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In our first two Lectures, we talked about:

 Important features of digital communication 

systems

 Some basic concepts/definitions:

 Signal classification, 

 Fourier Series/Transform, 

 Spectral density, 

 Random processes, 

 Linear systems and 

 Signal bandwidth.
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Today, we are going to talk about:

 The first important step in any DCS:

 Transforming the information source to a form 

compatible with a digital system
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A Digital Communication System
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Format analog signals

 To transform an analog waveform into a form 

that is compatible with a digital 

communication system, the following steps 

are taken:

1. Sampling – See my notes on Sampling

2. Quantization and encoding

3. Baseband transmission

http://doctord.dyndns.org/courses/tutorials/Sampling.doc


See my notes on Fourier Series, Fourier Transform and
Sampling
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Sampling

Time domain Frequency domain
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http://doctord.dyndns.org/courses/tutorials/Generalized_Fourier_Series.doc
http://doctord.dyndns.org/courses/tutorials/Fourier_Transform.doc
../../../Tutorials/Sampling.doc
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Aliasing effect
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Nyquist rate
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Sampling theorem

 Sampling theorem: A band-limited signal 

with no spectral components beyond    , can 

be uniquely determined by values sampled at 

uniform intervals of

The sampling rate,                  is 

called the Nyquist rate. 
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Quantization

 Amplitude quantizing: Mapping samples of a continuous 

amplitude waveform to a finite set of amplitudes.
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Encoding (PCM)

 A uniform linear quantizer is called Pulse Code 

Modulation (PCM).

 Pulse code modulation (PCM): Encoding the quantized 

signals into a digital word (PCM word or codeword).

 Each quantized sample is digitally encoded into an l bits 

codeword where L in the number of quantization levels and 
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Quantization example

t

Ts: sampling time

x(nTs): sampled values
xq(nTs): quantized values

boundaries

Quant. levels

111    3.1867

110    2.2762

101    1.3657

100    0.4552

011   -0.4552

010   -1.3657

001   -2.2762

000   -3.1867

PCM

codeword 110   110   111   110   100   010   011   100   100   011 PCM sequence

amplitude

x(t)
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Quantization error

 Quantizing error: The difference between the input and output of 

a quantizer
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Quantization error …

 Quantizing error:

 Granular or linear errors happen for inputs within the dynamic 

range of quantizer

 Saturation errors happen for inputs outside the dynamic range 

of quantizer

 Saturation errors are larger than linear errors (AKA as “Overflow” 

or “Clipping”)

 Saturation errors can be avoided by proper tuning of AGC

 Saturation errors need to be handled by Overflow Detection!

 Quantization noise variance:
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Uniform and non-uniform quant.

 Uniform (linear) quantizing:

 No assumption about amplitude statistics and correlation 
properties of the input.

 Not using the user-related specifications

 Robust to small changes in input statistic by not finely tuned to a 
specific set of input parameters

 Simple implementation

 Application of linear quantizer:

 Signal processing, graphic and display applications, process 
control applications

 Non-uniform quantizing:

 Using the input statistics to tune quantizer parameters

 Larger SNR than uniform quantizing with same number of levels

 Non-uniform intervals in the dynamic range with same quantization 
noise variance

 Application of non-uniform quantizer:

 Commonly used for speech 

Examples are -law (US) and A-law (international)
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Non-uniform quantization

 It is achieved by uniformly quantizing the “compressed” signal. 

(actually, modern A/D converters use Uniform quantizing at 12-13 bits 

and compand digitally)

 At the receiver, an inverse compression characteristic, called 

“expansion” is employed to avoid signal distortion. 

compression+expansion        companding
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Transmitter Receiver
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Statistics of speech amplitudes

 In speech, weak signals are more frequent than strong ones.

 Using equal step sizes (uniform quantizer) gives low         for weak 
signals and high        for strong signals.

 Adjusting the step size of the quantizer by taking into account the speech statistics 
improves the average SNR for the input range. 
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Baseband transmission

 To transmit information through physical 

channels, PCM sequences (codewords) are 

transformed to pulses (waveforms).

 Each waveform carries a symbol from a set of size M.

 Each transmit symbol represents                      bits of 

the PCM words.

 PCM waveforms (line codes) are used for binary 

symbols (M=2).

 M-ary pulse modulation are used for non-binary 

symbols (M>2).

Mk 2log
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PCM waveforms

 PCM waveforms category:

 Phase encoded
 Multilevel binary

 Nonreturn-to-zero (NRZ)
 Return-to-zero (RZ)
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PCM waveforms …

 Criteria for comparing and selecting PCM 

waveforms:

 Spectral characteristics (power spectral density and 

bandwidth efficiency)

 Bit synchronization capability

 Error detection capability

 Interference and noise immunity

 Implementation cost and complexity  
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Spectra of PCM waveforms
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M-ary pulse modulation

 M-ary pulse modulations category:
 M-ary pulse-amplitude modulation (PAM)

 M-ary pulse-position modulation (PPM)

 M-ary pulse-duration modulation (PDM)

 M-ary PAM is a multi-level signaling where each 

symbol takes one of the M allowable amplitude levels, 

each representing                   bits of PCM words.

 For a given data rate, M-ary PAM (M>2) requires less 

bandwidth than binary PCM.

 For a given average pulse power, binary PCM is 

easier to detect than M-ary PAM (M>2).

Mk 2log
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PAM example


