1}}+z_{2} \mathbf{U}_{\mathbf{z}_{2}}+z_{3} \mathbf{U}_{\mathbf{z}_{3}} \tag{L.11}
\end{equation*}
$$

Substituting the values of each $\mathbf{U}_{\mathbf{z}_{\mathrm{i}}}$ given in Eq. (L.10) as components of the basis vectors, $\mathbf{U}_{\mathbf{x}_{\mathrm{i}}}$, Eq. (L.11) is transformed to the components of \mathbf{x},

$$
\mathbf{x}=z_{1}\left[\begin{array}{c}
0 \tag{L.12}\\
1 / \sqrt{2} \\
1 / \sqrt{2}
\end{array}\right]+z_{2}\left[\begin{array}{c}
0 \\
-1 / \sqrt{2} \\
1 / \sqrt{2}
\end{array}\right]+z_{3}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
0 z_{1}+0 z_{2}+0 z_{3} \\
(1 / \sqrt{2}) z_{1}-(1 / \sqrt{2}) z_{2}+0 z_{3} \\
(1 / \sqrt{2}) z_{1}+(1 / \sqrt{2}) z_{2}+0 z_{3}
\end{array}\right]
$$

which can be written as,

$$
\mathbf{x}=\left[\begin{array}{ccc}
0 & 0 & 1 \tag{L.13}\\
1 / \sqrt{2} & -1 / \sqrt{2} & 0 \\
1 / \sqrt{2} & 1 / \sqrt{2} & 0
\end{array}\right]\left[\begin{array}{l}
z_{1} \\
z_{2} \\
z_{3}
\end{array}\right]
$$

As we predicted, the columns of \mathbf{P} are the basis vectors of the $z_{1} z_{2}$ space (Eq. (L.10)). Also,

$$
\mathbf{z}=\mathbf{P}^{-1} \mathbf{x}=\left[\begin{array}{ccc}
0 & 0.707 & 0.707 \tag{L.14}\\
0 & -0.707 & 0.707 \\
1 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
2
\end{array}\right]=\left[\begin{array}{c}
2.83 \\
0 \\
1
\end{array}\right]
$$

In summary, the vector $\mathbf{x}=\left[\begin{array}{lll}1 & 2 & 2\end{array}\right]^{T}$ in the $x_{1} x_{2}$ space transforms into $\mathbf{z}=$ $\left[\begin{array}{ccc}2.83 & 0 & 1\end{array}\right]^{T}$ in the $z_{1} z_{2}$ space. \mathbf{x} and \mathbf{z} are the same vector expressed in different coordinate systems.

Now that we are able to transform a state vector into different basis systems, let us see how to transform the state-space representation between basis systems.

L. 5 Transforming the State Equations

We have seen that the same state vector can be expressed in terms of different basis vectors. This conversion amounts to selecting a different set of state variables to represent the same system transfer function.

Let us now convert a state-space representation with state vector, \mathbf{x}, into a state-space representation with a state vector, \mathbf{z}. Assume the state-space representation shown in Eq. (L.15).

$$
\begin{align*}
& \dot{\mathbf{x}}=\mathbf{A x}+\mathbf{B u} \tag{L.15a}\\
& \mathbf{y}=\mathbf{C x}+\mathbf{D u} \tag{L.15b}
\end{align*}
$$

Let $\mathbf{x}=\mathbf{P z}$ from Eq. (L.5). Hence,

$$
\begin{align*}
\mathbf{P} \dot{\mathbf{z}} & =\mathbf{A P z}+\mathbf{B u} \tag{L.16a}\\
\mathbf{y} & =\mathbf{C P x}+\mathbf{D u} \tag{L.16b}
\end{align*}
$$

Premultiplying the state equation by \mathbf{P}^{-1},

$$
\begin{align*}
\dot{\mathbf{z}} & =\mathbf{P}^{-1} \mathbf{A P z}+\mathbf{P}^{-1} \mathbf{B u} \tag{L.17a}\\
\mathbf{y} & =\mathbf{C P z}+\mathrm{Du} \tag{L.17b}
\end{align*}
$$

Eqs. (L.17) are an alternate representation of a system in state space. The transformed system matrix is $\mathbf{P}^{-1} \mathbf{A P}$, the input coupling matrix is $\mathbf{P}^{-1} \mathbf{B}$, the output matrix is $\mathbf{C P}$, and the feedforward matrix remains \mathbf{D}.

We now will show that the transfer function, $T(s)=Y(\mathrm{~s}) / U(s)$, which relates the output of the system to its input for the system represented by Eqs. (L.17), is the same as the system of Eqs. (L.15) if, \mathbf{y} and \mathbf{u} are scalars, $y(t)$ and $u(t)$.

From Eq. (3.73), the transfer function for the system of Eqs. (L.15) is

$$
\begin{equation*}
T(s)=\frac{Y(s)}{U(s)}=\mathbf{C}(s \mathbf{I}-\mathbf{A})^{-1} \mathbf{B}+\mathbf{D} \tag{L.18}
\end{equation*}
$$

The transfer function of the system of Eqs. (L.17) can be found by substituting its equivalent output, system, input, and feedforward matrices into Eq. (L.18). Hence, the transfer function
for the system of Eqs. (L.17) is

$$
\begin{equation*}
T(s)=\frac{Y(s)}{U(s)}=\mathbf{C P}\left(s \mathbf{I}-\mathbf{P}^{-1} \mathbf{A P}\right)^{-1} \mathbf{P}^{-1} \mathbf{B}+\mathbf{D} \tag{L.19}
\end{equation*}
$$

Making successive use of the matrix inverse theorem, $(\mathbf{M N})^{-\mathbf{1}}=\mathbf{N}^{\mathbf{1}} \mathbf{M}^{-\mathbf{1}}$, we find

$$
\begin{equation*}
T(s)=\mathbf{C P}\left[\mathbf{P}\left(s \mathbf{I}-\mathbf{P}^{-1} \mathbf{A P}\right)\right]^{-1} \mathbf{B}+\mathbf{D}=\mathbf{C}\left[\mathbf{P}\left(s \mathbf{I}-\mathbf{P}^{-1} \mathbf{A} \mathbf{P}\right) \mathbf{P}^{-1}\right] \mathbf{B}+\mathbf{D} \tag{L.20}
\end{equation*}
$$

Since $\left(s \mathbf{I}-\mathbf{P}^{-1} \mathbf{A P}\right) \mathbf{P}^{-1}=\left(s \mathbf{P}^{-1}-\mathbf{P}^{-1} \mathbf{A} \mathbf{P}\right)$,

$$
\begin{equation*}
T(s)=\mathbf{C}\left[\mathbf{P}\left(s \mathbf{P}^{-1}-\mathbf{P}^{-1} \mathbf{A}\right)\right]^{-1} \mathbf{B}+\mathbf{D}=\mathbf{C}[(s \mathbf{I}-\mathbf{A})]^{-1} \mathbf{B}+\mathbf{D} \tag{L.21}
\end{equation*}
$$

which is identical to Eq. (L.18). Since the transfer function is the same, the system's poles and zeros remain the same through the transformation.

We can show more formally that the eigenvalues do not change under a similarity transformation. The characteristic equation for the system prior to the transformation is $\operatorname{det}(s \mathbf{I}-\mathbf{A})=0$. After the transformation, the characteristic equation is $\operatorname{det}\left(s \mathbf{I}-\mathbf{P}^{-1} \mathbf{A P}\right)=0$. But, $\mathbf{I}=\mathbf{P}^{-1} \mathbf{P}$. Therefore the characteristic equation after the transformation can be written as

$$
\begin{equation*}
\operatorname{det}\left(s \mathbf{P}^{-1} \mathbf{P}-\mathbf{P}^{-1} \mathbf{A} \mathbf{P}\right)=\operatorname{det}\left[\mathbf{P}^{-1}(s \mathbf{I}-\mathbf{A}) \mathbf{P}\right]=0 \tag{L.22}
\end{equation*}
$$

Since the determinant of the product of matrices is the product of the determinants,

$$
\begin{equation*}
\operatorname{det}\left[\mathbf{P}^{-1}(s \mathbf{I}-\mathbf{A}) \mathbf{P}\right]=\operatorname{det}\left(\mathbf{P}^{-1}\right) \operatorname{det}(s \mathbf{I}-\mathbf{A}) \operatorname{det}(\mathbf{P})=0 \tag{L.23}
\end{equation*}
$$

But,

$$
\begin{equation*}
\operatorname{det}\left(\mathbf{P}^{-1}\right) \operatorname{det}(\mathbf{P})=\operatorname{det}(\mathbf{I})=1 \tag{L.24}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
\operatorname{det}\left(s \mathbf{I}-\mathbf{P}^{-1} \mathbf{A P}\right)=\operatorname{det}(s \mathbf{I}-\mathbf{A})=0 \tag{L.25}
\end{equation*}
$$

Eq. (L.25) shows that the eigenvalues do not change under the transformation.
In this appendix we have shown that a vector, \mathbf{x}, in the $x_{1} x_{2}$ basis system can be expressed as a vector, \mathbf{z}, in the $z_{1} z_{2}$ basis system using

$$
\mathbf{x}=\left[\begin{array}{ll}
p_{11} & p_{12} \tag{L.26}\\
p_{21} & p_{22}
\end{array}\right]\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right]=\mathbf{P z}
$$

Similarly, the inverse is

$$
\begin{equation*}
\mathbf{z}=\mathbf{P}^{-1} \mathbf{x} \tag{L.27}
\end{equation*}
$$

We found that the transformation matrix, \mathbf{P}, consists of columns, which are the coordinates of the basis vectors of the $z_{1} z_{2}$ space expressed as linear combinations of the basis vectors of the $x_{1} x_{2}$ space, or

$$
\mathbf{P}=\left[\begin{array}{ll}
\mathbf{U}_{\mathbf{z}_{1}} & \mathbf{U}_{\mathbf{z}_{2}} \tag{L.28}
\end{array}\right]
$$

Using the previous results, the state equations can be transformed from the \mathbf{x} state variables to the \mathbf{z} state variables using

$$
\begin{align*}
& \dot{\mathbf{z}}=\mathbf{P}^{-1} \mathbf{A P z}+\mathbf{P}^{-1} \mathbf{B u} \tag{L.29a}\\
& \mathbf{y}=\mathbf{C P z}+\mathbf{D u} \tag{L.29b}
\end{align*}
$$

Finally, we found that the eigenvalues of the \mathbf{x} system are the same as those of the \mathbf{z} system. Hence, the transfer function calculated from either system will be the same.

Bibliography

Timothy, L., and Bona, B., State Space Analysis: An Introduction, McGraw-Hill, New York, 1968.

Copyright © 2015 John Wiley \& Sons, Inc. All rights reserved.
No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc. 222 Rosewood Drive, Danvers, MA 01923, website www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley \& Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, (201)748-6011, fax (201)748-6008, website http://www.wiley.com/go/permissions.

Founded in 1807, John Wiley \& Sons, Inc. has been a valued source of knowledge and understanding for more than 200 years, helping people around the world meet their needs and fulfill their aspirations. Our company is built on a foundation of principles that include responsibility to the communities we serve and where we live and work. In 2008, we launched a Corporate Citizenship Initiative, a global effort to address the environmental, social, economic, and ethical challenges we face in our business. Among the issues we are addressing are carbon impact, paper specifications and procurement, ethical conduct within our business and among our vendors, and community and charitable support. For more information, please visit our website: www.wiley.com/go/citizenship.
The software programs and experiments available with this book have been included for their instructional value. They have been tested with care but are not guaranteed for any particular purpose. The publisher and author do not offer any warranties or restrictions, nor do they accept any liabilities with respect to the programs and experiments.
AMTRAK is a registered trademark of National Railroad Passenger Corporation. Adobe and Acrobat are trademarks of Adobe Systems, Inc. which may be registered in some jurisdictions. FANUC is a registered trademark of FANUC, Ltd. Microsoft, Visual Basic, and PowerPoint are registered trademarks of Microsoft Corporation. QuickBasic is a trademark of Microsoft Corporation. MATLAB and SIMULINK are registered trademarks of The MathWorks, Inc. The Control System Toolbox, LTI Viewer, Root Locus Design GUI, Symbolic Math Toolbox, Simulink Control Design, and MathWorks are trademarks of The MathWorks, Inc. LabVIEW is a registered trademark of National Instruments Corporation. Segway is a registered trademark of Segway, Inc. in the United States and/or other countries. Chevrolet Volt is a trademark of General Motors LLC. Virtual plant simulations pictured and referred to herein are trademarks or registered trademarks of Quanser Inc. and/or its affiliates. © 2010 Quanser Inc. All rights reserved. Quanser virtual plant simulations pictured and referred to herein may be subject to change without notice. ASIMO is a registered trademark of Honda.
Evaluation copies are provided to qualified academics and professionals for review purposes only, for use in their courses during the next academic year. These copies are licensed and may not be sold or transferred to a third party. Upon completion of the review period, please return the evaluation copy to Wiley. Return instructions and a free of charge return shipping label are available at www.wiley.com/go/returnlabel. Outside of the United States, please contact your local representative.

Library of Congress Cataloging-in-Publication Data

Nise, Norman S.
Control systems engineering / Norman S. Nise, California State Polytechnic University, Pomona. - Seventh edition. 1 online resource.
Includes bibliographical references and index.
Description based on print version record and CIP data provided by publisher; resource not viewed.
ISBN 978-1-118-80082-9 (pdf) — ISBN 978-1-118-17051-9 (cloth : alk. paper)

1. Automatic control-Textbooks. 2. Systems engineering-Textbooks. I. Title.

TJ213
629.8-dc23

[^0]: ${ }^{1}$ These axes are shown to be orthogonal (90° to each other) for clarity. In general, the axes need be only linearly independent and are not necessarily at 90°. Linear independence precludes collinear axes.

