Appendix M: Root Locus Rules: Derivations

M. 1 Derivation of the Behavior of the Root Locus at Infinity (Kuo, 1987)

Let the open-loop transfer function be represented as follows:

$$
\begin{equation*}
K G(s) H(s)=\frac{K\left(s^{m}+a_{1} s^{m-1}+\cdots+a_{m}\right)}{\left(s^{m+n}+b_{1} s^{m+n-1}+\cdots+b_{m+n}\right)} \tag{M.1}
\end{equation*}
$$

or

$$
\begin{equation*}
K G(s) H(s)=\frac{K}{\left(\frac{s^{m+n}+b_{1} s^{m+n-1}+\cdots+b_{m+n}}{s^{m}+a_{1} s^{m-1}+\cdots+a_{m}}\right)} \tag{M.2}
\end{equation*}
$$

Performing the indicated division in the denominator, we obtain

$$
\begin{equation*}
K G(s) H(s)=\frac{K}{s^{n}+\left(b_{1}-a_{1}\right) s^{n-1}+\cdots} \tag{M.3}
\end{equation*}
$$

In order for a pole of the closed-loop transfer function to exist,

$$
\begin{equation*}
K G(s) H(s)=-1 \tag{M.4}
\end{equation*}
$$

Assuming large values of s that would exist as the locus moves toward infinity, Eq. (M.3) becomes

$$
\begin{equation*}
s^{n}+\left(b_{1}-a_{1}\right) s^{n-1}=-K \tag{M.5}
\end{equation*}
$$

Factoring out s^{n}, Eq. (M.5) becomes

$$
\begin{equation*}
s^{n}\left(1+\frac{b_{1}-a_{1}}{s}\right)=-K \tag{M.6}
\end{equation*}
$$

Taking the nth root of both sides, we have

$$
\begin{equation*}
s\left(1+\frac{b_{1}-a_{1}}{s}\right)^{1 / n}=-K^{1 / n} \tag{M.7}
\end{equation*}
$$

If the term

$$
\begin{equation*}
\left(1+\frac{b_{1}-a_{1}}{s}\right)^{1 / n} \tag{M.8}
\end{equation*}
$$

is expanded into an infinite series where only the first two terms are significant, ${ }^{1}$ we obtain

$$
\begin{equation*}
s\left(1+\frac{b_{1}-a_{1}}{n s}\right)=(-K)^{1 / n} \tag{M.9}
\end{equation*}
$$

Distributing the factor S on the left-hand side yields

$$
\begin{equation*}
s+\frac{b_{1}-a_{1}}{n}=(-K)^{1 / n} \tag{M.10}
\end{equation*}
$$

Now, letting $s=\sigma+j \omega$ and $(-K)^{1 / n}=\left|K^{1 / n}\right| e^{j(2 k+1) \pi / n}$, where

$$
\begin{equation*}
(-1)^{1 / n}=e^{j(2 k+1) \pi / n}=\cos \left(\frac{(2 k+1) \pi}{n}\right)+j \sin \left(\frac{(2 k+1) \pi}{n}\right) \tag{M.11}
\end{equation*}
$$

Eq. (M.10) becomes

$$
\begin{equation*}
\sigma+j \omega+\frac{b_{1}-a_{1}}{n}=\left|K^{1 / n}\right|\left[\cos \frac{(2 k+1) \pi}{n}+j \sin \frac{(2 k+1) \pi}{n}\right] \tag{M.12}
\end{equation*}
$$

where $k=0, \pm 1, \pm 2, \pm 3, \ldots$ Setting the real and imaginary parts of both sides equal to each other, we obtain

$$
\begin{align*}
\sigma+\frac{b_{1}-a_{1}}{n} & =\left|K^{1 / n}\right| \cos \frac{(2 k+1) \pi}{n} \tag{M.13a}\\
\omega & =\left|k^{1 / n}\right| \sin -\frac{(2 k+1) \pi}{n} \tag{M.13b}
\end{align*}
$$

Dividing the two equations to eliminate $\left|K^{1 / n}\right|$, we obtain

$$
\begin{equation*}
\frac{\sigma+\frac{b_{1}-a_{1}}{n}}{\omega}=\frac{\cos \frac{(2 k+1) \pi}{n}}{\sin \frac{(2 k+1) \pi}{n}} \tag{M.14}
\end{equation*}
$$

Finally, solving for ω, we find

$$
\begin{equation*}
\omega=\left[\tan \frac{(2 k+1) \pi}{n}\right]\left[\sigma+\frac{b_{1}-a_{1}}{n}\right] \tag{M.15}
\end{equation*}
$$

The form of this equation is that of a straight line,

$$
\begin{equation*}
\omega=M\left(\sigma-\sigma_{0}\right) \tag{M.16}
\end{equation*}
$$

where the slope of the line, M, is

$$
\begin{equation*}
M=\tan \frac{(2 k+1) \pi}{n} \tag{M.17}
\end{equation*}
$$

[^0]Thus, the angle of the line in radians with respect to the positive extension of the real axis is

$$
\begin{equation*}
\theta=\frac{(2 k+1) \pi}{n} \tag{M.18}
\end{equation*}
$$

and the σ intercept is

$$
\begin{equation*}
\sigma_{0}=-\left[\frac{b_{1}-a_{1}}{n}\right] \tag{M.19}
\end{equation*}
$$

From the theory of equations, ${ }^{2}$

$$
\begin{align*}
& b_{1}=-\sum \text { finite poles } \tag{M.20a}\\
& a_{1}=-\sum \text { finite zeros } \tag{M.20b}
\end{align*}
$$

Also, from Eq. (M.1),

$$
\begin{align*}
n & =\text { number of finite poles }- \text { number of finite zeros } \\
& =\# \text { finite poles }-\# \text { finite zeros } \tag{M.21}
\end{align*}
$$

By examining Eq. (M.16), we conclude that the root locus approaches a straight line as the locus approaches infinity. Further, this straight line intersects the σ axis at

$$
\begin{equation*}
\sigma_{0}=\frac{\sum \text { finite poles }-\sum \text { finite zeros }}{\# \text { finite poles }-\# \text { finite zeros }} \tag{M.22}
\end{equation*}
$$

which is obtained by substituting Eqs. (M.20)
Let us summarize the results: The root locus approaches straight lines as asymptotes as the locus approaches infinity. Further, the equation of the asymptotes is given by the realaxis intercept and the angle with respect to the real axis as follows:

$$
\begin{align*}
& \sigma_{0}=\frac{\sum \text { finite poles }-\sum \text { finite zeros }}{\# \text { finite poles }-\# \text { finite zeros }} \tag{M.23}\\
& \theta=\frac{(2 k+1) \pi}{\# \text { finite poles }-\# \text { finite zeros }} \tag{M.24}
\end{align*}
$$

where $k=0, \pm 1, \pm 2, \pm 3, \ldots$ Notice that the running index, k, in Eq. (M.24) yields a multiplicity of lines that account for the many branches of a root locus that approach infinity.

M. 2 Derivation of Transition Method for Breakaway and Break-in Points

The transition method for finding real-breakaway and break-in points without differentiating can be derived by showing that the natural \log of $1 /[G(\sigma) H(\sigma)]$ has a zero derivative at the same value of σ as $1 /[G(\sigma) H(\sigma)]$ (Franklin, 1991).

We now show that if we work with the natural \log we can eliminate the step of differentiation.

[^1]First find the derivative of the natural \log of $1 /[G(\sigma) H(\sigma)]$ and set it equal to zero. Thus,

$$
\begin{equation*}
\frac{d}{d \sigma} \ln \left[\frac{1}{G(\sigma) H(\sigma)}\right]=G(\sigma) H(\sigma) \frac{d}{d \sigma}\left[\frac{1}{G(\sigma) H(\sigma)}\right]=0 \tag{M.25}
\end{equation*}
$$

Since $G(\sigma) H(\sigma)$ is not zero at the breakaway or break-in points, letting

$$
\begin{equation*}
\frac{d}{d \sigma} \ln \left[\frac{1}{G(\sigma) H(\sigma)}\right]=0 \tag{M.26}
\end{equation*}
$$

will thus yield the same value of σ as letting

$$
\begin{equation*}
\frac{d}{d \sigma}\left[\frac{1}{G(\sigma) H(\sigma)}\right]=0 \tag{M.27}
\end{equation*}
$$

Hence,

$$
\begin{align*}
\frac{d}{d \sigma} \ln \left[\frac{1}{G(\sigma) H(\sigma)}\right]= & \frac{d}{d \sigma} \ln \left[\frac{\left(\sigma+p_{1}\right)\left(\sigma+p_{2}\right) \cdots\left(\sigma+p_{n}\right)}{\left(\sigma+z_{1}\right)\left(\sigma+z_{2}\right) \cdots\left(\sigma+z_{m}\right)}\right] \\
= & \frac{d}{d \sigma}\left[\ln \left(\sigma+p_{1}\right)+\ln \left(\sigma+p_{2}\right) \cdots \ln \left(\sigma+p_{n}\right)\right. \\
& \left.-\ln \left(\sigma+z_{1}\right)-\ln \left(\sigma+z_{2}\right) \cdots-\ln \left(\sigma+z_{m}\right)\right] \\
= & \frac{1}{\sigma+p_{1}}+\frac{1}{\sigma+p_{2}} \cdots+\frac{1}{\sigma+p_{n}}-\frac{1}{\sigma+z_{1}}-\frac{1}{\sigma+z_{2}} \cdots \\
& -\frac{1}{\sigma+z_{m}}=0 \tag{M.28}
\end{align*}
$$

or

$$
\begin{equation*}
\sum_{i=1}^{n} \frac{1}{\sigma+p_{i}}=\sum_{i=1}^{m} \frac{1}{\sigma+z_{i}} \tag{M.29}
\end{equation*}
$$

where z_{i} and p_{i} are the negatives of the zero and pole values of $G(s) H(s)$, respectively. Equation (M.29) can be solved for σ, the real axis values that minimize or maximize K, yielding the breakaway and break-in points without differentiating.

Copyright © 2015 John Wiley \& Sons, Inc. All rights reserved.
No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc. 222 Rosewood Drive, Danvers, MA 01923, website www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley \& Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, (201)748-6011, fax (201)748-6008, website http://www.wiley.com/go/permissions.

Founded in 1807, John Wiley \& Sons, Inc. has been a valued source of knowledge and understanding for more than 200 years, helping people around the world meet their needs and fulfill their aspirations. Our company is built on a foundation of principles that include responsibility to the communities we serve and where we live and work. In 2008, we launched a Corporate Citizenship Initiative, a global effort to address the environmental, social, economic, and ethical challenges we face in our business. Among the issues we are addressing are carbon impact, paper specifications and procurement, ethical conduct within our business and among our vendors, and community and charitable support. For more information, please visit our website: www.wiley.com/go/citizenship.

The software programs and experiments available with this book have been included for their instructional value. They have been tested with care but are not guaranteed for any particular purpose. The publisher and author do not offer any warranties or restrictions, nor do they accept any liabilities with respect to the programs and experiments.
AMTRAK is a registered trademark of National Railroad Passenger Corporation. Adobe and Acrobat are trademarks of Adobe Systems, Inc. which may be registered in some jurisdictions. FANUC is a registered trademark of FANUC, Ltd. Microsoft, Visual Basic, and PowerPoint are registered trademarks of Microsoft Corporation. QuickBasic is a trademark of Microsoft Corporation. MATLAB and SIMULINK are registered trademarks of The MathWorks, Inc. The Control System Toolbox, LTI Viewer, Root Locus Design GUI, Symbolic Math Toolbox, Simulink Control Design, and MathWorks are trademarks of The MathWorks, Inc. LabVIEW is a registered trademark of National Instruments Corporation. Segway is a registered trademark of Segway, Inc. in the United States and/or other countries. Chevrolet Volt is a trademark of General Motors LLC. Virtual plant simulations pictured and referred to herein are trademarks or registered trademarks of Quanser Inc. and/or its affiliates. © 2010 Quanser Inc. All rights reserved. Quanser virtual plant simulations pictured and referred to herein may be subject to change without notice. ASIMO is a registered trademark of Honda.
Evaluation copies are provided to qualified academics and professionals for review purposes only, for use in their courses during the next academic year. These copies are licensed and may not be sold or transferred to a third party. Upon completion of the review period, please return the evaluation copy to Wiley. Return instructions and a free of charge return shipping label are available at www.wiley.com/go/returnlabel. Outside of the United States, please contact your local representative.

Library of Congress Cataloging-in-Publication Data

Nise, Norman S.
Control systems engineering / Norman S. Nise, California State Polytechnic University, Pomona. - Seventh edition. 1 online resource.
Includes bibliographical references and index.
Description based on print version record and CIP data provided by publisher; resource not viewed.
ISBN 978-1-118-80082-9 (pdf) — ISBN 978-1-118-17051-9 (cloth : alk. paper)

1. Automatic control-Textbooks. 2. Systems engineering-Textbooks. I. Title.

TJ213
629.8-dc23

[^0]: ${ }^{1}$ This is a good approximation since s is approaching infinity for the region applicable to the derivation.

[^1]: ${ }^{2}$ Given an n th-order polynomial of the form $s^{n}+a_{n-1} s^{n-1}+\cdots$, the coefficient, a_{n-1}, is the negative sum of the roots of the polynomial.

