ELE 2110A Electronic Circuits

Week 5: BJT Biasing and Small Signal Model

Topics to cover ...

- BJT Amplifier Biasing Circuits
- Small Signal Operation and Equivalent Circuits

Reading Assignment:
Chap 13.1-13.6 of Jaeger and Blalock , or
Chap 5.5-5.7 of Sedra \& Smith

BJT as Amplifier: Example 1

- Problem: Determine the dc voltage transfer characteristic of the circuit for $0<\mathrm{v}_{1}<5 \mathrm{~V}$
- Analysis:

For $v_{1} \leq 0.7 \mathrm{~V}, \mathrm{Q}$ is cut off and $v_{o}=5 \mathrm{~V}$.
For $v_{1}>0.7 \mathrm{~V}, \mathrm{Q}$ turns on and is in the active mode, so that

$$
i_{B}=\frac{v_{1}-V_{B E}}{R_{B}}=\frac{v_{1}-0.7}{100 \mathrm{k} \Omega}
$$

The output voltage is

$$
\begin{array}{ll}
v_{o} & =V^{+}-i_{C} R_{C}=V^{+}-\beta i_{B} R_{C} \\
\text { or } \quad & v_{o}=5-(100)\left[\frac{v_{1}-0.7}{100 \mathrm{k} \Omega}\right] 4 \mathrm{k} \Omega
\end{array}
$$

This equation is valid for $v_{1} \geq 0.7 \mathrm{~V}$ and $v_{O} \geq v_{C E}$ (sat) $=0.2 \mathrm{~V}$.

The input voltage for $v_{o}=0.2 \mathrm{~V}$ is found to be $v_{1}=1.9 \mathrm{~V}$. Now, for $v_{1}>1.9 \mathrm{~V}$, the transistor is in saturation.

Conceptual Bias Circuit for BJT

- Keep the transistor in the active mode;
- Establish a Q-point near the center of the active region;
- Couple the time-varying signal to the base.

Two Obvious Bias Circuits

Fix $V_{B E}$
$\rightarrow \mathrm{I}_{\mathrm{C}}$ is an exponential function of V_{BE} and thus V_{CC}

Fix I_{B}
$\rightarrow I_{C}=\beta I_{B}$, but β is a poorly controlled parameter
\rightarrow Wide variations in I_{C} and hence in V_{CE}
\rightarrow "Bad" biasing schemes

Biasing Circuit in ERG2810 Experiment A3

- Adjusting the variable resistor to give a desired amount of I_{B} such that V_{o} is at about 8 V (half the supply voltage).
- The transistor operates at the middle of active region.

Classical Four-Resistor Bias Circuit

- V_{B} established by the voltage divider formed by R_{1} and R_{2}.
- R_{E} added \rightarrow reduce sensitivity to supply voltage, process, and temperature variations \rightarrow to be discussed later
- Coupling capacitor C_{C} :
- open circuit to DC, isolating the signal source from the dc biasing current.
- short circuit to AC signal (if the signal frequency is large enough and C_{C} is large enough).
- The Q-point is usually specified by ($\mathrm{I}_{\mathrm{C}}, \mathrm{V}_{\mathrm{CE}}$) for npn transistor or $\left(\mathrm{I}_{\mathrm{C}}, \mathrm{V}_{\mathrm{EC}}\right)$ for pnp transistor.

Given $\beta=200$.
Problem: find Q-point.

Assume BJT in active mode

KVL at loop 1: $V_{E Q}=R_{E Q} I_{B}+V_{B E}+R_{E} I_{E}$

$$
\begin{aligned}
& 4=12,000 I_{B}+0.7+16,000(\beta+1) I_{B} \\
& \therefore I_{B}=\frac{4 \mathrm{~V}-0.7 \mathrm{~V}}{1.23 \times 10^{6} \Omega}=2.68 \mu \mathrm{~A} \\
& I_{C}=\beta I_{B}=201 \mu \mathrm{~A} \quad I_{E}=(\beta+1) I_{B}=204 \mu \mathrm{~A}
\end{aligned}
$$

$$
\begin{aligned}
& V_{C E}=V_{C C}-R_{C} I_{C}-R_{E} I_{E} \\
& =V_{C C}-\left(R_{C}+\frac{R_{F}}{\alpha_{F}}\right) I_{C}=4.32 \mathrm{~V}
\end{aligned}
$$

Q-point is $(201 \mu \mathrm{~A}, 4.32 \mathrm{~V})$

Example 2 (Cont')

- All calculated currents >0,

$$
V_{B C}=V_{B E}-V_{C E}=0.7-4.32=-3.62 \mathrm{~V}
$$

- Hence, base-collector junction is reverse-biased, assumption of active region operation is correct.

- Load-line for the circuit is:

$$
\begin{aligned}
V_{C E} & =V_{C C}-\left(R_{C}+\frac{R_{E}}{\alpha}\right) I_{C}=12-38,200 I_{C} \\
I_{B} & =2.7 \mu \mathrm{~A}
\end{aligned}
$$

intersection point \rightarrow Q-point.

Example 2 (Cont')

$$
V_{E Q}=V_{C C} \frac{R_{1}}{R_{1}+R_{2}}
$$

$$
R_{E Q}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}
$$

$$
V_{E Q}=R_{E Q} I_{B}+V_{B E}+R_{E} I_{E}
$$

$$
\mathrm{V}_{\mathrm{cc}} \quad \text { Temp. Process }(\beta)
$$

$$
I_{E}=\frac{V_{E Q}-V_{B E}-R_{E Q} I_{B}}{R_{E}}
$$

Design Objectives: Q-point Insensitive to PVT Variations

$$
I_{E}=\frac{V_{E Q}-V_{B E}-R_{E Q} I_{B}}{R_{E}}
$$

1) I_{E} linearly (not exponentially) related to V_{CC},
2) For I_{E} to be less sensitive to I_{B} (thus β):
$\rightarrow R_{E Q}{ }^{\prime} B \ll\left(V_{E Q}-V_{B E}\right)$
\rightarrow Need small $R_{\text {eq }}$
\rightarrow Large currents through R_{1} and $R_{2}\left(I_{2} \gg I_{B}\right)$
3) For I_{E} to be less sensitive to $V_{B E}$ (due to temperature change):
$\rightarrow \mathrm{V}_{\mathrm{EQ}} \gg \mathrm{V}_{\mathrm{BE}}$

Design Objectives: Low Power and Large Signal Swing

But ...

- For low power consumption:
\rightarrow needs small I_{2}
\rightarrow contradict with constraint (2)
\rightarrow set $\mathrm{I}_{2}=10 \mathrm{I}_{\mathrm{B}}$ typically
- For large output signal swing:
$\rightarrow \mathrm{V}_{\mathrm{EQ}}$ cannot be too high (because $\mathrm{V}_{\mathrm{C}} \in\left[\mathrm{V}_{\mathrm{EQ}}, \mathrm{V}_{\mathrm{CC}}\right]$)
$\rightarrow \mathrm{V}_{\mathrm{EQ}}=1 / 3 \mathrm{~V}_{\mathrm{CC}}$ typically

Design Guidelines

- Choose Thevenin equivalent base voltage

$$
\frac{V_{C C}}{4} \leq V_{E Q} \leq \frac{V_{C C}}{2}
$$

- Select R_{1} to set $I_{1}=9 I_{B} \quad R_{1}=\frac{V_{E Q}}{9 I_{B}}$
- Select R_{2} to set $I_{2}=10 I_{B} \quad R_{2}=\frac{V_{C C}-V_{E Q}}{10 I_{B}}$
- R_{E} is determined by $V_{E Q}$ and desired I_{C}

$$
R_{E} \approx \frac{V_{E Q}-V_{B E}}{I_{C}}
$$

- R_{C} is determined by desired $V_{C E}$

$$
R_{C} \approx \frac{V_{C C}-V_{C E}}{I_{C}}-R_{E}
$$

Example 3

- Problem: Design a 4-resistor bias circuit with given parameters.
- Given data: $I_{C}=750 \mu \mathrm{~A}, V_{C E}=5 \mathrm{~V}, \beta=100, V_{C C}=15 \mathrm{~V}, V_{B E}=0.7 \mathrm{~V}$
- Unknowns: V_{B}, voltages across R_{E} and R_{C}; values for $\mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{R}_{\mathrm{C}}$ and R_{E}.
- Analysis: A common approach is to divide ($V_{C C}-V_{C E}$) equally between R_{E} and R_{C}. Thus, $V_{E}=5 \mathrm{~V}$ and $V_{C}=10 \mathrm{~V}$.

$$
\begin{array}{ll}
R_{C}=\frac{V_{C C}-V_{C}}{I_{C}}=6.67 \mathrm{k} \Omega & \text { Now choose } I_{2}=10 I_{B}: \\
R_{E}=\frac{V_{E}}{I_{E}}=6.60 \mathrm{k} \Omega & I_{2}=10 I_{B}=75 \mu \mathrm{~A} \\
V_{B}=V_{E}+V_{B E}=5.7 \mathrm{~V} & R_{1}=67.5 \mu \mathrm{~A} \\
I_{B}=\frac{V_{B}}{9 I_{B}}=84.4 \mathrm{k} \Omega \\
I_{B}=\frac{I_{C}}{\beta}=7.5 \mu \mathrm{~A} & R_{2}=\frac{V_{C C}-V_{B}}{10 I_{B}}=124 \mathrm{k} \Omega
\end{array}
$$

Example 4: Two-Resistor Bias Network

- Problem: Find Q-point for pnp transistor in 2-resistor bias circuit with given parameters.
- Given data: $\beta_{F}=50, V_{C C}=9 \mathrm{~V}$
- Assumptions: Forward-active operation region, $V_{E B}=0.7 \mathrm{~V}$
- Analysis:

$$
\begin{aligned}
& 9=V_{E B}+18,000 I_{B}+1000\left(I_{C}+I_{B}\right) \\
& \therefore 9=V_{E B}+18,000 I_{B}+1000(51) I_{B} \\
& \therefore I_{B}=\frac{9 \mathrm{~V}-0.7 \mathrm{~V}}{69,000 \Omega}=120 \mu \mathrm{~A} \\
& I_{C}=50 I_{B}=6.01 \mathrm{~mA} \\
& V_{E C}=9-1000\left(I_{C}+I_{B}\right)=2.88 \mathrm{~V} \\
& V_{B C}=2.18 \mathrm{~V}
\end{aligned}
$$

Q-point is : ($6.01 \mathrm{~mA}, 2.88 \mathrm{~V}$)

Current Source Biasing

- $\mathrm{I}_{\mathrm{E}}=\mathrm{I} \rightarrow$ independent of the value of β and temperature

Current Source Implementation: Current Mirror

- Use collector current of a transistor in active mode
- Neglect Early effect, $\mathrm{I}_{\mathrm{C} 2}$ is independent of $V_{C E 2}$ as long as $V_{C E 2}>V_{C E s a t}$ (i.e. BJT in active mode)
- For matched Q_{1} and Q_{2}, i.e., having identical I_{S}, β, V_{A}), we have

$$
\begin{gathered}
I_{C 2}=I_{R E F} \\
I_{R E F}=\frac{V_{B B}-V_{B E}}{R}
\end{gathered}
$$

Topics to cover ...

- BJT Amplifier Biasing Circuits
- Small Signal Operation and Equivalent Circuits

BJT as an Amplifier

Conceptual Amplifier circuit:

Superposition of DC with AC signal

If an ac+dc input signal the total v_{BE} becomes

$$
v_{B E}=V_{B E}+v_{b e}
$$

The collector current becomes

$$
\begin{aligned}
i_{C} & =I_{S} e^{\left(V_{B E}+v_{b e}\right) / V_{T}} \\
& =I_{S} e^{V_{B E} / V_{T}} e^{v_{b e} / V_{T}}=I_{C} e^{v_{b e} / V_{T}}
\end{aligned}
$$

Small-signal Transconductance

For small ac signal, i.e., $\mathrm{v}_{\mathrm{be}} \ll \mathrm{V}_{\mathrm{T}}$:

$$
\begin{aligned}
i_{C} & =I_{C} e^{v_{b e} / V_{T}} \cong I_{C}\left(1+v_{b e} / V_{T}\right) \\
& =\underbrace{I_{C}}_{D C}+\underbrace{\frac{I_{C}}{V_{T}} v_{b e}}_{A C}
\end{aligned}
$$

The ac (or signal) component of the collector current is:

$$
i_{c}=\frac{I_{C}}{V_{T}} v_{b e}
$$

We define:

$$
g_{m} \equiv \frac{i_{c}}{v_{b e}}=\frac{I_{C}}{V_{T}}
$$

g_{m} is called the small signal transconductance.

$$
\left.g_{m} \equiv \frac{i_{c}}{v_{b e}}\right|_{v_{b e} \rightarrow 0}=\left.\frac{\partial i_{C}}{\partial v_{B E}}\right|_{i_{c}=I_{C}}
$$ It represents the slope of $\mathrm{i}_{\mathrm{C}}-\mathrm{V}_{\mathrm{BE}}$ curve at the Q point.

Signal Component of Base Current

Total base current: $i_{B}=\frac{i_{C}}{\beta}=\underbrace{\frac{I_{C}}{\beta}}_{D C}+\underbrace{\frac{1}{\beta} \frac{I_{C}}{V_{T}} v_{b e}}_{A C}$

Signal component of base current: $\quad i_{b}=\frac{1}{\beta} \frac{I_{C}}{V_{T}} v_{b e}=\frac{g_{m}}{\beta} v_{b e}$

Define: $\quad r_{\pi} \equiv \frac{V_{b e}}{i_{b}}=\frac{\beta}{g_{m}}$ or $r_{\pi}=\frac{V_{T}}{I_{B}}$
r_{π} is the small-signal input resistance between base and emitter, looking into the base.

Signal Component of Emitter Current

The total emitter current $\mathrm{i}_{\mathrm{E}:} \quad i_{E}=\frac{i_{C}}{\alpha}=\underbrace{\frac{I_{C}}{\alpha}}_{D C}+\underbrace{\frac{1}{\alpha} \frac{I_{C}}{V_{T}} v_{b e}}_{A C}$

Signal component of emitter current: $\quad i_{e}=\frac{1}{\alpha} \frac{I_{C}}{V_{T}} v_{b e}=\frac{I_{E}}{V_{T}} v_{b e}$
Define: $r_{e} \equiv \frac{v_{b e}}{i_{e}}=\frac{\alpha}{g_{m}}$ or $r_{e}=\frac{V_{T}}{I_{E}}$
r_{e} is the small-signal input resistance between base and emitter, looking into the emitter.

It is easy to find out that

$$
r_{\pi}=\left(i_{e} / i_{b}\right) r_{e}=(\beta+1) r_{e}
$$

Small Signal I-V Expressions

$\frac{i_{c}}{v_{b e}}=g_{m}=\frac{I_{C}}{V_{T}}$

$$
\frac{v_{b e}}{i_{b}}=r_{\pi}=\frac{V_{T}}{I_{B}}
$$

$$
\frac{V_{b e}}{i_{e}}=r_{e}=\frac{V_{T}}{I_{E}}
$$

Can be modeled by equivalent circuits:

(Hybrid- π small signal model of BJT)

Another model: T-model

Hybrid- π model including Early effect

Graphic Analysis

- Can be useful to understand the operation of BJT circuits
- First, establish DC conditions by finding I_{B} (or $V_{B E}$)
- Input load line:

$$
v_{B E}=V_{B B}-R_{B} i_{B}
$$

- Second, figure out the DC operating point for I_{C}
- Output load line:

$$
v_{C E}=V_{C C}-i_{C} R_{C} \Rightarrow i_{C}=\frac{V_{C C}}{R_{C}}-\frac{1}{R_{C}} v_{C E}
$$

Graphic Analysis (Cont.)

- Apply a small signal input voltage and see i_{b}
- See how i_{b} translates into $V_{C E}$
- Can get a feel for whether the BJT will stay in active region of operation
- What happens if R_{C} is larger or smaller?

