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It two Lectures, we talked about:

= Important features of digital communication
systems

= Some basic concepts/definitions:
= Signal classification,

Fourier Series/Transform,

Spectral density,

Random processes,

Linear systems and

Signal bandwidth.
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- are going to talk about:

= The first important step in any DCS:

= Transforming the information source to a form
compatible with a digital system
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-g and transmission of baseband signal
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!t analog signals

To transform an analog waveform into a form
that is compatible with a digital
communication system, the following steps
are taken:

Sampling — See my notes on

Quantization and encoding

Baseband transmission
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http://doctord.dyndns.org/courses/tutorials/Sampling.doc
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See my notes on : and
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http://doctord.dyndns.org/courses/tutorials/Generalized_Fourier_Series.doc
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I ling theorem

Analog | Sampling _ Pulse amplitude
signal Process modulated (PAM) signal

Sampling theorem: A band-limited signal

with no spectral components beyond f», can
be uniquely determined by values sampled at

uniform intervals of
Ts < 54—

The sampling rate, 5= 7. =2fn is
called the Nyquist rate.
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-btion

= Amplitude quantizing: Mapping samples of a continuous
amplitude waveform to a finite set of amplitudes.

Quantized

values
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= Average quantization noise power
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[Encoding (Pcv)

A uniform linear quantizer is called Pulse Code
Modulation (PCM).

Pulse code modulation (PCM): Encoding the quantized
signals into a digital word (PCM word or codeword).

Each quantized sample is digitally encoded into an | bits
codeword where L in the number of quantization levels and

| = logo L
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”\t—ion example
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-ion error

= Quantizing error: The difference between the input and output of
a quantizer =

Process of quantizing noise

Qauntizer
y=q(x)
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e(t) = X(t) — x(t)

Model of quantizing noise

X(t) O R(1)

The Noise Model is an
approximation!
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!tion error ...

= Quantizing error:
= Granular or linear errors happen for inputs within the dynamic
range of quantizer

= Saturation errors happen for inputs outside the dynamic range
of quantizer
= Saturation errors are larger than linear errors (AKA as “Overflow”
or “Clipping”)
= Saturation errors can be avoided by proper tuning of AGC
= Saturation errors need to be handled by Overflow Detection!

= Quantization noise variance:
2 2
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fm and non-uniform guant.

Uniform (linear) quantizing:

No assumption about amplitude statistics and correlation
properties of the input.

Not using the user-related specifications

Robust to small changes in input statistic by not finely tuned to a
specific set of input parameters

Simple implementation
= Application of linear quantizer:
Signal processing, graphic and display applications, process
control applications
Non-uniform quantizing:
Using the input statistics to tune quantizer parameters
Larger SNR than uniform quantizing with same number of levels

Non-uniform intervals in the dynamic range with same quantization
noise variance
= Application of non-uniform quantizer:
Commonly used for speech
Examples are p-law (US) and A-law (international)
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‘orm guantization

= Itis achieved by uniformly quantizing the “compressed” signal.
(actually, modern A/D converters use Uniform quantizing at 12-13 bits
and compand digitally)

= At the receiver, an inverse compression characteristic, called
“‘expansion” is employed to avoid signal distortion.

compression+expansion [> companding

y=C(x) %
X y(t) — 9 A(t
L[ .
X y
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e Channel Receiver

Transmitter
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of speech amplitudes

= In speech, weak signals are more frequent than strong ones.

1.0
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Normalized magnitude of speech signal

Probability density function

= Using equal step sizes (uniform quantizer) gives low (%j for weak
signals and high fﬁj for strong signals. :

q

= Adjusting the step size of the quantizer by taking into account the speech statistics
improves the average SNR for the input range.
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!band transmission

To transmit information through physical
channels, PCM sequences (codewords) are
transformed to pulses (waveforms).

Each waveform carries a symbol from a set of size M.

Each transmit symbol represents| k =log, M ‘bits of
the PCM words.

PCM waveforms (line codes) are used for binary
symbols (M=2).
M-ary pulse modulation are used for non-binary
symbols (M>2).
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‘veforms

= PCM waveforms category:

“ Nonreturn-to-zero (NRZ) " Phase encoded

“ Return-to-zero (RZ) “ Multilevel binary
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-Waveforms -

Criteria for comparing and selecting PCM
waveforms:

Spectral characteristics (power spectral density and
bandwidth efficiency)

Bit synchronization capability

Error detection capability
Interference and noise immunity
Implementation cost and complexity
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a of PCM waveforms
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WT (normalized bandwidth, where 7 is the signal pulse width)
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Y pulse modulation

M-ary pulse modulations category:
= M-ary pulse-amplitude modulation (PAM)
= M-ary pulse-position modulation (PPM)
= M-ary pulse-duration modulation (PDM)

M-ary PAM is a multi-level signaling where each
symbol takes one of the M allowable amplitude levels,
each representing K=log Mbits of PCM words.

For a given data rate, M-ary PAM (M>2) requires less
bandwidth than binary PCM.

For a given average pulse power, binary PCM is
easier to detect than M-ary PAM (M>2).
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M example
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