5

THE NETWORK LAYER

Fig. 5-1. Running TCP/IP over an ATM subnet.

Issue	Datagram subnet	VC subnet
Circuit setup	Not needed	Required
Addressing	Each packet contains the full source and destination address	Each packet contains a short VC number
State information	Subnet does not hold state information	Each VC requires subnet table space
Routing	Each packet is routed independently	Route chosen when VC is set up; all packets follow this route
Effect of router failures	None, except for packets lost during the crash	All VCs that passed through the failed router are terminated
Congestion control	Difficult	Easy if enough buffers can be allo- cated in advance for each VC

Fig. 5-2. Comparison of datagram and virtual circuit subnets.

Upper layer	Type of subnet			
	Datagram	Virtual circuit		
		UDP		
	UDP	over		
Connectionless	over	IP		
	IP	over		
		ATM		
	TCP	ATM AAL1		
Connection-oriented	over	over		
	IP	ATM		

Fig. 5-3. Examples of different combinations of service and subnet structure.

Fig. 5-4. Conflict between fairness and optimality.

Fig. 5-5. (a) A subnet. (b) A sink tree for router B.

Fig. 5-6. The first five steps used in computing the shortest path from A to D. The arrows indicate the working node.

```
#define MAX_NODES 1024
                                               /* maximum number of nodes */
#define INFINITY 1000000000
                                               /* a number larger than every maximum path */
int n, dist[MAX_NODES][MAX_NODES];
                                               /* dist[i][j] is the distance from i to j */
void shortest_path(int s, int t, int path[])
{ struct state {
                                               /* the path being worked on */
     int predecessor;
                                               /* previous node */
     int length;
                                               /* length from source to this node */
     enum {permanent, tentative} label;
                                               /* label state */
} state[MAX_NODES];
int i, k, min;
 struct state *
 for (p = &state[0]; p < &state[n]; p++) {
                                               /* initialize state */
     p->predecessor = -1;
     p->length = INFINITY;
     p->label = tentative;
state[t].length = 0; state[t].label = permanent;
k = t;
                                               /* k is the initial working node */
 do {
                                               /* Is there a better path from k? */
     for (i = 0; i < n; i++)
                                               /* this graph has n nodes */
          if (dist[k][i] != 0 && state[i].label == tentative) {
                if (state[k].length + dist[k][i] < state[i].length) {
                     state[i].predecessor = k;
                     state[i].length = state[k].length + dist[k][i];
                }
          }
     /* Find the tentatively labeled node with the smallest label. */
     k = 0; min = INFINITY;
     for (i = 0; i < n; i++)
          if (state[i].label == tentative && state[i].length < min) {
                min = state[i].length;
                k = i;
     state[k].label = permanent;
} while (k != s);
/* Copy the path into the output array. */
i = 0; k = s;
 do \{path[i++] = k; k = state[k].predecessor; \} while \{k >= 0\};
```

Fig. 5-7. Dijkstra's algorithm to compute the shortest path.

		Destination					
		Α	В	С	D	Ε	F
			9	4	1	7	4
	Α		AB	ABC	ABFD	ΑE	AEF
	_	9		8	3	2	4
	В	BA		ВС	BFD	BFE	BF
4	С	4	8		3	3	2
Source	C	CBA	СВ		CD	CE	CEF
Sol	_	1	3	3		3	4
	D	DFBA	DFB	DC		DCE	DF
	_	7	2	3	3		5
	Е	EA	EFB	EC	ECD		EF
	_	4	4	2	4	5	
	F	FEA	FB	FEC	FD	FE	
					(b)		

Fig. 5-8. (a) A subnet with line capacities shown in kbps. (b) The traffic in packets/sec and the routing matrix.

i	Line	λ_{i} (pkts/sec)	C _i (kbps)	μC _i (pkts/sec)	T _i (msec)	Weight
1	AB	14	20	25	91	0.171
2	ВС	12	20	25	77	0.146
3	CD	6	10	12.5	154	0.073
4	AE	11	20	25	71	0.134
5	EF	13	50	62.5	20	0.159
6	FD	8	10	12.5	222	0.098
7	BF	10	20	25	67	0.122
8	EC	8	20	25	59	0.098

Fig. 5-9. Analysis of the subnet of Fig. 5-0 using a mean packet size of 800 bits. The reverse traffic (*BA*, *CB*, etc.) is the same as the forward traffic.

Fig. 5-10. (a) A subnet. (b) Input from A, I, H, K, and the new routing table for J.

Fig. 5-11. The count-to-infinity problem.

Fig. 5-12. An example where split horizon fails.

Fig. 5-13. (a) Nine routers and a LAN. (b) A graph model of (a).

Fig. 5-14. A subnet in which the East and West parts are connected by two lines.

Fig. 5-15. (a) A subnet. (b) The link state packets for this subnet.

			Ser	nd fla	ags	AC	K fla	gs	
Source	Seq.	Age	Ā	C	F	Á	C	F	Data
А	21	60	0	1	1	1	0	0	
F	21	60	1	1	0	0	0	1	
E	21	59	0	1	0	1	0	1	
С	20	60	1	0	1	0	1	0	
D	21	59	1	0	0	0	1	1	

Fig. 5-16. The packet buffer for router *B* in Fig. 5-15.

Fig. 5-17. Hierarchical routing.

Fig. 5-18. A WAN to which LANs, MANs, and wireless cells are attached.

Fig. 5-19. Packet routing for mobile users.

Fig. 5-20. Reverse path forwarding. (a) A subnet. (b) A spanning tree. (c) The tree built by reverse path forwarding.

Fig. 5-21. (a) A subnet. (b) A spanning tree for the leftmost router. (c) A multicast tree for group 1. (d) A multicast tree for group 2.

Fig. 5-22. When too much traffic is offered, congestion sets in and performance degrades sharply.

Layer	Policies
Transport	Retransmission policy
	Out-of-order caching policy
	Acknowledgement policy
	Flow control policy
	Timeout determination
Network	• Virtual circuits versus datagram inside the subnet
	Packet queueing and service policy
	Packet discard policy
	Routing algorithm
	Packet lifetime management
Data link	Retransmission policy
	Out-of-order caching policy
	Acknowledgement policy
	• Flow control policy

Fig. 5-23. Policies that affect congestion.

Fig. 5-24. (a) A leaky bucket with water. (b) A leaky bucket with packets.

Fig. 5-25. (a) Input to a leaky bucket. (b) Output from a leaky bucket. (c) - (e) Output from a token bucket with capacities of 250KB, 500KB, and 750KB. (f) Output from a 500KB token bucket feeding a 10 MB/sec leaky bucket.

Fig. 5-26. The token bucket algorithm. (a) Before. (b) After.

Characteristics of the Input	Service Desired
Maximum packet size (bytes)	Loss sensitivity (bytes)
Token bucket rate (bytes/sec)	Loss interval (µsec)
Token bucket size (bytes)	Burst loss sensitivity (packets)
Maximum transmission rate (bytes/sec)	Minimum delay noticed (μsec)
	Maximum delay variation (μsec)
	Quality of guarantee

Fig. 5-27. An example flow specification.

Fig. 5-28. (a) A congested subnet. (b) A redrawn subnet that eliminates the congestion and a virtual circuit from A to B.

Fig. 5-29. (a) A router with five packets queued for line O. (b) Finishing times for the five packets.

From: Computer Networks, 3rd ed. by Andrew S. Tanenbaum, © 1996 Prentice Hall

Fig. 5-30. (a) A choke packet that affects only the source. (b) A choke packet that affects each hop it passes through.

Fig. 5-31. (a) A network. (b) The multicast spanning tree for host 1. (c) The multicast spanning tree for host 2.

Fig. 5-32. (a) Host 3 requests a channel to host 1. (b) Host 3 then requests a second channel, to host 2. (c) Host 5 requests a channel to host 1.

Fig. 5-33. Network interconnection.

Fig. 5-34. (a) A full gateway between two WANs. (b) A full gateway between a LAN and a WAN. (c) Two half-gateways.

Item	Some Possibilities
Service offered	Connection-oriented versus connectionless
Protocols	IP, IPX, CLNP, AppleTalk, DECnet, etc.
Addressing	Flat (802) versus hierarchical (IP)
Multicasting	Present or absent (also broadcasting)
Packet size	Every network has its own maximum
Quality of service	May be present or absent; many different kinds
Error handling	Reliable, ordered, and unordered delivery
Flow control	Sliding window, rate control, other, or none
Congestion control	Leaky bucket, choke packets, etc.
Security	Privacy rules, encryption, etc.
Parameters	Different timeouts, flow specifications, etc.
Accounting	By connect time, by packet, by byte, or not at all

Fig. 5-35. Some of the many ways networks can differ.

Fig. 5-36. Internetworking using concatenated virtual circuits.

Fig. 5-37. A connectionless internet.

Fig. 5-38. Tunneling a packet from Paris to London.

Fig. 5-39. Tunneling a car from France to England.

Fig. 5-40. (a) An internetwork. (b) A graph of the internetwork.

Fig. 5-41. (a) Transparent fragmentation. (b) Nontransparent fragmentation.

Number of the first elementary fragment in this packet Packet End of number packet bit 1 byte D J Header (a) 27 0 В С D Ε F G Н 27 Header Header (b) 27 0 Α В С D Ε 27 5 0 F G Н 27 8 Header Header Header

Fig. 5-42. Fragmentation when the elementary data size is 1 byte. (a) Original packet, containing 10 data bytes. (b) Fragments after passing through a network with maximum packet size of 8 bytes. (c) Fragments after passing through a size 5 gateway.

(c)

Fig. 5-43. A firewall consisting of two packet filters and an application gateway.

Fig. 5-44. The Internet is an interconnected collection of many networks.

Fig. 5-45. The IP (Internet Protocol) header.

Option	Description		
Security	Specifies how secret the datagram is		
Strict source routing	Gives the complete path to be followed		
Loose source routing	Gives a list of routers not to be missed		
Record route	Makes each router append its IP address		
Timestamp	Makes each router append its address and timestamp		

Fig. 5-46. IP options.

Fig. 5-47. IP address formats.

Fig. 5-48. Special IP addresses.

Fig. 5-49. One of the ways to subnet a class B network.

Message type	Description
Destination unreachable	Packet could not be delivered
Time exceeded	Time to live field hit 0
Parameter problem	Invalid header field
Source quench	Choke packet
Redirect	Teach a router about geography
Echo request	Ask a machine if it is alive
Echo reply	Yes, I am alive
Timestamp request	Same as Echo request, but with timestamp
Timestamp reply	Same as Echo reply, but with timestamp

Fig. 5-50. The principal ICMP message types.

Fig. 5-51. Three interconnected class C networks: two Ethernets and an FDDI ring.

Fig. 5-52. (a) An autonomous system. (b) A graph representation of (a).

Fig. 5-53. The relation between ASes, backbones, and areas in OSPF.

Message type	Description	
Hello	Used to discover who the neighbors are	
Link state update	Provides the sender's costs to its neighbors	
Link state ack	Acknowledges link state update	
Database description	Announces which updates the sender has	
Link state request	Requests information from the partner	

Fig. 5-54. The five types of OSPF messages.

Fig. 5-55. (a) A set of BGP routers. (b) Information sent to F.

Fig. 5-56. The IPv6 fixed header (required).

Prefix (binary)	Usage	Fraction
0000 0000	Reserved (including IPv4)	1/256
0000 0001	Unassigned	1/256
0000 001	OSI NSAP addresses	1/128
0000 010	Novell NetWare IPX addresse	s 1/128
0000 011	Unassigned	1/128
0000 1	Unassigned	1/32
0001	Unassigned	1/16
001	Unassigned	1/8
010	Provider-based addresses	1/8
011	Unassigned	1/8
100	Geographic-based addresses	1/8
101	Unassigned	1/8
110	Unassigned	1/8
1110	Unassigned	1/16
1111 0	Unassigned	1/32
1111 10	Unassigned	1/64
1111 110	Unassigned	1/128
1111 1110 0	Unassigned	1/512
1111 1110 10	Link local use addresses	1/1024
1111 1110 11	Site local use addresses	1/1024
1111 1111	Multicast	1/256

Fig. 5-57. IPv6 addresses

Extension header	Description
Hop-by-hop options	Miscellaneous information for routers
Routing	Full or partial route to follow
Fragmentation	Management of datagram fragments
Authentication	Verification of the sender's identity
Encrypted security payload	Information about the encrypted contents
Destination options	Additional information for the destination

Fig. 5-58. IPv6 extension headers.

Next header	0	194	0
	Jumbo payload	d length	

Fig. 5-59. The hop-by-hop extension header for large datagrams (jumbograms).

Fig. 5-60. The extension header for routing.

Fig. 5-61. A transmission path can hold multiple virtual paths, each of which can hold multiple virtual circuits.

Fig. 5-62. (a) The ATM layer header at the UNI. (b) The ATM layer header at the NNI.

Payload type	Meaning	
000	User data cell, no congestion, cell type 0	
001	User data cell, no congestion, cell type 1	
010	User data cell, congestion experienced, cell type 0	
011	User data cell, congestion experienced, cell type 1	
100	Maintenance information between adjacent switches	
101	Maintenance information between source and destination switches	
110	Resource Management cell (used for ABR congestion control)	
111	Reserved for future function	

Fig. 5-63. Values of the *PTI* field.

Message	Meaning when sent by host	Meaning when sent by network
SETUP	Please establish a circuit	Incoming call
CALL PROCEEDING	I saw the incoming call	Your call request will be attempted
CONNECT	I accept the incoming call	Your call request was accepted
CONNECT ACK	Thanks for accepting	Thanks for making the call
RELEASE	Please terminate the call	The other side has had enough
RELEASE COMPLETE	Ack for RELEASE	Ack for RELEASE

Fig. 5-64. Messages used for connection establishment and release.

Fig. 5-65. (a) Connection setup in an ATM network. (b) Connection release.

Fig. 5-66. Rerouting a virtual path reroutes all of its virtual circuits.

Source	Incoming line	Incoming VPI	Destina- tion	Outgoing line	Outgoing VPI	Path:
NY	1	1	SF	4	1	New
NY	1	2	Denver	4	2	New
LA	3	1	Minneapolis	0	1	New
DC	1	3	LA	3	2	New
NY	1	1	SF	4	1	Old
SF	4	3	DC	1	4	New
DC	1	5	SF	4	4	New
NY	1	2	Denver	4	2	Old
SF	4	5	Minneapolis	0	2	New
NY	1	1	SF	4	1	Old

Fig. 5-67. Some routes through the Omaha switch of Fig. 5-0.

Fig. 5-68. The table entries for the routes of Fig. 5-0.

Class	Description	Example
CBR	Constant bit rate	T1 circuit
RT-VBR	Variable bit rate: real time	Real-time videoconferencing
NRT-VBR	Variable bit rate: non-real time	Multimedia email
ABR	Available bit rate	Browsing the Web
UBR	Unspecified bit rate	Background file transfer

Fig. 5-69. The ATM service categories.

Service characteristic	CBR	RT-VBR	NRT-VBR	ABR	UBR
Bandwidth guarantee	Yes	Yes	Yes	Optional	No
Suitable for real-time traffic	Yes	Yes	No	No	No
Suitable for bursty traffic	No	No	Yes	Yes	Yes
Feedback about congestion	No	No	No	Yes	No

Fig. 5-70. Characteristics of the ATM service categories.

Parameter	Acronym	Meaning
Peak cell rate	PCR	Maximum rate at which cells will be sent
Sustained cell rate	SCR	The long-term average cell rate
Minimum cell rate	MCR	The minimum acceptable cell rate
Cell delay variation tolerance	CDVT	The maximum acceptable cell jitter
Cell loss ratio	CLR	Fraction of cells lost or delivered too late
Cell transfer delay	CTD	How long delivery takes (mean and maximum)
Cell delay variation	CDV	The variance in cell delivery times
Cell error rate	CER	Fraction of cells delivered without error
Severely-errored cell block ratio	SECBR	Fraction of blocks garbled
Cell misinsertion rate	CMR	Fraction of cells delivered to wrong destination

Fig. 5-71. Some of the quality of service parameters.

Fig. 5-72. The probability density function for cell arrival times.

Fig. 5-73. The generic cell rate algorithm.

Fig. 5-74. (a) A sender trying to cheat. (b) The same cell arrival pattern, but now viewed in terms of a leaky bucket.

Fig. 5-75. The path taken by RM cells.

Fig. 5-76. ATM LAN emulation.