ELE 2110A Electronic Circuits

Wrap Up

Wrap up - 1

In this course, you have learned...

- Microelectronic <u>devices</u> that can provide gain (active)
 - Basic semiconductor physics
 - Operation principles, terminal I-V equations and circuit models of
 - PN-junction diode
 - BJT transistor
 - MOS transistor
- Special analysis <u>techniques</u> for microelectronic circuits
 - DC analysis (biasing)
 - Small signal analysis

- Diode <u>circuits</u>
 - Rectifiers
 - Regulators
 - DC-DC converters
 - Clipping & Clamping ckts
- BJT & MOS transistor circuits
 - Single transistor amplifiers
 - Differential amplifiers
 - Multi-vibrators
 - Logic circuits
- Feedback principles
 - Topologies
 - Stability analysis
 - Oscillators

PN Junction Diode

- Physical operation
 - Including the reverse-breakdown phenomenon
- Simplified circuit models
 - E.g., the 0.7V constant voltage drop model
- Zener-Diode and voltage regulator
- Half-wave, full-wave and bridge rectifiers
 - Advantages and disadvantages
- DC-DC converters
- Clipping and clamping circuits

Bipolar Junction Transistor

- Regions of operation: Cutoff, Saturation and Active
- I-V behaviors for the three regions:
 - Cutoff: I_B=I_E=I_C=0;
 Voltages depend on external circuit
 - Saturation: $V_{BE} = V_{ON}$, $V_{CE} = V_{CESat}$; Currents depends on external circuit
 - Active: $i_C = \beta i_B$, $i_C = \alpha i_E$,

$$i_C = I_S \exp(\frac{v_{BE}}{V_T})$$

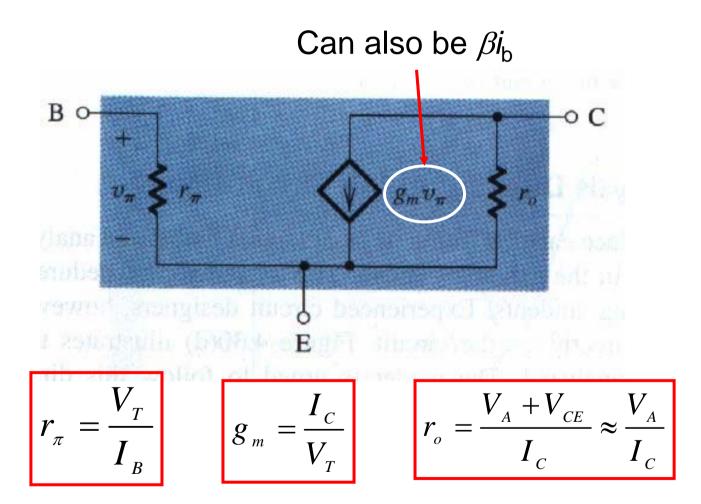
- Non-ideal effects
 - Early Effect
 - Temperature dependence
 - Breakdown

MOSFET

- Three regions of operation:
 - Cutoff: $V_{GS} < V_{TN}$ (for nmos, same below)
 - Triode or Linear: $V_{GS} \ge V_{TN}$, $V_{GD} \ge V_{TN}$
 - Saturation: $V_{GS} > V_{TN}$, $V_{GD} < V_{TN}$
- I-V equations in three regions
 - Square-law I-V behavior in saturation mode

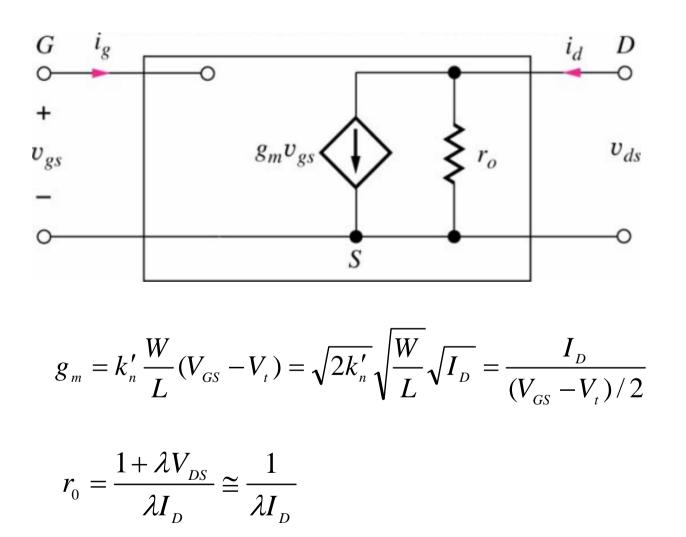
Voltage
G
$$\xrightarrow{V_t}$$

Threshold $\xrightarrow{V_t}$
S $\xrightarrow{V_t}$
S $\xrightarrow{V_t}$
Threshold $\xrightarrow{V_t}$
S $\xrightarrow{V_t}$
Threshold $\xrightarrow{V_t}$
S $\xrightarrow{V_t}$


(for nmos)

$$i_{D} = \frac{1}{2} (\mu_{n} C_{ox}) \frac{W}{L} (v_{GS} - V_{TN})^{2} \qquad K_{n} = \mu_{n} C_{ox} \frac{W}{L}$$
$$K_{n} = \mu_{n} C_{ox}$$

- Non-ideal Effects
 - Channel length modulation
 - Body effect
 - Breakdowns and gate-breakdown protection


BJT Small Signal Model

Wrap up - 6

MOSFET Small Signal Model

Wrap up - 7

Single Stage Amplifiers

- For use as an amplifier
 - BJT operates in active region
 - MOSFET operates in saturation region
- Amplifiers need a stable biasing point
 - Four-resistor bias network
 - Current mirror
- Basic amplifier configurations and their properties
 - Common-emitter/Common-source
 - Effect of emitter/source resistor
 - Common-base/Common-gate
 - Emitter/Source follower

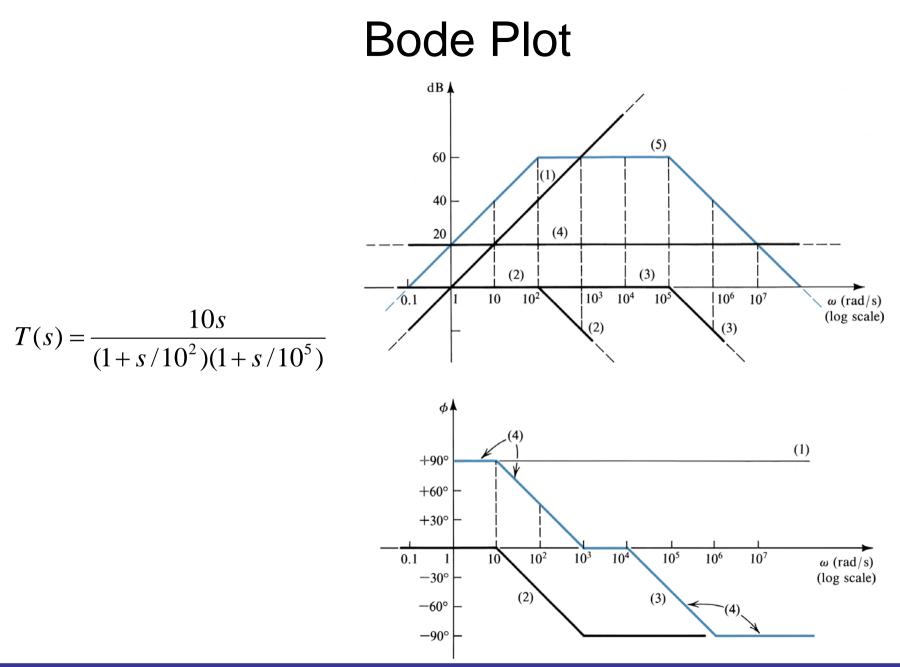
Multivibrators

- A multivibrator is used to implement simple **two-state systems** such as oscillators, timers and flip-flops.
- Three types:
 - Astable neither state is stable.
 Applications: oscillator, etc.
 - Monostable one of the states is stable, but the other is not;
 Applications: timer, etc.
 - Bistable it remains in either state indefinitely.
 Applications: flip-flop, etc.

Differential Amplifier

- Purpose:
 - To amplify the difference between two input voltages
- Properties:
 - Effectively a single-stage CS/CE amplifier
 - No bypass capacitor is needed to produce emitter ac ground for differential mode inputs
 - Common-mode signal is not amplified
 - CMRR measures the ability to reject CM signals
- Half-circuit analysis technique
 - Common-mode and differential-mode equivalent half circuits

Output Stage


- Class A: highest linearity, lowest power efficiency
- Class B: lowest linearity, highest power efficiency
- Class AB: linearity better than that of Class B, power efficiency close to that of Class B, but lower.

Frequency Response of Amplifiers

- Amplifiers' gain depends on frequency
 - b/c the impedance of capacitors depends on frequency
- High-frequency models for BJT and MOSFET
 - Device capacitors added
- Low frequency response
 - Determined by coupling and bypass capacitors
 - Can be estimated by SCTC method
- High frequency response
 - Determined by internal capacitors of transistors
 - Can be estimated by OCTC method
- Mid-band gain
 - Calculated with circuit capacitors short-circuited and device capacitors open-circuited

Feedback

- Feedback amplifiers combine the advantages of both active and passive circuits:
 - It can provide gain (advantage of active circuits)
 - The gain can be accurate (advantage of passive circuits)
- Properties of negative feedback amplifier
 - Gain variation is reduced
 - Bandwidth is extended
 - Non-linearity is reduced
- Four topologies
- Stability can be determined by
 - Nyquist plot
 - Root locus diagram
 - Bode plot (phase and gain margins)
- Positive feedback is used in oscillator circuits

Digital Circuits

- CMOS logic circuits (Inverter, NAND, NOR)
 - Transistor operates as a switch
 - Either in cutoff mode or triode mode
 - Performance parameters
 - Dynamic power consumption

$$P = f C V_{DD}^{2}$$

• Propagation delay (speed)

$$t_p \propto rac{1}{(rac{W}{L})}$$
 $t_p \propto C_{load}$

Final Examination:

25 April 2008, Friday 9:30am – 11:30am Sir Run Run Shaw Hall

Closed-book, closed-notes.

Unlike last year, no equations sheet will be provided! But you can expect the questions to be less complex.

