ELE 2110A Electronic Circuits

Week 8: MOSFET I-V Characteristics, DC Analysis and Small Signal Model

Lecture 07 - 1

Topics to cover ...

- MOSFET Non-ideal I-V Characteristics
- P-channel Devices and Other types
- DC Analysis of MOSFET circuits
- MOSFET Small Signal Model
- Reading Assignment: Chap 4.1 - 4.4, 4.9 and 13.8 of Jaeger and Blalock or Chap 4.1 - 4.6 of Sedra & Smith

Summary of NMOS I-V Characteristics

Region	Cutoff	Triode	Saturation
Conditions	$v_{GS} < V_t$	$v_{GS} \ge V_t$	•
		$v_{DS} < v_{GS} - V_t$	$v_{DS} \ge v_{GS} - V_t$
I-V relation	$i_D = 0$	$i_D = K'_n \frac{W}{L} \left[(v_{GS} - V_t) v_{DS} - \frac{1}{2} v_{DS}^2 \right]$	$i_{D} = \frac{1}{2} K'_{n} \frac{W}{L} (v_{GS} - V_{t})^{2}$
Cutoff region $v_{GS} < V_t$ Voltage k $K_n' = \mu_n C_{ox}$			
Triode re	gion		
${\cal V}_{GS}$	$\geq V_t$ and		Saturation
v_{DS}	$< v_{GS} - V_t$	G	
➡ Saturatio	on region		$\int \frac{V_t}{h} \frac{V_t}{h} D$
$v_{GS} \ge V_t$ and		ThresholdS	$\frac{\mathbf{T}}{V_t} \qquad \qquad \mathbf{Triode} \\ \mathbf{V}_t \qquad \qquad \mathbf{V}$
$v_{DS} \ge$	$\geq v_{GS} - V_t$		T

Ideal Characteristics of I_D vs V_{DS}

Non-ideal I-V Characteristics

- Finite Output Resistance in Saturation
- The role of the Body
- Temperature Effects
- Breakdown and Input Protection

Channel-Length Modulation

- Channel pinch-off
- As v_{DS} increases beyond v_{DSsat}, the pinch-off point moves away from D towards S
 - Effective channel length L is reduced, or that channel length is modulated by V_{DS}.
 - I_D increases with V_{DS}.
 - Output resistance is finite in saturation mode.

Lecture 07 - 6

Channel-Length Modulation

This effect is modeled by adding a term $(1+\lambda v_{DS})$ to the I-V equation:

$$i_D = \frac{K_n}{2} \frac{W}{L} \left(v_{GS} - V_{TN} \right)^2 \left(1 + \lambda v_{DS} \right)$$

 λ = channel length modulation parameter

The Role of Body - Body Effect

- Channel-body can be regarded as a *pn* junction
- If channel-body junction is reverse-biased,
 - Depletion layer beneath the gate oxide becomes wider
 - Since the amount of negative charges in the (channel + depletion) layer = amount of positive charges in the gate (Constant for a fixed gate-source voltage)
 - \rightarrow Channel depth is reduced
 - This is equivalent to an increase in the threshold voltage

Body Effect

Non-zero *v_{SB}* changes threshold voltage:

$$V_{TN} = V_{TO} + \gamma \left(\sqrt{v_{SB} + 2\phi_F} - \sqrt{2\phi_F} \right)$$

where

 V_{TO} = zero substrate bias for V_{TN} (V) γ = body-effect parameter \sqrt{V})

 $2\Phi_{\rm F}$ = surface potential parameter (V)

It follows that the body voltage controls i_D . This phenomenon is known as the **body effect**.

Temperature Effects

- V_t and mobility μ are sensitive to temperature:
 - V_t decreases by 2mV for every 1°C rise in temperature
 - mobility μ decreases with temperature
- Overall, increase in temperature results in lower drain currents

Avalanche Breakdown

- As V_D is increased, the drain-body junction becomes reversed biased
 → Breakdown occurs at voltages of 20 to 150V
 → Rapid increase in the drain current
- Normally, no permanent damage to the device

Punch-through Breakdown

- Whe V_D is increased to a point, → the depletion region surrounding D extends to the S → Punch-through breakdown (about 20 V)
- Occurs in devices with short channels
- Normally, no permanent damage to the device

Gate-Oxide Breakdown

- When V_{GS} exceeds about 30 V (or lower in modern IC technology)
 → Gate oxide breaks down like in the case of a capacitor
- Results in permanent damage to the device

Input Protection

- Since the MOSFET has a very small input capacitance and a very high input resistance, a small amount of static charges accumulating on the gate can cause the gate voltage to exceed the breakdown level
 - e.g., Electrostatic Discharge (ESD) from human body
- Clamping diodes can be used in the I/O pins to protect the circuit from gate-oxide breakdown

Topics to cover ...

• MOSFET Non-ideal I-V Characteristics

• P-channel Devices and Other types

- DC Analysis of MOSFET circuits
- MOSFET Small Signal Model

P-channel MOSFET (PMOS)

- Similar to NMOS, but doping and voltages reversed
 - Body tied to highest voltage (Vdd) to prevent forward-biasing pn junctions
 - Source typically tied to Vdd too
 - Gate voltage high: transistor is OFF
 - Gate voltage low: transistor is ON when $V_{GS} < V_t$ (threshold voltage)
 - Inverted channel of positively charged holes
 - v_{GS} and v_{DS} are negative and V_t is also negative

PMOS I-V Characteristics

 V_t , v_{GS} and v_{DS} are negative.

◆ Cutoff region | v_{GS} |<| V_t |
 ◆ Triode region | v_{GS} |≥| V_t | and | v_{GS} |≥| V_t | and | v_{DS} |<| v_{GS} − V_t |
 ◆ Saturation region

 $|v_{GS}| \ge |V_t|$ and $|v_{DS}| \ge |v_{GS} - V_t|$

CutoffTriode/LinearSaturation
$$i_D = 0$$
 $i_D = K_p \Big[(v_{GS} - V_t) v_{DS} - \frac{1}{2} v_{DS}^2 \Big]$ $i_D = \frac{1}{2} K_p (v_{GS} - V_t)^2$ where $K_p = K_p \frac{W}{L}$, $K_p' = \mu_p C_{ox}$ μ_p is typically 2 to 3 times lower than μ_n

Complementary MOS (CMOS) Technology

PMOS transistor is fabricated in the *n* well

Complementary MOS or CMOS integrated-circuit technologies provide both NMOS and PMOS on a same IC

Depletion-mode MOSFET

- A depletion-type MOSFET has a built-in channel by fabrication
 - It is ON when no gate-source voltage is applied
 - Must apply a negative v_{GS} to turn off device
- V_t is negative for NMOS

MOSFET Circuit Symbols

(b) PMOS enhancement-mode device

(g) and(i) are the most commonly used symbols in VLSI logic design.

(d) PMOS depletion-mode device

(g) Shorthand notation-NMOS enhancement-mode device

(e) Three-terminal NMOS transistors

depletion-mode device

(f) Three-terminal PMOS transistors

- - MOS devices are symmetric.
- In NMOS, *n*⁺ region at higher voltage is the drain.
- In PMOS p^+ region at lower voltage is the drain

Topics to cover ...

- MOSFET Non-ideal I-V Characteristics
- P-channel Devices and Other types

• DC Analysis of MOSFET circuits

• MOSFET Small Signal Model

DC Analysis Approach

- Assume an operation mode (usually the saturation mode)
- Use circuit analysis to find V_{GS}
- Use V_{GS} to calculate I_D , and I_D to find V_{DS}
- Check validity of operation region assumptions
- Change assumptions and analyze again if required.

Example 2

Problem: Find Q-pt (I_D , V_{DS})

Assumption: Transistor is saturated (since $V_{DS} = V_{GS}$)

Example 3

Problem: Find Q-pt (I_D , V_{DS})

Assumption: transistor is saturated

Example 4 (PMOS)

Problem: Find Q-pt (I_D , V_{DS})

Assumption: transistor is saturated (since $V_{DS} = V_{GS}$)

Current Mirror

Current Mirror is an important building block in IC amplifiers.

As Q_1 must be in saturation mode,

$$I_{D1} = \frac{1}{2} k'_n \left(\frac{W}{L}\right)_1 (V_{GS} - V_t)^2$$

$$I_{D1} = I_{\text{REF}} = \frac{V_{DD} - V_{GS}}{R}$$

If Q₂ operates in saturation,

$$I_O = I_{D2} = \frac{1}{2}k'_n \left(\frac{W}{L}\right)_2 (V_{GS} - V_t)^2$$

 $\frac{I_O}{I_{\text{REF}}} = \frac{(W/L)_2}{(W/L)_1}$

If $(W/L)_2 = (W/L)_1$, $I_0 = I_{REF}$, output mirrors the input.

Note that channel modulation effect is neglected.

Current Steering Circuit

Once a constant current is generated, it can be replicated to provide dc bias currents for the various amplifier stages in an IC.

Assume Q_2 , Q_3 and Q_5 are in active mode.

$$I_{2} = I_{REF} \frac{(W/L)_{2}}{(W/L)_{1}}$$
$$I_{3} = I_{REF} \frac{(W/L)_{3}}{(W/L)_{1}}$$

$$I_5 = I_4 \frac{(W/L)_5}{(W/L)_4}$$
 where $I_4 = I_3$

Topics to cover ...

- MOSFET Non-ideal I-V Characteristics
- P-channel Devices and Other types
- DC Analysis of MOSFET circuits
- MOSFET Small Signal Model

Big Picture: Large Signal Analysis

For the conceptual MOSFET amplifier shown right,

 I_D

$$v_{GS} = V_{GS} + v_{gs}$$

$$i_D = \frac{1}{2} k'_n \frac{W}{L} (V_{GS} + v_{gs} - V_t)^2$$

$$= \frac{1}{2} k'_n \frac{W}{L} (V_{GS} - V_t)^2 + k'_n \frac{W}{L} (V_{GS} - V_t) v_{gs} + \frac{1}{2} k'_n \frac{W}{L} v_{gs}^2$$
For small input signal that $\frac{1}{2} k'_n \frac{W}{L} v_{gs}^2 << k'_n \frac{W}{L} (V_{GS} - V_t) v_{gs}$
which results in $v_{gs} << 2(V_{GS} - V_t)$ $V_{gs} <0.2(V_{GS} - V_t)$ is commonly required.
we obtain, $i_D = \frac{1}{2} k'_n \frac{W}{L} (V_{GS} - V_t)^2 + k'_n \frac{W}{L} (V_{GS} - V_t) v_{gs}$

 i_d

 V_{DD}

Small Signal Transconductance g_m

UGS

Small Signal Model

MOSFET small signal model

$$g_m \equiv \frac{\partial i_D}{\partial v_{GS}} \bigg|_{v_{GS} = V_{GS}} = \frac{i_d}{v_{gs}} = k'_n \frac{W}{L} (V_{GS} - V_t)$$

$$r_0 \equiv \left[\frac{\partial i_D}{\partial v_{DS}}\right]_{v_{GS} = V_{GS}}^{-1} = \frac{1 + \lambda V_{DS}}{\lambda I_D} \cong \frac{1}{\lambda I_D}$$

 r_{o} is output resistance due to channel length modulation effect.

Observations on Transconductance

Formula 1:
$$g_m = k'_n \frac{W}{L} (V_{GS} - V_t)$$

It shows:
 $g_m \propto k'$, W/L, and $(V_{GS} - V_t)$
Formula 2: $g_m = \sqrt{2k'_n} \sqrt{\frac{W}{L}} \sqrt{I_D}$
It shows:
(1) For a given MOSFET,
Reference equations:
 $I_D = \frac{1}{2} k'_n \frac{W}{L} (V_{GS} - V_t)^2$
 $I_D = \frac{1}{2} k'_n \frac{W}{L} (V_{GS} - V_t)^2$
 $V_{GS} - V_t = \sqrt{\frac{2I_D}{k'_n \frac{W}{L}}}$
Formula 3: $g_m = \frac{I_D}{(V_{GS} - V_t)/2}$

$$g_m \propto \sqrt{I_D}$$

(2) At a given bias current,

$$g_m \propto \sqrt{W/L}$$

In contrast, the g_m of BJT $\propto I_C$ and is independent of the geometry.

The g_m of MOSFET is much small than that of BJT for that the values of $(V_{GS}-V_t)/2$ are at least 0.1V or so.

In spite of their low g_m , MOSFETs have many other advantages, such as high R_{in} , small size, low power dissipation and ease of fabrication.

Modeling the Body Effect

- S-to-B voltage affects threshold voltage and in turn the drain current
- This effect can be modeled by adding a back-gate transconductance:

0<η<1 is called back-gate transconductance parameter.

 Body terminal is a reverse-biased diode. Hence, no current flows through it.

S

