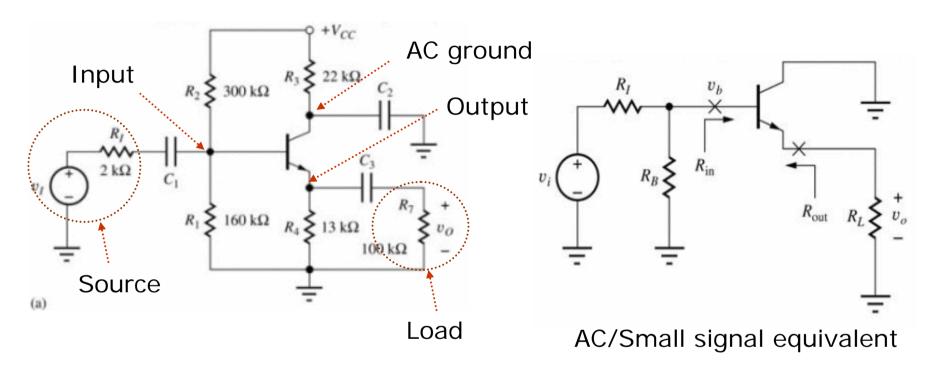
ELE 2110A Electronic Circuits

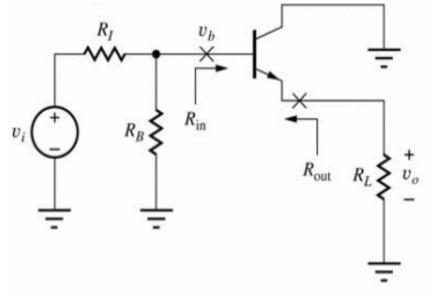
Week 7: Common-Collector Amplifier, MOS Field Effect Transistor

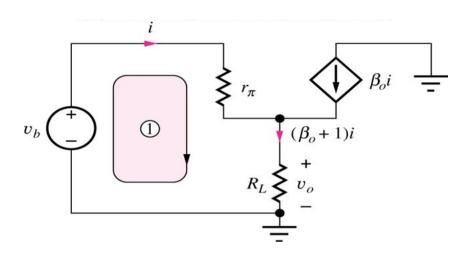

Lecture 07 - 1

Topics to cover ...

- Common-Collector Amplifier
- MOS Field Effect Transistor
 - Physical Operation and I-V Characteristics of n-channel devices
 - Non-ideal effects
 - P-channel devices and other types
- Reading Assignment: Chap 14.1 – 14.5 of Jaeger and Blalock, or Chap 5.7 of Sedra & Smith And Chap 4.1 – 4.4 of Jaeger and Blalock or Chap 5.1-5.2 of Sedra & Smith

Common-Collector Amplifier




Also called "Emitter follower"

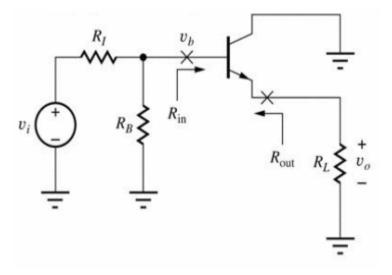
 $R_L = R_4 \parallel R_7$ $R_B = R_1 \parallel R_2$

Terminal Voltage Gain

$$A_{vt}^{CC} = \frac{v_o}{v_b} = \frac{(\beta+1)R_L}{r_{\pi} + (\beta+1)R_L}$$

$$\therefore A_{vt}^{CC} \cong \frac{g_m R_L}{1 + g_m R_L} \quad \text{for} \quad \beta >> 1$$

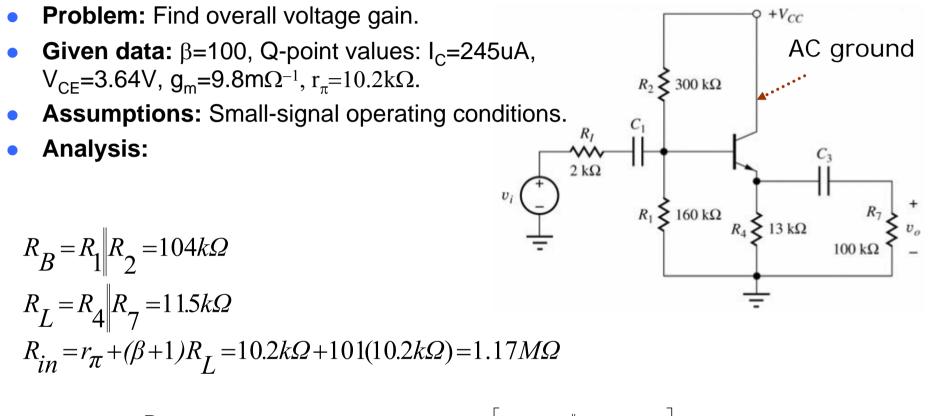
In most C-C amplifiers, $g_m R_L >> 1$


$$\therefore A_{vt}^{CC} \cong 1$$

Output voltage at emitter follows input voltage, hence the circuit is named *Emitter Followers*.

Input Resistance and Overall Voltage Gain

Input resistance looking into the base terminal is given by

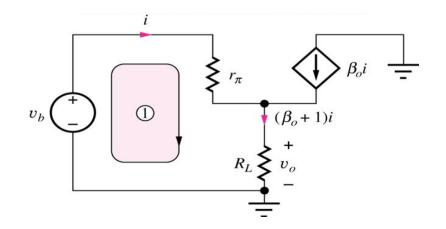

$$R_{in}^{CC} = \frac{v_b}{i} = r_{\pi} + (\beta + 1)R_L$$

Overall voltage gain is

$$A_{v}^{CC} = \frac{v_{o}}{v_{i}} = \left(\frac{v_{o}}{v_{b}}\right)\left(\frac{v_{b}}{v_{i}}\right) = A_{vt}\left(\frac{v_{b}}{v_{i}}\right)$$
$$= A_{vt}^{CC}\left(\frac{R_{B} \|R_{in}^{CC}}{R_{I} + (R_{B} \|R_{in}^{CC})}\right)$$

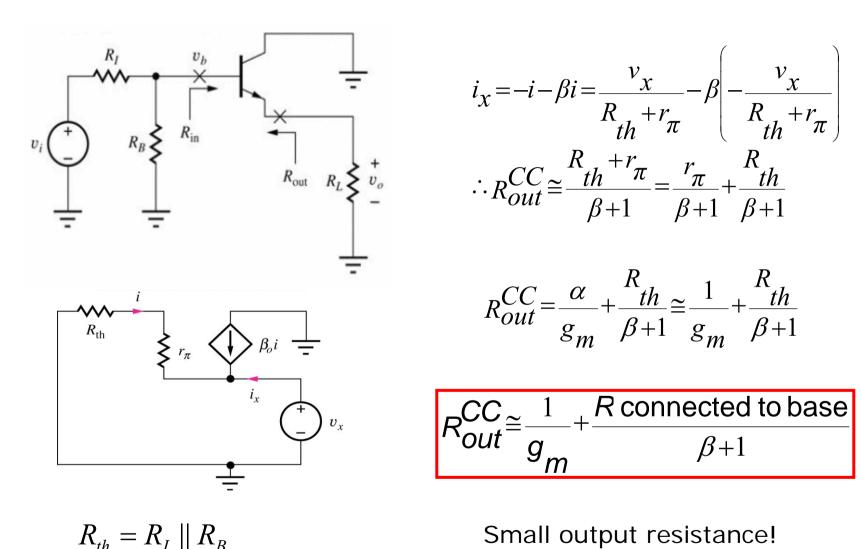
Example 1

$$A_{vt} = \frac{g_m R_L}{1 + g_m R_L} = 0.991 \qquad A_v = A_{vt} \left[\frac{R_B R_{in}^{CC}}{R_I + (R_B R_{in}^{CC})} \right] = 0.956$$



Input Signal Range

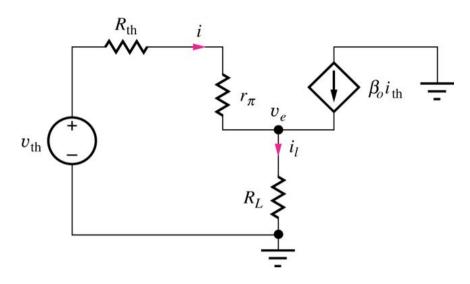
For small-signal operation, magnitude of $v_{be} < 5$ mV.


$$v_{be} = ir_{\pi} = \frac{v_b r_{\pi}}{r_{\pi} + (\beta + 1)R_L} = \frac{v_b}{1 + g_m R_L + \frac{R_L}{r_{\pi}}} \qquad |v_b| \le 0.005 \left(1 + g_m \left(\frac{R_L + \frac{R_L}{\beta}}{R_L}\right)\right) \\ \simeq 0.005 (1 + g_m R_L)V$$

If $g_m R_L >> 1$, v_b can be increased beyond 5 mV limit. Emitter followers can be used with relatively large input signals!

Output Resistance

Lecture 07 - 8

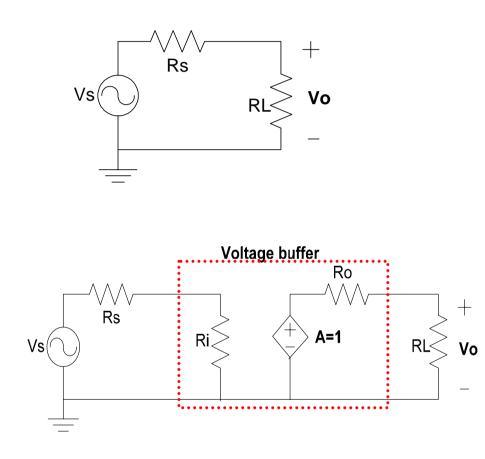

Example 2

- **Problem:** Find output resistance.
- **Given data:** β =100, Q-point values: I_C=245uA, V_{CE}=3.64V, g_m=9.8mS, r_{π}=10.2k Ω , r_o=219k Ω .
- Assumptions: Small-signal operating conditions.
- Analysis:

Current Gain

• Terminal current gain

$$A_{it}^{CC} = \frac{i}{i} = \beta + 1$$



Summary of Emitter Follower

- *Voltage gain*: Close to unity.
- Input resistance: Large
- Output resistance: Small
- Input signal range: relatively large
- *Terminal current gain*: Large (β +1)
- Excellent for use as a voltage buffer

Voltage Buffer

Without buffer:

$$v_o = \frac{R_L}{R_s + R_L} v_s \ll v_s$$
 if $R_L \ll R_s$

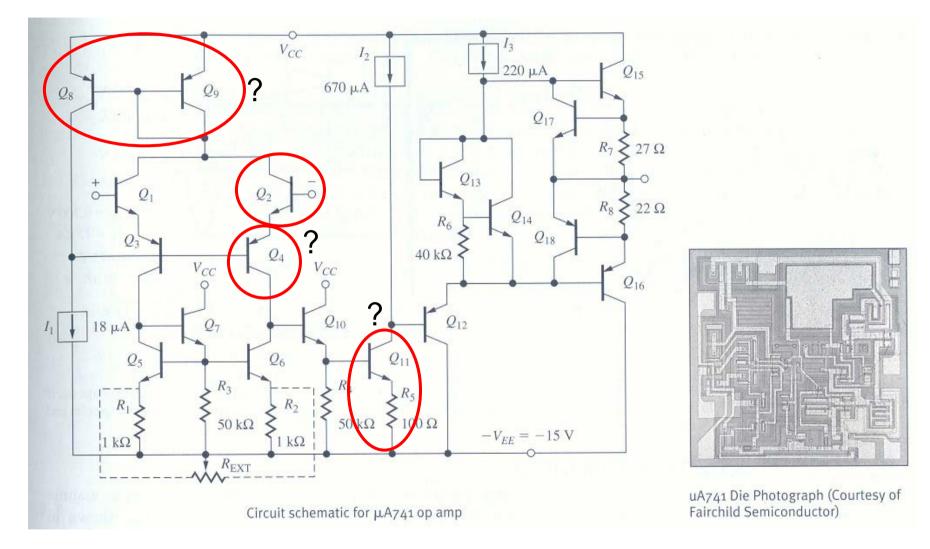
With buffer:

$$v_o = \left(\frac{R_i}{R_S + R_i} v_s\right) A \frac{R_L}{R_L + R_O}$$

$$\cong A v_s = v_s \text{ for } R_i >> R_S \text{ and } R_O << R_L$$

Requirement of voltage buffer:

- High input resistance
- Low output resistance
- Unity voltage gain



Summary of Single Stage BJT Amplifiers

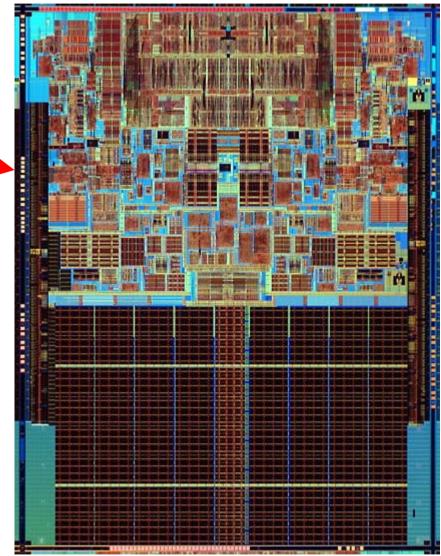
	C-E (R _E =0)	Emitter Degenerated C-E	C-C	C-B
Terminal Voltage Gain	Inverting & large	Inverting & moderate	1	Non-inverting & Large
Input Resistance	Moderate	Large	Large	Low
Output Resistance	Moderate	Large	Low	Large
Input Voltage Range	Small	Moderate	Large	Moderate
Terminal Current Gain	Inverting & Large	Inverting & Large	Non- inverting & Large	1

More Complicated Amplifier ...

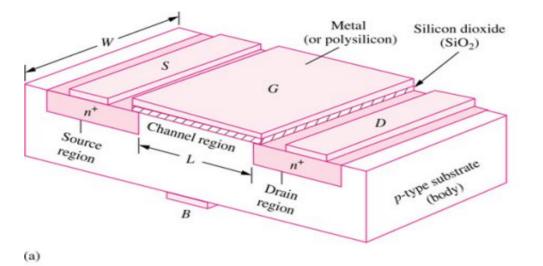
741 Op-amp - Built from single stage amplifiers

Topics to cover ...

- Common-Collector Amplifier
- MOS Field Effect Transistor
 - Physical Operation and I-V Characteristics of n-channel devices
 - Non-ideal effects
 - P-channel devices and other types

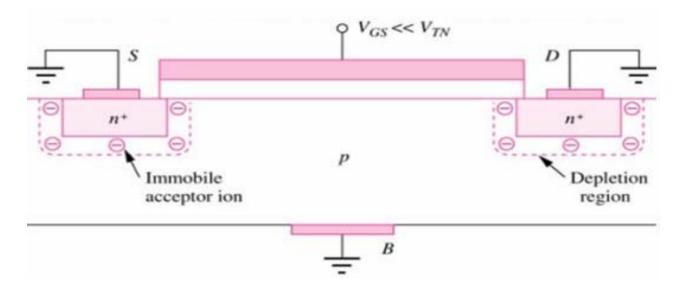

Introduction

- Metal-Oxide Semiconductor Field-Effect Transistor (MOSFET) is the primary component in high-density chips such as memories and microprocessors
- Compared with BJT, MOSFET has
 - Higher integration scale
 - Lower manufacturing cost
 - Simpler circuitry for digital logic and memory
 - Inferior analog circuit performance in general
- Recent trend: more and more analog circuits are implemented in MOS technology for
 - lower cost
 - integration with digital circuits in a same chip (mixed-signal IC)



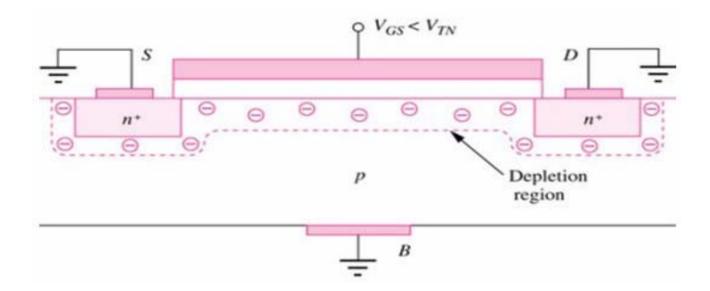
Microphotograph of a state-of-the-art CPU chip

Structure of MOSFET

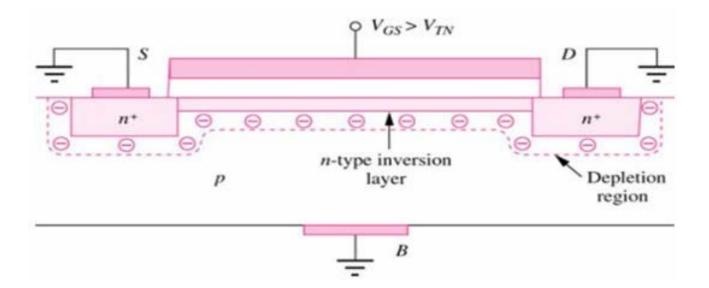


Q UD OUS Q UG iG is iD Gate (G) Source (S) Drain (D) DO Channel region n^+ n^+ - I p-type substrate S Ó Body (B) symbol 6 (b)

- Four terminals:
 - Gate, Source, Drain and body
- Two types
 - n-Channel (NMOS)
 - p-Channel (PMOS)
- The minimum value of L is referred as the <u>feature size</u> of the fabrication technology.
 - E.g., 45nm is used for Intel's Core 2 processors.

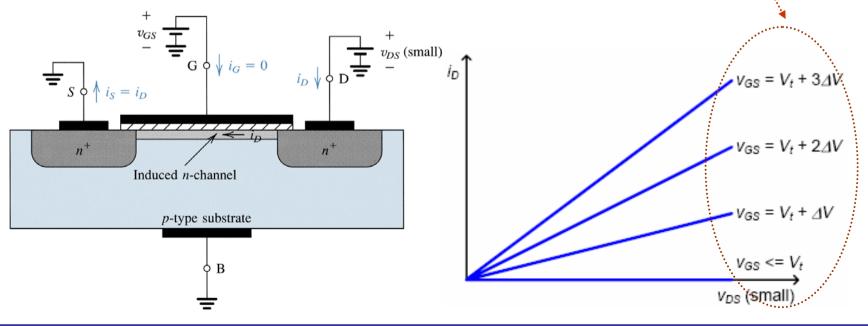

Low Gate Voltage

- Body is commonly tied to ground
- When the gate is at a low voltage ($V_{GS} \sim 0$):
 - P-type body is at low voltage
 - Source-body and drain-body diodes are OFF (reverse bias)
 - i_G=0 (always), i_{DS} = 0
- Depletion region between n+ and p-type bulk
 - No current can flow, transistor is said in "Cutoff" mode

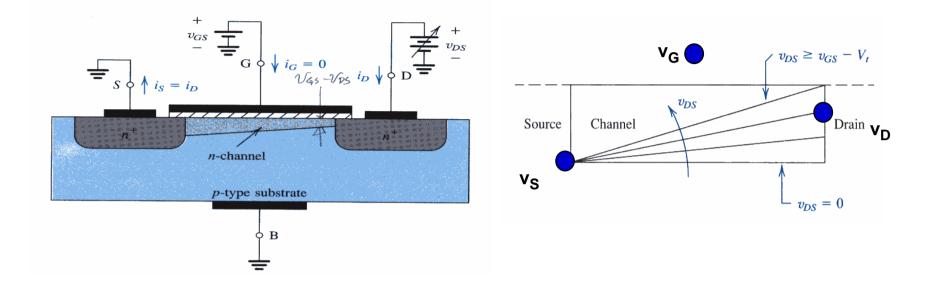

Increase Gate Voltage

- Vertical electric field established
- Under the gate-oxide:
 - Holes (positive charges) repelled
 - Depletion region under gate oxide formed

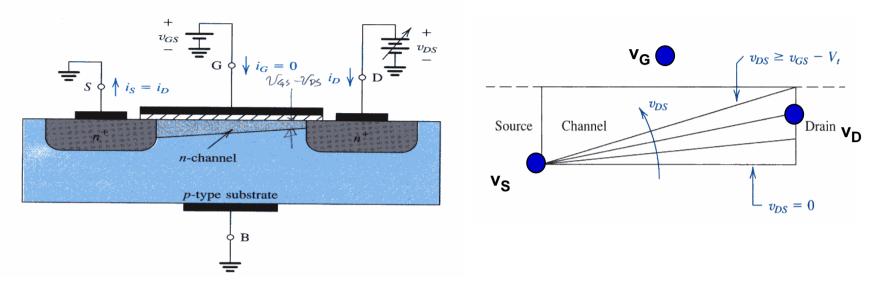
Further Increase Gate Voltage



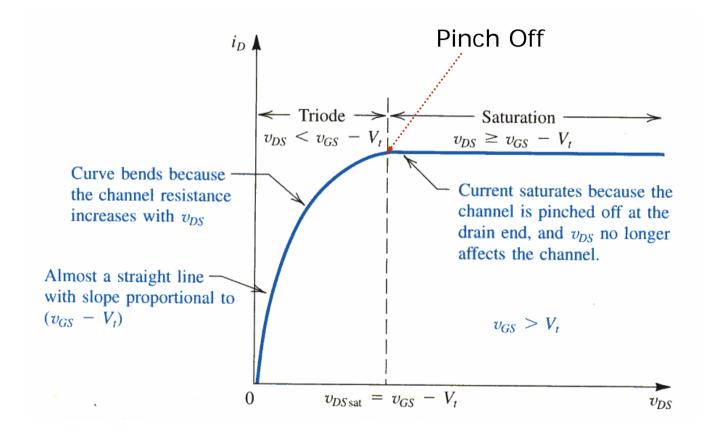
- Electrons (minorities in the *p* region) attracted by the electric field towards the gate, and stopped by the gate oxide
- A n-type inversion layer formed underneath the gate oxide when V_{GS} reaches a certain value, called threshold voltage (V_t, or V_{TN} for NMOS)
- The channel connects the S and D and now currents can flow between them


Linear (Triode) Mode of Operation

- When $v_{GS} > V_t$ and a small v_{DS} is applied
 - Current flows from D to S (Electrons flow from S to D)
 - $-~i_{\text{DS}} \propto v_{\text{DS}}$
- Increasing v_{GS} above V_t increases the electron density in the channel, and in turn increases the conductivity between D & S
- Such devices are called enhancement-type MOSFET
- In this mode, transistor = a voltage controlled resistor


Increase Drain Voltage: Channel Pinch-Off

- Increase v_{DS} → Decrease v_{GD} → less electrons at the drain side of the channel
- When v_{DS} ≥ v_{GS} V_t
 → V_{GD} ≤ V_t
 → no channel exists at the drain side. The channel "*pinches-off*"


Saturation Mode of Operation

- When channel pinches off, electrons still flows from S to D
 - Electrons are diffused from the channel to the depletion region near D, where they are drifted by the lateral *E*-field to the D
 - Similar to a reverse-biased B-C junction in a BJT
- Further increase of v_{DS} → no effect on the channel → current is "saturated" and the transistor is in "Saturation Mode"
- In this mode, transistor = a voltage controlled current source

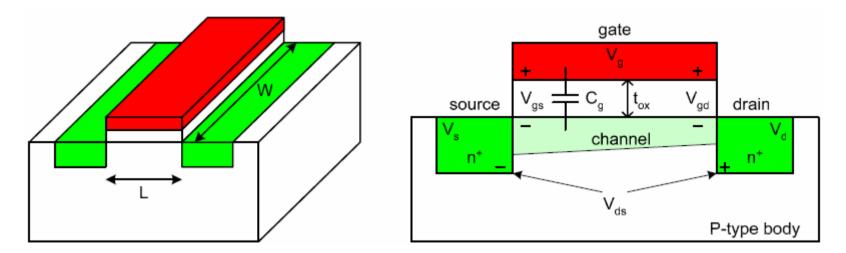
Qualitative I-V Characteristic

I-V Characteristics

- In the Linear region, drain current depends on
 - How much charge is in the channel
 - How fast the charge is moving

 $I = \frac{dQ}{dt} = \frac{\text{amount of charge in the channel}}{\text{time it takes the carriers to get across the channel}}$

Amount of Channel Charge


- MOS structure looks like a parallel plate capacitor
- V_{GC} is composed of two components
 - $-V_t$ to form the channel
 - $(V_{GC}-V_t)$ to accumulate negative charges in the channel

$$Q_{channel} = CV$$

$$C = \varepsilon_{ox} \frac{WL}{t_{ox}} = C_{ox}WL \text{ where } C_{ox} = \varepsilon_{ox} / t_{ox}$$

$$V = V_{GC} - V_t = \underbrace{\left(v_{GS} - v_{DS} / 2\right)}_{V} - V_t$$

Average gate-channel voltage

Ref: G.-Y. Wei, notes ES154, Harvard University

Carrier Velocity

- Charge is carried by electrons.
- Carrier velocity v is proportional to the lateral E-field between source and drain

$$v = \mu_n E$$
 where μ_n is the mobility
 $E = v_{DS} / L$

• Time for carriers to cross the channel is

$$t = L / v = \frac{L}{\mu_n E} = \frac{L^2}{\mu_n v_{DS}}$$

I-V Behavior: Linear Mode

- Combine the channel charge and velocity to find the current flow
 - Current = amount of charge in the channel / time it takes the carriers to get across the channel

$$i_{D} = \frac{Q_{channel}}{t} = C_{ox}WL(v_{GS} - V_{t} - v_{DS}/2)\frac{\mu_{n}v_{DS}}{L^{2}}$$

$$= \mu_{n}C_{ox}\frac{W}{L}(v_{GS} - V_{t} - v_{DS}/2)v_{DS}$$

$$= K_{n}(v_{GS} - V_{t} - v_{DS}/2)v_{DS} \text{ where } K_{n} = \mu_{n}C_{ox}\frac{W}{L}$$

$$i_{D} = (\mu_{n}C_{ox})\frac{W}{L}\left[(v_{GS} - V_{t})v_{DS} - \frac{1}{2}v_{DS}^{2}\right]$$

- $(\mu_n C_{ox})$ is a constant determined by the processing technology, and is denoted by K'_n
- W/L is a main design parameter in integrated circuit design.

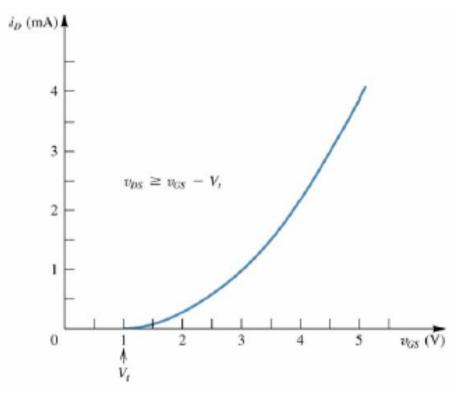
I-V Behavior: Saturation Mode

- If $v_{GD} \le V_t$, channel pinches off near the drain
 - When $v_{DS} \ge V_{dsat} = v_{GS} V_t$
- Now, drain voltage no longer increases with v_{DS}
- Putting $v_{DS} = v_{GS} V_t$ to the equation:

$$i_{D} = (\mu_{n}C_{ox})\frac{W}{L} \left[(v_{GS} - V_{t})v_{DS} - \frac{1}{2}v_{DS}^{2} \right]$$

$$\bullet \quad i_D = \frac{1}{2} (\mu_n C_{ox}) \frac{W}{L} (v_{GS} - V_t)^2 \quad \text{for } V_{GS} > V_t \text{ and} \\ V_{DS} \ge V_{GS} - V_t$$

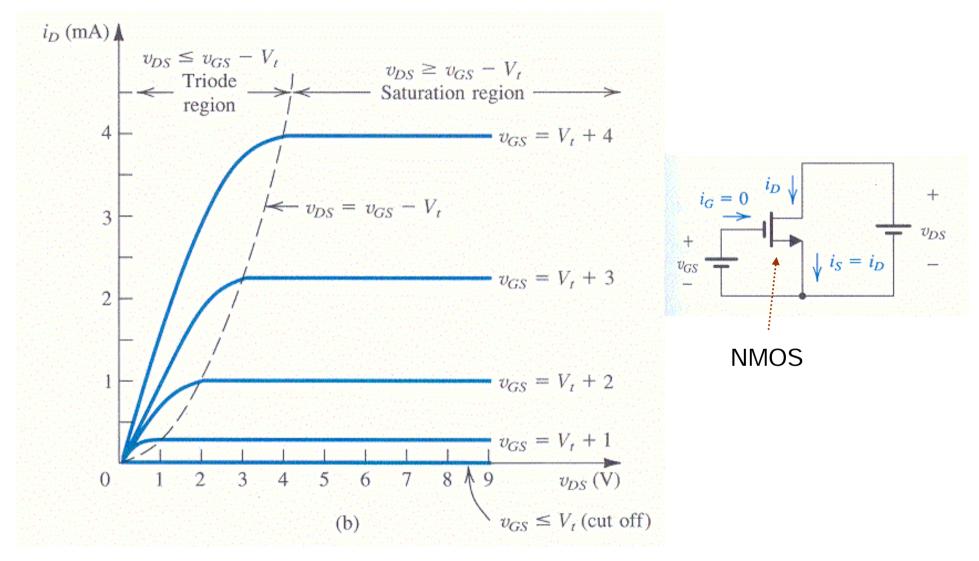
• i_D independent of v_{DS}.


Summary of NMOS I-V Characteristics

	Region	Cutoff	Triode	Saturation			
	Conditions	$v_{GS} < V_t$	$v_{GS} \ge V_t$				
Conditions		$v_{DS} < v_{GS} - V_t$	$v_{DS} \ge v_{GS} - V_t$				
	I-V relation	$i_D = 0$	$i_D = K'_n \frac{W}{L} \left[(v_{GS} - V_t) v_{DS} - \frac{1}{2} v_{DS}^2 \right]$	$i_{D} = \frac{1}{2} K'_{n} \frac{W}{L} (v_{GS} - V_{t})^{2}$			
$\bullet \text{Cutoff region} v_{GS} < V_t \qquad \qquad V_{oltage} \land \qquad \qquad K_n' = \mu_n C_{ox} \qquad \qquad$							
Triode region							
	${\cal V}_{GS}$	$\geq V_t$ and		 Saturation			
	v_{DS}	$< v_{GS} - V_t$	G	¥			
Saturation region				$V_t \qquad V_t \qquad D$			
	$v_{GS} \ge$	V_t and	Threshold ————————————————————————————————————	V_t Triode			
	$v_{DS} \ge$	$\geq v_{GS} - V_t$					

Lecture 07 - 31

Ideal Square Law Model: I_D vs V_{GS}


In saturation mode:

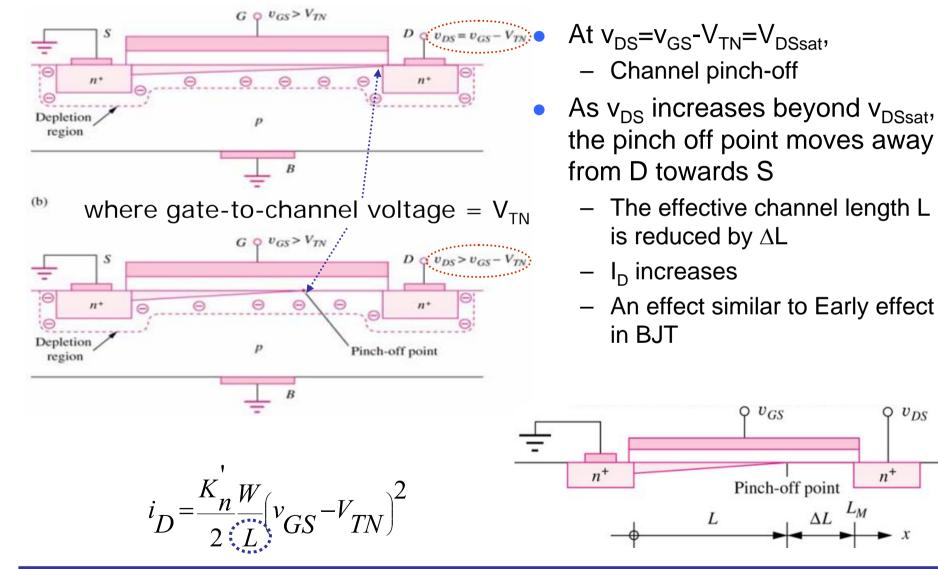
$$i_{D} = \frac{1}{2} (\mu_{n} C_{ox}) \frac{W}{L} (v_{GS} - V_{t})^{2}$$

- MOS vs. BJT
 - Current is quadratic with voltage in MOS vs.
 - exponential relationship in BJT
- Saturation mode of MOS corresponds to active mode of BJT

Ideal Square-Law Model: I_D vs V_{DS}

Topics to cover ...

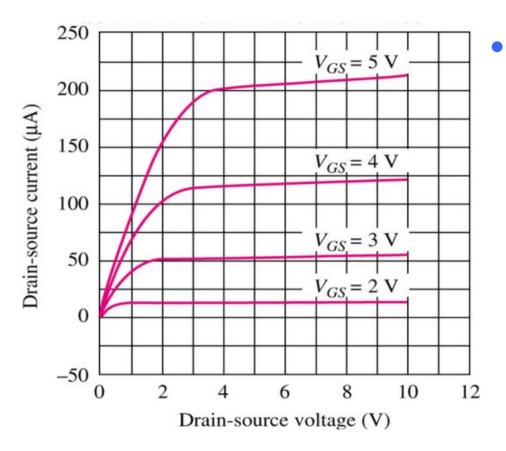
- Common-Collector Amplifier
- MOS Field Effect Transistor
 - Physical Operation and I-V Characteristics of n-channel devices
 - Non-ideal effects
 - P-channel devices and other types



Non-ideal Effects

- Channel length modulation
- Body effect
- Temperature influence
- Breakdown

Channel-Length Modulation

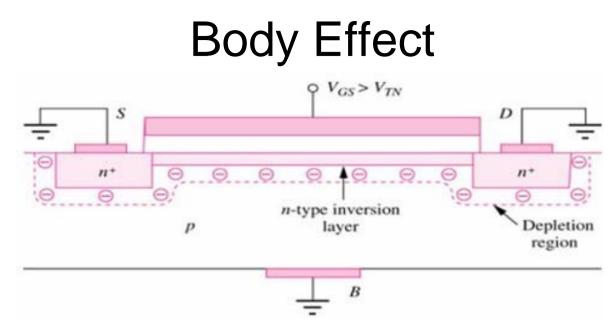


Lecture 07 - 36

 $Q v_{DS}$

 n^+

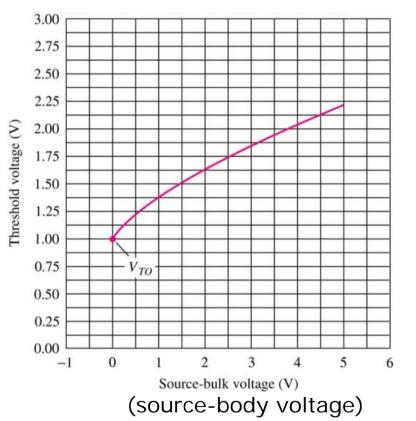
Channel-Length Modulation



This effect is modeled by adding a term $(1+\lambda v_{DS})$ to the I-V equation:

$$i_D = \frac{K_n'}{2} \frac{W}{L} \left(v_{GS} - V_{TN} \right)^2 \left(1 + \lambda v_{DS} \right)$$

 λ = channel length modulation parameter



- Channel-body can be regarded as a *pn* junction
- If channel-body junction is reverse-biased,
 - Depletion layer beneath the gate oxide becomes wider
 - Since the amount of negative charges in the (channel + depletion) layer = amount of positive charges in the gate (Constant for a fixed gate-source voltage)
 - \rightarrow Channel depth is reduced
 - This is equivalent to an increase in the threshold voltage

Body Effect

Non-zero *v_{SB}* changes threshold voltage:

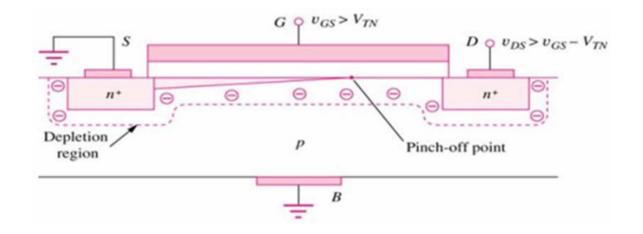
$$V_{TN} = V_{TO} + \gamma \left(\sqrt{v_{SB} + 2\phi_F} - \sqrt{2\phi_F} \right)$$

where

 V_{TO} = zero substrate bias for V_{TN} (V) γ = body-effect parameter \sqrt{V})

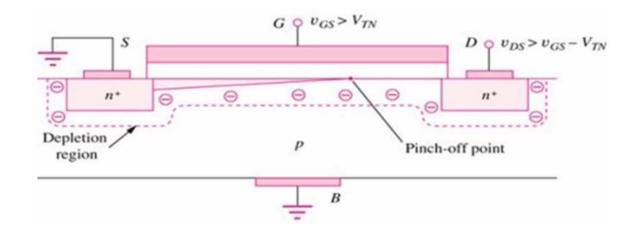
 $2\Phi_{\rm F}$ = surface potential parameter (V)

It follows that the body voltage controls i_D . This phenomenon is known as the **body effect**.

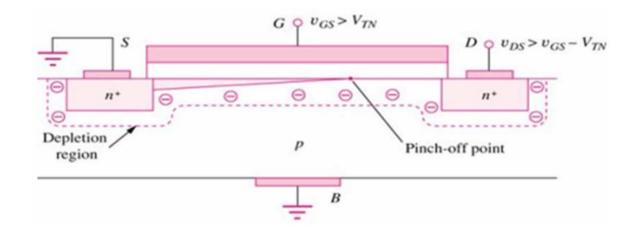


Effects of Temperature

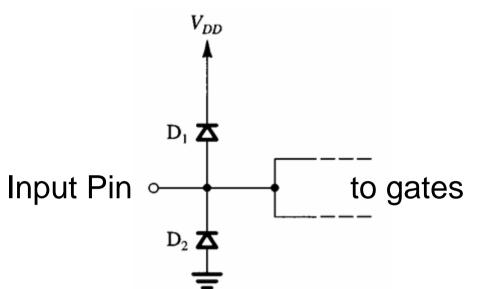
- V_t and mobility μ are sensitive to temperature:
 - V_t decreases by 2mV for every 1°C rise in temperature
 - mobility µ decreases with temperature
- Overall, increase in temperature results in lower drain currents


Avalanche Breakdown

- As V_D is increased, the drain-body junction becomes reversed biased
 → Breakdown occurs at voltages of 20 to 150V
 → Rapid increase in the drain current
- Normally, no permanent damage to the device


Punch-through Breakdown

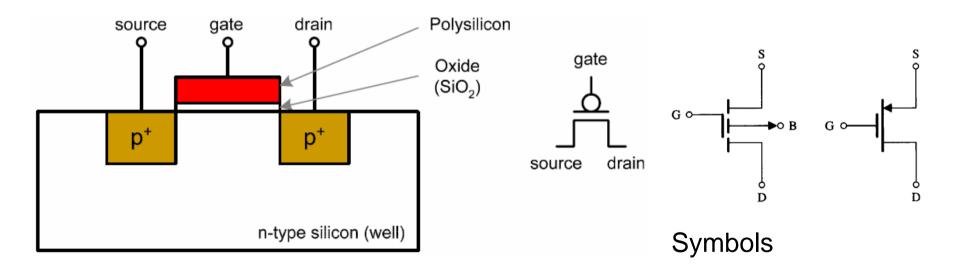
- Whe V_D is increased to a point, → the depletion region surrounding D extends to the S → Punch-through breakdown (about 20 V)
- Occurs in devices with short channels
- Normally, no permanent damage to the device


Gate Oxide Breakdown

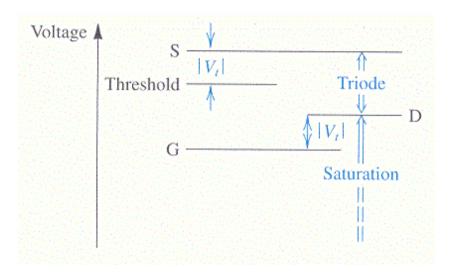
- When V_{GS} exceeds about 30 V (or lower in modern IC technology)
 → Gate oxide breaks down like in the case of a capacitor
- Results in permanent damage to the device

Input Protection

- Since the MOSFET has a very small input capacitance and a very high input resistance, a small amount of static charges accumulating on the gate can cause the gate voltage to exceed the breakdown level
 - e.g., Electrostatic Discharge (ESD) from human body
- Clamping diodes can be used in the I/O pins to protect the circuit from gate-oxide breakdown

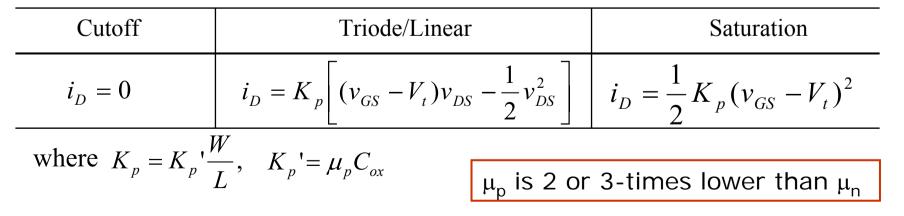

Topics to cover ...

- Common-Collector Amplifier
- MOS Field Effect Transistor
 - Physical Operation and I-V Characteristics of n-channel devices
 - Non-ideal effects
 - P-channel devices and other types


P-channel MOSFET (PMOS)

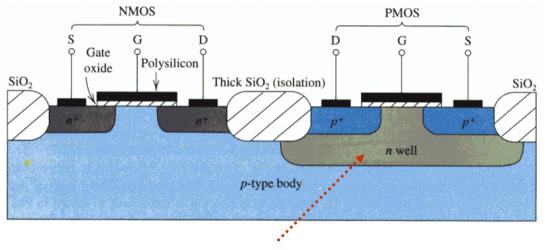
- Similar to NMOS, but doping and voltages reversed
 - Body tied to highest voltage (Vdd) to prevent forward-biasing pn junctions
 - Source typically tied to Vdd too
 - Gate voltage high: transistor is OFF
 - Gate voltage low: transistor is ON when $V_{GS} < V_t$ (threshold voltage)
 - Inverted channel of positively charged holes
 - v_{GS} and v_{DS} are negative and V_t is also negative

PMOS I-V Characteristics



 V_{t} , v_{GS} and v_{DS} are negative.

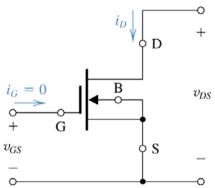
Cutoff region | v_{GS} |<| V_t |
 Triode region

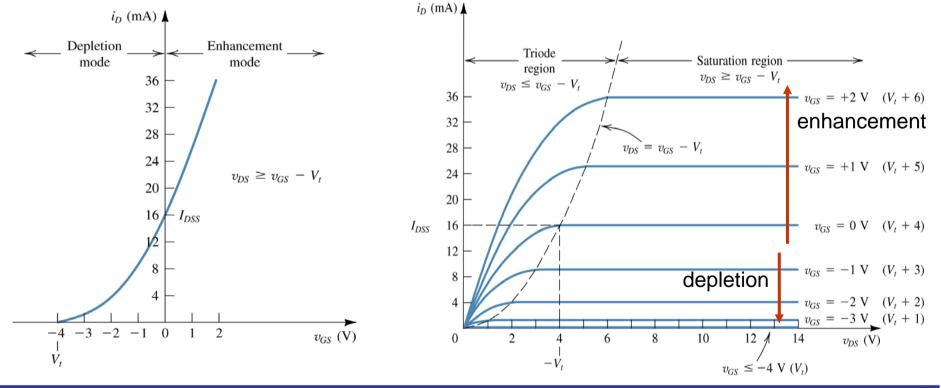

 $|v_{GS}| \ge |V_t|$ and $|v_{DS}| < |v_{GS} - V_t|$

Saturation region $|v_{GS}| \ge |V_t|$ and $|v_{DS}| \ge |v_{GS} - V_t|$

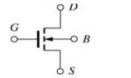
Complementary MOS (CMOS) Technology

PMOS transistor is fabricated in the *n* well

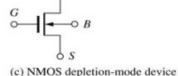

Complementary MOS or CMOS integrated-circuit technologies provide both NMOS and PMOS on a same IC



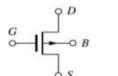
Lecture 07 - 48


Depletion-mode MOSFET

- A depletion-type MOSFET has a built-in channel by fabrication
 - It is ON when no gate-source voltage is applied
 - Must apply a negative v_{GS} to turn off device
- V_t is negative for NMOS

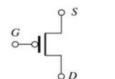


MOSFET Circuit Symbols



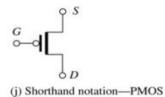
(b) PMOS enhancement-mode device

(g) and(i) are the most commonly used symbols in VLSI logic design.



(d) PMOS depletion-mode device

(g) Shorthand notation-NMOS enhancement-mode device



(i) Shorthand notation-PMOS enhancement-mode device

(h) Shorthand notation-NMOS depletion-mode device

(e) Three-terminal NMOS transistors

depletion-mode device

(f) Three-terminal PMOS transistors

- MOS devices are symmetric.
- In NMOS, *n*⁺ region at higher voltage is the drain.
- In PMOS p^+ region at lower voltage is the drain

