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Last time we talked about:

 Receiver structure

 Impact of AWGN and ISI on the 
transmitted signal

 Optimum filter to maximize SNR

 Matched filter and correlator receiver

 Signal space used for detection

 Orthogonal N-dimensional space

 Signal to waveform transformation and vice 
versa
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Today we are going to talk about:

 Signal detection in AWGN channels

 Minimum distance detector

 Maximum likelihood

 Average probability of symbol error

 Union bound on error probability

 Upper bound on error probability based 
on the minimum distance 
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Detection of signal in AWGN

 Detection problem:

 Given the observation vector   , perform a 
mapping from    to an estimate     of the 
transmitted symbol,     , such that the 
average probability of error in the decision 
is minimized.
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Statistics of the observation Vector  

 AWGN channel model:
 Signal vector                            is deterministic.

 Elements of noise vector                     are i.i.d 
Gaussian random variables with zero-mean and 
variance         .  The noise vector pdf is

 The elements of observed vector                      are 
independent Gaussian random variables. Its pdf is
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Detection

 Optimum decision rule (maximum a 
posteriori probability):

 Applying Bayes’ rule gives:
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Detection …

 Partition the signal space into M decision 

regions,            such that MZZ ,...,1
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Detection (ML rule)

 For equal probable symbols, the optimum 
decision rule (maximum posteriori probability) 
is simplified to:

or equivalently:

which is known as maximum likelihood.
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Detection (ML)…

 Partition the signal space into M decision 

regions,           . 

 Restate the maximum likelihood decision 
rule as follows:
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Detection rule (ML)…

 It can be simplified to:

or equivalently: 
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Maximum likelihood detector block 
diagram
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Schematic example of the ML decision regions
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Average probability of symbol error

 Erroneous decision: For the transmitted symbol      

or equivalently signal vector    , an error in decision occurs 
if the observation vector    does not fall inside region    .

 Probability of erroneous decision for a transmitted symbol

or equivalently

 Probability of correct decision for a transmitted symbol
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Av. prob. of symbol error … 

 Average probability of symbol error :

 For equally probable symbols:
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Example for binary PAM

)(1 t

bEbE 0

1s2s

)|( 1mp zz

)|( 2mp zz

    
2

)2(
0















N

E
QPP b

EB

    
2/

2/
)()(

0

21
21 












 


N
QmPmP ee

ss

This is a poor “artist’s conception” 

of Gaussian curves



Erfc / Q(x) Table

• This table gives your erfc(x) and is 

normalized for  = 1 and mean = 0

• Note that it calculates the area under the 

Gaussian function from x to ∞ (the tail) 

where x is a positive number.

• Draw a picture to see which portion of the 

area under the curve is your interest (eg. The 

area from 1 to x) and use the table to give 

you the required area (eg. 0.5 – Q(x)).

• The table can give you 5 digits (the 5th digit 

is obtained by linear interpolation) to the 

right of the decimal point.  It is a two-

dimensional lookup.
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Union bound

 Let      denote that the observation vector    is closer to 
the symbol vector      than     , when     is transmitted.

 depends only on      and      .

 Applying Union bounds yields
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Union bound:

Example of union bound
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Upper bound based on minimum distance
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Example of upper bound on av. Symbol 
error prob. based on union bound
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Eb/No figure of merit in digital 
communications

 SNR or S/N is the average signal power to the 
average noise power. SNR should be modified 
in terms of bit-energy in DCS, because: 

 Signals are transmitted within a symbol duration 
and hence, are energy signal (zero power).

 A merit at bit-level facilitates comparison of 

different DCSs transmitting different number of bits 
per symbol.
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Example of Symbol error prob. For PAM 
signals
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