
Appendix B Information theory from first
principles

This appendix discusses the information theory behind the capacity expres-
sions used in the book. Section 8.3.4 is the only part of the book that supposes
an understanding of the material in this appendix. More in-depth and broader
expositions of information theory can be found in standard texts such as [26]
and [43].

B.1 Discrete memoryless channels

Although the transmitted and received signals are continuous-valued in most
of the channels we considered in this book, the heart of the communication
problem is discrete in nature: the transmitter sends one out of a finite num-
ber of codewords and the receiver would like to figure out which codeword
is transmitted. Thus, to focus on the essence of the problem, we first con-
sider channels with discrete input and output, so-called discrete memoryless
channels (DMCs).
Both the input x�m� and the output y�m� of a DMC lie in finite sets �

and � respectively. (These sets are called the input and output alphabets
of the channel respectively.) The statistics of the channel are described by
conditional probabilities �p�j�i��i∈��j∈� . These are also called transition prob-
abilities. Given an input sequence x = �x�1�� � � � � x�N��, the probability of
observing an output sequence y= �y�1�� � � � � y�N�� is given by1

p�y�x�=
N∏

m=1

p�y�m��x�m��	 (B.1)

The interpretation is that the channel noise corrupts the input symbols
independently (hence the term memoryless).

1 This formula is only valid when there is no feedback from the receiver to the transmitter,
i.e., the input is not a function of past outputs. This we assume throughout.
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517 B.1 Discrete memoryless channels

Example B.1 Binary symmetric channel
The binary symmetric channel has binary input and binary output �� =
� = �0�1��. The transition probabilities are p�0�1�= p�1�0�= 
�p�0�0�=
p�1�1� = 1− 
. A 0 and a 1 are both flipped with probability 
. See
Figure B.1(a).

Example B.2 Binary erasure channel
The binary erasure channel has binary input and ternary output �� =
�0�1��� = �0�1� e��. The transition probabilities are p�0�0� = p�1�1� =
1− 
�p�e�0� = p�e�1� = 
. Here, symbols cannot be flipped but can be
erased. See Figure B.1(b).

An abstraction of the communication system is shown in Figure B.2. The
sender has one out of several equally likely messages it wants to transmit
to the receiver. To convey the information, it uses a codebook � of block
length N and size �� �, where � = �x1� � � � �x�� �� and xi are the codewords. To
transmit the ith message, the codeword xi is sent across the noisy channel.
Based on the received vector y, the decoder generates an estimate î of the
correct message. The error probability is pe = ��î �= i�. We will assume that
the maximum likelihood (ML) decoder is used, since it minimizes the error
probability for a given code. Since we are transmitting one of �� � messages,
the number of bits conveyed is log �� �. Since the block length of the code
is N , the rate of the code is R = 1

N
log �� � bits per unit time. The data rate

R and the ML error probability pe are the two key performance measures of
a code.

R= 1
N
log �� �	

pe = ��î �= i�	

(B.2)

(B.3)

Figure B.1 Examples of
discrete memoryless channels:
(a) binary symmetric channel;
(b) binary erasure channel. (a)
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îDecoder
Channel
p(y | x)

xi = (xi 
[1], . . . , xi 

[N]) y = ( y[1], . . . , y[N])

Encoder

Message
i   {0 , 1, . . . , |C |                                                                                  – 1}∋

Information is said to be communicated reliably at rate R if for everyFigure B.2 Abstraction of a
communication system à la
Shannon.

� > 0, one can find a code of rate R and block length N such that the error
probability pe < �. The capacity C of the channel is the maximum rate for
which reliable communication is possible.
Note that the key feature of this definition is that one is allowed to code

over arbitrarily large block length N . Since there is noise in the channel, it is
clear that the error probability cannot be made arbitrarily small if the block
length is fixed a priori. (Recall the AWGN example in Section 5.1.) Only
when the code is over long block length is there hope that one can rely on
some kind of law of large numbers to average out the random effect of the
noise. Still, it is not clear a priori whether a non-zero reliable information rate
can be achieved in general.
Shannon showed not only that C> 0 for most channels of interest but also

gave a simple way to compute C as a function of �p�y�x��. To explain this
we have to first define a few statistical measures.

B.2 Entropy, conditional entropy and mutual information

Let x be a discrete random variable taking on values in � and with a
probability mass function px. Define the entropy of x to be2

H�x� �=∑

i∈�
px�i� log�1/px�i��	 (B.4)

This can be interpreted as a measure of the amount of uncertainty associated
with the random variable x. The entropy H�x� is always non-negative and
equal to zero if and only if x is deterministic. If x can take on K values, then
it can be shown that the entropy is maximized when x is uniformly distributed
on these K values, in which case H�x�= logK (see Exercise B.1).

Example B.3 Binary entropy
The entropy of a binary-valued random variable x which takes on the
values with probabilities p and 1−p is

H�p� �=−p logp− �1−p� log�1−p�	 (B.5)

2 In this book, all logarithms are taken to the base 2 unless specified otherwise.
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Figure B.3 The binary entropy function.

The function H�·� is called the binary entropy function, and is plotted in
Figure B.3. It attains its maximum value of 1 at p= 1/2, and is zero when
p = 0 or p = 1. Note that we never mentioned the actual values x takes
on; the amount of uncertainty depends only on the probabilities.

Let us now consider two random variables x and y. The joint entropy of x
and y is defined to be

H�x� y� �= ∑

i∈��j∈�
px�y�i� j� log�1/px�y�i� j��	 (B.6)

The entropy of x conditional on y = j is naturally defined to be

H�x�y = j� �=∑

i∈�
px�y�i�j� log�1/px�y�i�j��	 (B.7)

This can be interpreted as the amount of uncertainty left in x after observing
that y = j. The conditional entropy of x given y is the expectation of this
quantity, averaged over all possible values of y:

H�x�y� �=∑

j∈�
py�j�H�x�y = j�= ∑

i∈��j∈�
px�y�i� j� log�1/px�y�i�j��	 (B.8)
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The quantity H�x�y� can be interpreted as the average amount of uncertainty
left in x after observing y. Note that

H�x� y�=H�x�+H�y�x�=H�y�+H�x�y�	 (B.9)

This has a natural interpretation: the total uncertainty in x and y is the sum
of the uncertainty in x plus the uncertainty in y conditional on x. This is
called the chain rule for entropies. In particular, if x and y are independent,
H�x�y� = H�x� and hence H�x� y� = H�x�+H�y�. One would expect that
conditioning reduces uncertainty, and in fact it can be shown that

H�x�y�≤H�x�� (B.10)

with equality if and only if x and y are independent. (See Exercise B.2.) Hence,

H�x� y�=H�x�+H�y�x�≤H�x�+H�y�� (B.11)

with equality if and only if x and y are independent.
The quantity H�x�−H�x�y� is of special significance to the communication

problem at hand. SinceH�x� is the amount of uncertainty in x before observing
y, this quantity can be interpreted as the reduction in uncertainty of x from
the observation of y, i.e., the amount of information in y about x. Similarly,
H�y�−H�y�x� can be interpreted as the reduction in uncertainty of y from
the observation of x. Note that

H�y�−H�y�x�=H�y�+H�x�−H�x� y�=H�x�−H�x�y�	 (B.12)

So if one defines

I�x
 y� �=H�y�−H�y�x�=H�x�−H�x�y�� (B.13)

then this quantity is symmetric in the random variables x and y. I�x
 y� is
called the mutual information between x and y. A consequence of (B.10) is
that the mutual information I�x
 y� is a non-negative quantity, and equal to
zero if and only if x and y are independent.
We have defined the mutual information between scalar random vari-

ables, but the definition extends naturally to random vectors. For example,
I�x1� x2
 y� should be interpreted as the mutual information between the ran-
dom vector �x1� x2� and y, i.e., I�x1� x2
 y�=H�x1� x2�−H�x1� x2�y�. One can
also define a notion of conditional mutual information:

I�x
 y�z� �=H�x�z�−H�x�y� z�	 (B.14)

Note that since

H�x�z�=∑

k

pz�k�H�x�z= k�� (B.15)
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and

H�x�y� z�=∑

k

pz�k�H�x�y� z= k�� (B.16)

it follows that

I�x
 y�z�=∑

k

pz�k�I�x
 y�z= k�	 (B.17)

Given three random variables x1� x2 and y, observe that

I�x1� x2
 y� = H�x1� x2�−H�x1� x2�y�
= H�x1�+H�x2�x1�− �H�x1�y�+H�x2�x1� y��
= I�x1
 y�+ I�x2
 y�x1�	

This is the chain rule for mutual information:

I�x1� x2
 y�= I�x1
 y�+ I�x2
 y�x1�	 (B.18)

In words: the information that x1 and x2 jointly provide about y is equal to the
sum of the information x1 provides about y plus the additional information x2
provides about y after observing x1. This fact is very useful in Chapters 7 to 10.

B.3 Noisy channel coding theorem

Let us now go back to the communication problem shown in Figure B.2.
We convey one of �� � equally likely messages by mapping it to its N -length
codeword in the code � = �x1� � � � �x�� ��. The input to the channel is then
an N -dimensional random vector x, uniformly distributed on the codewords
of � . The output of the channel is another N -dimensional vector y.

B.3.1 Reliable communication and conditional entropy

To decode the transmitted message correctly with high probability, it is clear
that the conditional entropy H�x�y� has to be close to zero3. Otherwise, there
is too much uncertainty in the input, given the output, to figure out what the
right message is. Now,

H�x�y�=H�x�− I�x
y�� (B.19)

3 This statement can be made precise in the regime of large block lengths using Faro’s
inequality.
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i.e., the uncertainty in x subtracting the reduction in uncertainty in x by
observing y. The entropy H�x� is equal to log �� � = NR, where R is the data
rate. For reliable communication, H�x�y�≈ 0, which implies

R≈ 1
N
I�x
y�	 (B.20)

Intuitively: for reliable communication, the rate of flow of mutual information
across the channel should match the rate at which information is generated.
Now, the mutual information depends on the distribution of the random input
x, and this distribution is in turn a function of the code � . By optimizing over
all codes, we get an upper bound on the reliable rate of communication:

max
�

1
N
I�x
y�	 (B.21)

B.3.2 A simple upper bound

The optimization problem (B.21) is a high-dimensional combinatorial one
and is difficult to solve. Observe that since the input vector x is uniformly
distributed on the codewords of � , the optimization in (B.21) is over only a
subset of possible input distributions. We can derive a further upper bound
by relaxing the feasible set and allowing the optimization to be over all input
distributions:

C̄ �=max
px

1
N
I�x
y�� (B.22)

Now,

I�x
y� = H�y�−H�y�x� (B.23)

≤
N∑

m=1

H�y�m��−H�y�x� (B.24)

=
N∑

m=1

H�y�m��−
N∑

m=1

H�y�m��x�m�� (B.25)

=
N∑

m=1

I�x�m�
 y�m��	 (B.26)

The inequality in (B.24) follows from (B.11) and the equality in (B.25) comes
from the memoryless property of the channel. Equality in (B.24) is attained
if the output symbols are independent over time, and one way to achieve this
is to make the inputs independent over time. Hence,

C̄ = 1
N

N∑

m=1

max
px�m�

I�x�m�
 y�m��=max
px�1�

I�x�1�
 y�1��	 (B.27)
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Thus, the optimizing problem over input distributions on the N -length
block reduces to an optimization problem over input distributions on single
symbols.

B.3.3 Achieving the upper bound

To achieve this upper bound C̄, one has to find a code whose mutual infor-
mation I�x
y�/N per symbol is close to C̄ and such that (B.20) is satisfied.
A priori it is unclear if such a code exists at all. The cornerstone result of
information theory, due to Shannon, is that indeed such codes exist if the
block length N is chosen sufficiently large.

Theorem B.1 (Noisy channel coding theorem [109]) Consider a discrete
memoryless channel with input symbol x and output symbol y. The capacity
of the channel is

C =max
px

I�x
 y�	 (B.28)

Shannon’s proof of the existence of optimal codes is through a random-
ization argument. Given any symbol input distribution px, we can randomly
generate a code � with rate R by choosing each symbol in each codeword
independently according to px. The main result is that with the rate as in
(B.20), the code with large block length N satisfies, with high probability,

1
N
I�x
y�≈ I�x
 y�	 (B.29)

In other words, reliable communication is possible at the rate of I�x
 y�.
In particular, by choosing codewords according to the distribution p∗

x that
maximizes I�x
 y�, the maximum reliable rate is achieved. The smaller the
desired error probability, the larger the block length N has to be for the law
of large numbers to average out the effect of the random noise in the channel
as well as the effect of the random choice of the code. We will not go into
the details of the derivation of the noisy channel coding theorem in this book,
although the sphere-packing argument for the AWGN channel in Section B.5
suggests that this result is plausible. More details can be found in standard
information theory texts such as [26].
The maximization in (B.28) is over all distributions of the input random

variable x. Note that the input distribution together with the channel transition
probabilities specifies a joint distribution on x and y. This determines the
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value of I�x
 y�. The maximization is over all possible input distribution It
can be shown that the mutual information I�x
 y� is a concave function of the
input probabilities and hence the input maximization is a convex optimization
problem, which can be solved very efficiently. Sometimes one can even
appeal to symmetry to obtain the optimal distribution in closed form.

Figure B.4 The capacity of
(a) the binary symmetric
channel and (b) the binary
erasure channel.

Example B.4 Binary symmetric channel
The capacity of the binary symmetric channel with crossover probabil-
ity 
 is

C =max
px

H�y�−H�y�x�

=max
px

H�y�−H�
�

= 1−H�
�bits per channel use (B.30)

whereH�
� is the binary entropy function (B.5). The maximum is achieved
by choosing x to be uniform so that the output y is also uniform. The
capacity is plotted in Figure B.4. It is 1 when 
 = 0 or 1, and 0 when

= 1/2.
Note that since a fraction 
 of the symbols are flipped in the long run,

one may think that the capacity of the channel is 1− 
 bits per channel
use, the fraction of symbols that get through unflipped. However, this is
too naive since the receiver does not know which symbols are flipped
and which are correct. Indeed, when 
 = 1/2, the input and output are
independent and there is no way we can get any information across the
channel. The expression (B.30) gives the correct answer.
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Example B.5 Binary erasure channel
The optimal input distribution for the binary symmetric channel is uniform
because of the symmetry in the channel. Similar symmetry exists in the
binary erasure channel and the optimal input distribution is uniform too.
The capacity of the channel with erasure probability 
 can be calculated
to be

C = 1− 
bits per channel use	 (B.31)

In the binary symmetric channel, the receiver does not know which
symbols are flipped. In the erasure channel, on the other hand, the receiver
knows exactly which symbols are erased. If the transmitter also knows
that information, then it can send bits only when the channel is not erased
and a long-term throughput of 1−
 bits per channel use is achieved. What
the capacity result says is that no such feedback information is necessary;
(forward) coding is sufficient to get this rate reliably.

B.3.4 Operational interpretation

There is a common misconception that needs to be pointed out. In solving
the input distribution optimization problem (B.22) for the capacity C, it was
remarked that, at the optimal solution, the outputs y�m� should be independent,
and one way to achieve this is for the inputs x�m� to be independent. Does that
imply no coding is needed to achieve capacity? For example, in the binary
symmetric channel, the optimal input yields i.i.d. equally likely symbols; does
it mean then that we can send equally likely information bits raw across the
channel and still achieve capacity?
Of course not: to get very small error probability one needs to code over

many symbols. The fallacy of the above argument is that reliable commu-
nication cannot be achieved at exactly the rate C and when the outputs are
exactly independent. Indeed, when the outputs and inputs are i.i.d.,

H�x�y�=
N∑

m=1

H�x�m��y�m��= NH�x�m��y�m��� (B.32)

and there is a lot of uncertainty in the input given the output: the communica-
tion is hardly reliable. But once one shoots for a rate strictly less than C, no
matter how close, the coding theorem guarantees that reliable communication
is possible. The mutual information I�x
y�/N per symbol is close to C, the
outputs y�m� are almost independent, but now the conditional entropy H�x�y�
is reduced abruptly to (close to) zero since reliable decoding is possible. But
to achieve this performance, coding is crucial; indeed the entropy per input
symbol is close to I�x
y�/N , less than H�x�m�� under uncoded transmission.
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For the binary symmetric channel, the entropy per coded symbol is 1−H�
�,
rather than 1 for uncoded symbols.
The bottom line is that while the value of the input optimization problem

(B.22) has operational meaning as the maximum rate of reliable communica-
tion, it is incorrect to interpret the i.i.d. input distribution which attains that
value as the statistics of the input symbols which achieve reliable communi-
cation. Coding is always needed to achieve capacity. What is true, however,
is that if we randomly pick the codewords according to the i.i.d. input distri-
bution, the resulting code is very likely to be good. But this is totally different
from sending uncoded symbols.

B.4 Formal derivation of AWGN capacity

We can now apply the methodology developed in the previous sections to
formally derive the capacity of the AWGN channel.

B.4.1 Analog memoryless channels

So far we have focused on channels with discrete-valued input and output
symbols. To derive the capacity of the AWGN channel, we need to extend
the framework to analog channels with continuous-valued input and output.
There is no conceptual difficulty in this extension. In particular, Theorem B.1
can be generalized to such analog channels.4 The definitions of entropy and
conditional entropy, however, have to be modified appropriately.
For a continuous random variable x with pdf fx, define the differential

entropy of x as

h�x� �=
∫ �

−�
fx�u� log�1/fx�u��du	 (B.33)

Similarly, the conditional differential entropy of x given y is defined as

h�x�y� �=
∫ �

−�
fx�y�u� v� log�1/fx�y�u�v��dudv	 (B.34)

The mutual information is again defined as

I�x
 y� �= h�x�−h�x�y�	 (B.35)

4 Although the underlying channel is analog, the communication process is still digital. This
means that discrete symbols will still be used in the encoding. By formulating the
communication problem directly in terms of the underlying analog channel, this means
we are not constraining ourselves to using a particular symbol constellation (for example,
2-PAM or QPSK) a priori.
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Observe that the chain rules for entropy and for mutual information extend
readily to the continuous-valued case. The capacity of the continuous-valued
channel can be shown to be

C =max
fx

I�x
 y�	 (B.36)

This result can be proved by discretizing the continuous-valued input and
output of the channel, approximating it by discrete memoryless channels with
increasing alphabet sizes, and taking limits appropriately.
For many channels, it is common to have a cost constraint on the transmitted

codewords. Given a cost function c � � →	 defined on the input symbols,
a cost constraint on the codewords can be defined: we require that every
codeword xn in the codebook must satisfy

1
N

N∑

m=1

c�xn�m��≤ A	 (B.37)

One can then ask: what is the maximum rate of reliable communication
subject to this constraint on the codewords? The answer turns out to be

C = max
fx�E�c�x��≤A

I�x
 y�	 (B.38)

B.4.2 Derivation of AWGN capacity

We can now apply this result to derive the capacity of the power-constrained
(real) AWGN channel:

y = x+w� (B.39)

The cost function is c�x�= x2. The differential entropy of a� ����2� random
variable w can be calculated to be

h�w�= 1
2
log�2�e�2�	 (B.40)

Not surprisingly, h�w� does not depend on the mean � of W : differential
entropies are invariant to translations of the pdf. Thus, conditional on the
input x of the Gaussian channel, the differential entropy h�y�x� of the output y
is just �1/2� log�2�e�2�. The mutual information for the Gaussian channel
is, therefore,

I�x
 y�= h�y�−h�y�x�= h�y�− 1
2
log�2�e�2�	 (B.41)

The computation of the capacity

C = max
fx�E�x

2�≤P
I�x
 y� (B.42)
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is now reduced to finding the input distribution on x to maximize h�y� sub-
ject to a second moment constraint on x. To solve this problem, we use a
key fact about Gaussian random variables: they are differential entropy max-
imizers. More precisely, given a constraint E�u2� ≤ A on a random variable
u, the distribution u is � �0�A� maximizes the differential entropy h�u�.
(See Exercise B.6 for a proof of this fact.) Applying this to our problem,
we see that the second moment constraint of P on x translates into a sec-
ond moment constraint of P+�2 on y. Thus, h�y� is maximized when y is
� �0�P+�2�, which is achieved by choosing x to be � �0�P�. Thus, the
capacity of the Gaussian channel is

C = 1
2
log�2�e�P+�2��− 1

2
log�2�e�2�= 1

2
log

(

1+ P

�2

)

� (B.43)

agreeing with the result obtained via the heuristic sphere-packing deriva-
tion in Section 5.1. A capacity-achieving code can be obtained by choosing
each component of each codeword i.i.d. � �0�P�. Each codeword is therefore
isotropically distributed, and, by the law of large numbers, with high probabil-
ity lies near the surface of the sphere of radius

√
NP. Since in high dimensions

most of the volume of a sphere is near its surface, this is effectively the same
as picking each codeword uniformly from the sphere.
Now consider a complex baseband AWGN channel:

y = x+w (B.44)

where w is �� �0�N0�. There is an average power constraint of P per (com-
plex) symbol. One way to derive the capacity of this channel is to think of
each use of the complex channel as two uses of a real AWGN channel, with
SNR= �P/2�/�N0/2�= P/N0. Hence, the capacity of the channel is

1
2
log

(

1+ P

N0

)

bits per real dimension� (B.45)

or

log
(

1+ P

N0

)

bits per complex dimension	 (B.46)

Alternatively we may just as well work directly with the complex channel
and the associated complex random variables. This will be useful when we
deal with other more complicated wireless channel models later on. To this
end, one can think of the differential entropy of a complex random variable x
as that of a real random vector �	�x����x��. Hence, if w is �� �0�N0�,
h�w�= h�	�w��+h���w��= log��eN0�. The mutual information I�x
 y� of
the complex AWGN channel y = x+w is then

I�x
 y�= h�y�− log��eN0�	 (B.47)
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With a power constraint E��x�2� ≤ P on the complex input x, y is con-
strained to satisfy E��y�2� ≤ P+N0. Here, we use an important fact: among
all complex random variables, the circular symmetric Gaussian random vari-
able maximizes the differential entropy for a given second moment con-
straint. (See Exercise B.7.) Hence, the capacity of the complex Gaussian
channel is

C = log��e�P+N0��− log��eN0�= log
(

1+ P

N0

)

� (B.48)

which is the same as Eq. (5.11).

B.5 Sphere-packing interpretation

In this section we consider a more precise version of the heuristic sphere-
packing argument in Section 5.1 for the capacity of the real AWGN channel.
Furthermore, we outline how the capacity as predicted by the sphere-packing
argument can be achieved. The material here is particularly useful when we
discuss precoding in Chapter 10.

B.5.1 Upper bound

Consider transmissions over a block of N symbols, where N is large. Suppose
we use a code � consisting of �� � equally likely codewords �x1� � � � �x�� ��.
By the law of large numbers, the N -dimensional received vector y = x+w
will with high probability lie approximately5 within a y-sphere of radius√
N�P+�2�, so without loss of generality we need only to focus on what

happens inside this y-sphere. Let �i be the part of the maximum-likelihood
decision region for xi within the y-sphere. The sum of the volumes of the �i

is equal to Vy, the volume of the y-sphere. Given this total volume, it can be
shown, using the spherical symmetry of the Gaussian noise distribution, that
the error probability is lower bounded by the (hypothetical) case when the
�i are all perfect spheres of equal volume Vy/�� �. But by the law of large
numbers, the received vector y lies near the surface of a noise sphere of radius√
N�2 around the transmitted codeword. Thus, for reliable communication,

Vy/�� � should be no smaller than the volume Vw of this noise sphere, otherwise
even in the ideal case when the decision regions are all spheres of equal
volume, the error probability will still be very large. Hence, the number of

5 To make this and other statements in this section completely rigorous, appropriate � and �

have to be added.
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codewords is at most equal to the ratio of the volume of the y-sphere to that
of a noise sphere:

Vy

Vw

=
[√

N�P+�2�
]N

[√
N�2

]N 	

(See Exercise B.10(3) for an explicit expression of the volume of an
N -dimensional sphere of a given radius.) Hence, the number of bits per
symbol time that can be reliably communicated is at most

1
N

log






[√
N�P+�2�

]N

[√
N�2

]N




= 1

2
log

(

1+ P

�2

)

	 (B.49)

The geometric picture is in Figure B.5.

B.5.2 Achievability

The above argument only gives an upper bound on the rate of reliable com-
munication. The question is: can we design codes that can perform this
well?
Let us use a codebook � = �x1� � � � �x�� �� such that the N -dimensional

codewords lie in the sphere of radius
√
NP (the “x-sphere”) and thus satisfy

the power constraint. The optimal detector is the maximum likelihood nearest
neighbor rule. For reasons that will be apparent shortly, we instead consider
the following suboptimal detector: given the received vector y, decode to the
codeword xi nearest to �y, where � �= P/�P+�2�.
It is not easy to design a specific code that yields good performance, but

suppose we just randomly and independently choose each codeword to be

Figure B.5 The number of
noise spheres that can be
packed into the y-sphere
yields the maximum number
of codewords that can be
reliably distinguished.

√N (P + σ 
2)

√Nσ 
2

√NP
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uniformly distributed in the sphere6. In high dimensions, most of the volume
of the sphere lies near its surface, so in fact the codewords will with high
probability lie near the surface of the x-sphere.
What is the performance of this random code? Suppose the transmitted

codeword is x1. By the law of large numbers again,

��y−x1�2 = ��w+ ��−1�x1�2�
≈ �2N�2+ ��−1�2NP�

= N
P�2

P+�2
�

i.e., the transmitted codeword lies inside an uncertainty sphere of radius√
NP�2/�P+�2� around the vector �y. Thus, as long as all the other code-

words lie outside this uncertainty sphere, then the receiver will be able to
decode correctly (Figure B.6). The probability that the random codeword
xi (i �= 1) lies inside the uncertainty sphere is equal to the ratio of the volume
of the uncertainty sphere to that of the x-sphere:

p=
(√

NP�2/�P+�2�
)N

�
√
NP�N

=
(

�2

P+�2

)N
2

	 (B.50)

By the union bound, the probability that any of the codewords (x2� � � � �x�� �)
lie inside the uncertainty sphere is bounded by ��� �− 1�p. Thus, as long as
the number of codewords is much smaller than 1/p, then the probability of
error is small (in particular, we can take the number of codewords �� � to be

Figure B.6 The ratio of the
volume of the uncertainty
sphere to that of the x-sphere
yields the probability that a
given random codeword lies
inside the uncertainty sphere.
The inverse of this probability
yields a lower bound on the
number of codewords that can
be reliably distinguished.

√NP

x1 α y

√NPσ 2

P + σ 2

6 Randomly and independently choosing each codeword to have i.i.d. � �0�P� components
would work too but the argument is more complex.
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1/pN ). In terms of the data rate R bits per symbol time, this means that as
long as

R= log �� �
N

= log1/p
N

− logN
N

<
1
2
log

(

1+ P

�2

)

�

then reliable communication is possible.
Both the upper bound and the achievability arguments are based on calcu-

lating the ratio of volumes of spheres. The ratio is the same in both cases, but
the spheres involved are different. The sphere-packing picture in Figure B.5
corresponds to the following decomposition of the capacity expression:

1
2
log

(

1+ P

�2

)

= I�x
 y�= h�y�−h�y�x�� (B.51)

with the volume of the y-sphere proportional to 2Nh�y� and the volume of the
noise sphere proportional to 2Nh�y�x�. The picture in Figure B.6, on the other
hand, corresponds to the decomposition:

1
2
log

(

1+ P

�2

)

= I�x
 y�= h�x�−h�x�y�� (B.52)

with the volume of the x-sphere proportional to 2Nh�x�. Conditional on y, x is
N��y��2

mmse�, where �=P/�P+�2� is the coefficient of the MMSE estimator
of x given y, and

�2
mmse =

P�2

P+�2
�

is the MMSE estimation error. The radius of the uncertainty sphere considered
above is

√
N�2

mmse and its volume is proportional to 2Nh�x�y�. In fact the
proposed receiver, which finds the nearest codeword to �y, is motivated
precisely by this decomposition. In this picture, then, the AWGN capacity
formula is being interpreted in terms of the number of MMSE error spheres
that can be packed inside the x-sphere.

B.6 Time-invariant parallel channel

Consider the parallel channel (cf. (5.33):

ỹn�i�= h̃nd̃n�i�+ w̃n�i� n= 0�1� � � � �Nc−1� (B.53)

subject to an average power per sub-carrier constraint of P (cf. (5.37)):

E��d̃�i��2�≤ NcP	 (B.54)
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The capacity in bits per symbol is

CNc
= max

���d̃�2�≤NcP
I�d̃
 ỹ�	 (B.55)

Now

I�d̃
 ỹ� = h�ỹ�−h�ỹ�d̃� (B.56)

≤
Nc−1∑

n=0

(
h�ỹn�−h�ỹn�d̃n�

)
(B.57)

≤
Nc−1∑

n=0

log

(

1+ Pn�h̃n�2
N0

)

	 (B.58)

The inequality in (B.57) is from (B.11) and Pn denotes the variance of
d̃n in (B.58). Equality in (B.57) is achieved when d̃n� n = 0� � � � �Nc − 1,
are independent. Equality is achieved in (B.58) when d̃n is �� �0�Pn��n =
0� � � � �Nc−1. Thus, computing the capacity in (B.55) is reduced to a power
allocation problem (by identifying the variance of d̃n with the power allocated
to the nth sub-carrier):

CNc
= max

P0� � � � �PNc−1

Nc−1∑

n=0

log

(

1+ Pn�h̃n�2
N0

)

� (B.59)

subject to

1
Nc

Nc−1∑

n=0

Pn = P� Pn ≥ 0� n= 0� � � � �Nc−1	 (B.60)

The solution to this optimization problem is waterfilling and is described in
Section 5.3.3.

B.7 Capacity of the fast fading channel

B.7.1 Scalar fast fading channnel

Ideal interleaving
The fast fading channel with ideal interleaving is modeled as follows:

y�m�= h�m�x�m�+w�m�� (B.61)

where the channel coefficients h�m� are i.i.d. in time and independent of the
i.i.d. �� �0�N0� additive noise w�m�. We are interested in the situation when
the receiver tracks the fading channel, but the transmitter only has access to
the statistical characterization; the receiver CSI scenario. The capacity of the
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power-constrained fast fading channel with receiver CSI can be written as,
by viewing the receiver CSI as part of the output of the channel,

C = max
px���x2�≤P

I�x
 y�h�	 (B.62)

Since the fading channel h is independent of the input, I�x
h�= 0. Thus, by
the chain rule of mutual information (see (B.18)),

I�x
 y�h�= I�x
h�+ I�x
 y�h�= I�x
 y�h�	 (B.63)

Conditioned on the fading coefficient h, the channel is simply an AWGN
one, with SNR equal to P�h�2/N0, where we have denoted the transmit power
constraint by P. The optimal input distribution for a power constrained AWGN
channel is �� , regardless of the operating SNR. Thus, the maximizing input
distribution in (B.62) is �� �0�P�. With this input distribution,

I�x
 y�h= h�= log
(

1+ P�h�2
N0

)

�

and thus the capacity of the fast fading channel with receiver CSI is

C = �h

[

log
(

1+ P�h�2
N0

)]

� (B.64)

where the average is over the stationary distribution of the fading channel.

Stationary ergodic fading
The above derivation hinges on the i.i.d. assumption on the fading process
�h�m��. Yet in fact (B.64) holds as long as �h�m�� is stationary and ergodic.
The alternative derivation below is more insightful and valid for this more
general setting.
We first fix a realization of the fading process �h�m��. Recall from (B.20)

that the rate of reliable communication is given by the average rate of flow
of mutual information:

1
N
I�x
y�= 1

N

N∑

m=1

log�1+�h�m��2SNR�	 (B.65)

For large N , due to the ergodicity of the fading process,

1
N

N∑

m=1

log�1+�h�m��2SNR�→ ��log�1+�h�2SNR��� (B.66)

for almost all realizations of the fading process �h�m��. This yields the same
expression of capacity as in (B.64).
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B.7.2 Fast fading MIMO channel

We have only considered the scalar fast fading channel so far; the extension
of the ideas to the MIMO case is very natural. The fast fading MIMO channel
with ideal interleaving is (cf. (8.7))

y�m�=H�m�x�m�+w�m�� m= 1�2� � � � � (B.67)

where the channel H is i.i.d. in time and independent of the i.i.d. additive
noise, which is �� �0�N0Inr�. There is an average total power constraint of P
on the transmit signal. The capacity of the fast fading channel with receiver
CSI is, as in (B.62),

C = max
px ����x�2�≤P

I�x
y�H�	 (B.68)

The observation in (B.63) holds here as well, so the capacity calculation is
based on the conditional mutual information I�x
y�H�. If we fix the MIMO
channel at a specific realization, we have

I�x
y�H= H� = h�y�−h�y�x�
= h�y�−h�w� (B.69)

= h�y�−nr log��eN0�	 (B.70)

To proceed, we use the following fact about Gaussian random vectors: they
are entropy maximizers. Specifically, among all n-dimensional complex ran-
dom vectors with a given covariance matrix K, the one that maximizes the
differential entropy is complex circular-symmetric jointly Gaussian �� �0�K�

(Exercise B.8). This is the vector extension of the result that Gaussian ran-
dom variables are entropy maximizers for a fixed variance constraint. The
corresponding maximum value is given by

log�det��eK��	 (B.71)

If the covariance of x is Kx and the channel is H= H, then the covariance
of y is

N0Inr +HKxH
∗	 (B.72)

Calculating the corresponding maximal entropy of y (cf. (B.71)) and substi-
tuting in (B.70), we see that

I�x
y�H= H� ≤ log���e�nr det�N0Inr +HKxH
∗��−nr log��eN0�

= logdet
(

Inr +
1
N0

HKxH
∗
)

� (B.73)
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with equality if x is �� �0�Kx�. This means that even if the transmitter does
not know the channel, there is no loss of optimality in choosing the input to
be �� .
Finally, the capacity of the fast fading MIMO channel is found by averaging

(B.73) with respect to the stationary distribution of H and choosing the
appropriate covariance matrix subject to the power constraint:

C = max
Kx�Tr�Kx�≤P

�H

[

logdet
(

Inr +
1
N0

HKxH
∗
)]

	 (B.74)

Just as in the scalar case, this result can be generalized to any stationary
and ergodic fading process �H�m��.

B.8 Outage formulation

Consider the slow fading MIMO channel (cf. (8.79))

y�m�=Hx�m�+w�m�	 (B.75)

Here the MIMO channel, represented by H (an nr ×nt matrix with complex
entries), is random but not varying with time. The additive noise is i.i.d.
�� �0�N0� and independent of H.
If there is a positive probability, however small, that the entries of H are

small, then the capacity of the channel is zero. In particular, the capacity of
the i.i.d. Rayleigh slow fading MIMO channel is zero. So we focus on char-
acterizing the 
-outage capacity: the largest rate of reliable communication
such that the error probability is no more than 
. We are aided in this study
by viewing the slow fading channel in (B.75) as a compound channel.
The basic compound channel consists of a collection of DMCs p��y�x�,

� ∈ � with the same input alphabet � and the same output alphabet � and
parameterized by �. Operationally, the communication between the transmit-
ter and the receiver is carried out over one specific channel based on the
(arbitrary) choice of the parameter � from the set �. The transmitter does not
know the value of � but the receiver does. The capacity is the largest rate at
which a single coding strategy can achieve reliable communication regard-
less of which � is chosen. The corresponding capacity achieving strategy is
said to be universal over the class of channels parameterized by � ∈ �. An
important result in information theory is the characterization of the capacity
of the compound channel:

C =max
px

inf
�∈�

I��x
 y�	 (B.76)

Here, the mutual information I��x
 y� signifies that the conditional dis-
tribution of the output symbol y given the input symbol x is given by the
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channel p��y�x�. The characterization of the capacity in (B.76) offers a natural
interpretation: there exists a coding strategy, parameterized by the input distri-
bution px, that achieves reliable communication at a rate that is the minimum
mutual information among all the allowed channels. We have considered only
discrete input and output alphabets, but the generalization to continuous input
and output alphabets and, further, to cost constraints on the input follows
much the same line as our discussion in Section B.4.1. The tutorial article
[69] provides a more comprehensive introduction to compound channels.
We can view the slow fading channel in (B.75) as a compound channel

parameterized by H. In this case, we can simplify the parameterization of
coding strategies by the input distribution px: for any fixed H and channel
input distribution px with covariance matrix Kx, the corresponding mutual
information

I�x
y�≤ logdet
(

Inr +
1
N0

HKxH
∗
)

	 (B.77)

Equality holds when px is �� �0�Kx� (see Exercise B.8). Thus we can repa-
rameterize a coding strategy by its corresponding covariance matrix (the input
distribution is chosen to be �� with zero mean and the corresponding covari-
ance). For every fixed covariance matrix Kx that satisfies the power constraint
on the input, we can reword the compound channel result in (B.76) as follows.
Over the slow fading MIMO channel in (B.75), there exists a universal coding
strategy at a rate R bits/s/Hz that achieves reliable communication over all
channels H which satisfy the property

logdet
(

Inr +
1
N0

HKxH
∗
)

> R	 (B.78)

Furthermore, no reliable communication using the coding strategy parameter-
ized by Kx is possible over channels that are in outage: that is, they do not
satisfy the condition in (B.78). We can now choose the covariance matrix,
subject to the input power constraints, such that we minimize the probability
of outage. With a total power constraint of P on the transmit signal, the outage
probability when communicating at rate R bits/s/Hz is

pmimo
out �= min

Kx�Tr�Kx�≤P
�

{

logdet
(

Inr +
1
N0

HKxH
∗
)

< R

}

	 (B.79)

The 
-outage capacity is now the largest rate R such that pmimo
out ≤ 
.

By restricting the number of receive antennas nr to be 1, this discussion
also characterizes the outage probability of the MISO fading channel. Further,
restricting the MIMO channel H to be diagonal we have also characterized
the outage probability of the parallel fading channel.
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B.9 Multiple access channel

B.9.1 Capacity region

The uplink channel (with potentially multiple antenna elements) is a special
case of the multiple access channel. Information theory gives a formula
for computing the capacity region of the multiple access channel in terms
of mutual information, from which the corresponding region for the uplink
channel can be derived as a special case.
The capacity of a memoryless point-to-point channel with input x and

output y is given by

C =max
px

I�x
 y��

where the maximization is over the input distributions subject to the average
cost constraint. There is an analogous theorem for multiple access channels.
Consider a two-user channel, with inputs xk from user k, k= 1�2 and output y.
For given input distributions px1

and px2
and independent across the two

users, define the pentagon ��px1
� px2

� as the set of all rate pairs satisfying:

R1 < I�x1
 y�x2�� (B.80)

R2 < I�x2
 y�x1�� (B.81)

R1+R2 < I�x1� x2
 y�	 (B.82)

The capacity region of the multiple access channel is the convex hull of the
union of these pentagons over all possible independent input distributions
subject to the appropriate individual average cost constraints, i.e.,

� = convex hull of�∪px1 �px2
��px1

� px2
��	 (B.83)

The convex hull operation means that we not only include points in
∪��px1

� px2
� in � , but also all their convex combinations. This is natural since

the convex combinations can be achieved by time-sharing.
The capacity region of the uplink channel with single antenna elements

can be arrived at by specializing this result to the scalar Gaussian multiple
access channel. With average power constraints on the two users, we observe
that Gaussian inputs for user 1 and 2 simultaneously maximize I�x1
 y�x2�,
I�x2
 y�x1� and I�x1
 x2
 y�. Hence, the pentagon from this input distribution
is a superset of all other pentagons, and the capacity region itself is this
pentagon. The same observation holds for the time-invariant uplink channel
with single transmit antennas at each user and multiple receive antennas at
the base-station. The expressions for the capacity regions of the uplink with
a single receive antenna are provided in (6.4), (6.5) and (6.6). The capacity
region of the uplink with multiple receive antennas is expressed in (10.6).
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Figure B.7 The achievable rate
regions (pentagons)
corresponding to two different
input distributions may not
fully overlap with respect to
one another.

R2

R1

B2

B1

A2

A1

In the uplink with single transmit antennas, there was a unique set of input
distributions that simultaneously maximized the different constraints ((B.80),
(B.81) and (B.82)). In general, no single pentagon may dominate over the
other pentagons, and in that case the overall capacity region may not be a
pentagon (see Figure B.7). An example of this situation is provided by the
uplink with multiple transmit antennas at the users. In this situation, zero mean
circularly symmetric complex Gaussian random vectors still simultaneously
maximize all the constraints, but with different covariance matrices. Thus
we can restrict the user input distributions to be zero mean �� , but leave
the covariance matrices of the users as parameters to be chosen. Consider
the two-user uplink with multiple transmit and receive antennas. Fixing the
kth user input distribution to be �� �0�Kk� for k = 1�2, the corresponding
pentagon is expressed in (10.23) and (10.24). In general, there is no single
choice of covariance matrices that simultaneously maximize the constraints:
the capacity region is the convex hull of the union of the pentagons created
by all the possible covariance matrices (subject to the power constraints on
the users).

B.9.2 Corner points of the capacity region

Consider the pentagon ��px1
� px2

� parameterized by fixed independent input
distributions on the two users and illustrated in Figure B.8. The two corner
points A and B have an important significance: if we have coding schemes
that achieve reliable communication to the users at the rates advertised by
these two points, then the rates at every other point in the pentagon can be
achieved by appropriate time-sharing between the two strategies that achieved
the points A and B. Below, we try to get some insight into the nature of the
two corner points and properties of the receiver design that achieves them.
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Figure B.8 The set of rates at
which two users can jointly
reliably communicate is a
pentagon, parameterized by
the independent users’ input
distributions.

R1

R2

B

A

I (x2; y|x1)

I (x1; y)

Consider the corner point B. At this point, user 1 gets the rate I�x1
 y�.
Using the chain rule for mutual information we can write

I�x1� x2
 y�= I�x1
 y�+ I�x2
 y�x1�	

Since the sum rate constraint is tight at the corner point B, user 2 achieves
its highest rate I�x2
 y�x1�. This rate pair can be achieved by a successive
interference cancellation (SIC) receiver: decode user 1 first, treating the signal
from user 2 as part of the noise. Next, decode user 2 conditioned on the already
decoded information from user 1. In the uplink with a single antenna, the
second stage of the successive cancellation receiver is very explicit: given the
decoded information from user 1, the receiver simply subtracts the decoded
transmit signal of user 1 from the received signal. With multiple receive
antennas, the successive cancellation is done in conjunction with the MMSE
receiver. The MMSE receiver is information lossless (this aspect is explored
in Section 8.3.4) and we can conclude the following intuitive statement: the
MMSE–SIC receiver is optimal because it “implements” the chain rule for
mutual information.

B.9.3 Fast fading uplink

Consider the canonical two-user fast fading MIMO uplink channel:

y�m�=H1�m�x1�m�+H2�m�x2�m�+w�m�� (B.84)

where the MIMO channels H1 and H2 are independent and i.i.d. over time. As
argued in Section B.7.1, interleaving allows us to convert stationary channels
with memory to this canonical form. We are interested in the receiver CSI
situation: the receiver tracks both the users’ channels perfectly. For fixed
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independent input distributions px1
and px2

, the achievable rate region consists
of tuples �R1�R2� constrained by

R1 < I�x1
y�H1�H2�x2�� (B.85)

R2 < I�x2
y�H1�H2�x1�� (B.86)

R1+R2 < I�x1�x2
y�H1�H2�	 (B.87)

Here we have modeled receiver CSI as the MIMO channels being part of the
output of the multiple access channel. Since the channels are independent of
the user inputs, we can use the chain rule of mutual information, as in (B.63),
to rewrite the constraints on the rate tuples as

R1 < I�x1
y�H1�H2�x2�� (B.88)

R2 < I�x2
y�H1�H2�x1�� (B.89)

R1+R2 < I�x1�x2
y�H1�H2�	 (B.90)

Fixing the realization of the MIMO channels of the users, we see again (as in
the time-invariant MIMO uplink) that the input distributions can be restricted
to be zero mean �� but leave their covariance matrices as parameters to
be chosen later. The corresponding rate region is a pentagon expressed by
(10.23) and (10.24). The conditional mutual information is now the average
over the stationary distributions of the MIMO channels: an expression for this
pentagon is provided in (10.28) and (10.29).

B.10 Exercises

Exercise B.1 Suppose x is a discrete random variable taking on K values, each with
probability p1� � � � � pK . Show that

max
p1� � � � �pK

H�x�= logK�

and further that this is achieved only when pi = 1/K� i= 1� � � � �K, i.e., x is uniformly
distributed.

Exercise B.2 In this exercise, we will study when conditioning does not reduce
entropy.
1. A concave function f is defined in the text by the condition f ′′�x�≤ 0 for x in the

domain. Give an alternative geometric definition that does not use calculus.
2. Jensen’s inequality for a random variable x states that for any concave function f

��f�x��≤ f���x��	 (B.91)
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Prove this statement. Hint: You might find it useful to draw a picture and visualize
the proof geometrically. The geometric definition of a concave function might
come in handy here.

3. Show that H�x�y�≤H�x� with equality if and only if x and y are independent. Give
an example in which H�x�y = k� > H�x�. Why is there no contradiction between
these two statements?

Exercise B.3 Under what condition on x1� x2� y does it hold that

I�x1� x2
 y�= I�x1
 y�+ I�x2
 y�? (B.92)

Exercise B.4 Consider a continuous real random variable x with density fx�·� non-zero
on the entire real line. Suppose the second moment of x is fixed to be P. Show that
among all random variables with the constraints as those on x, the Gaussian random
variable has the maximum differential entropy. Hint: The differential entropy is a
concave function of the density function and fixing the second moment corresponds
to a linear constraint on the density function. So, you can use the classical Lagrangian
techniques to solve this problem.

Exercise B.5 Suppose x is now a non-negative random variable with density non-zero
for all non-negative real numbers. Further suppose that the mean of x is fixed. Show
that among all random variables of this form, the exponential random variable has the
maximum differential entropy.

Exercise B.6 In this exercise, we generalize the results in Exercises B.4 and B.5.
Consider a continuous real random variable x with density fx�·� on a support set S
(i.e., fx�u�= 0� u �∈ S). In this problem we will study the structure of the random
variable x with maximal differential entropy that satisfies the following moment
conditions:

∫

S
ri�u�fx�u�du= Ai� i= 1� � � � �m	 (B.93)

Show that x with density

fx�u�= exp

(

�0−1+
m∑

i=1

�iri�u�

)

� u ∈ S� (B.94)

has the maximal differential entropy subject to the moment conditions (B.93). Here
�0��1� � � � � �m are chosen such that the moment conditions (B.93) are met and that
fx�·� is a density function (i.e., it integrates to unity).

Exercise B.7 In this problem, we will consider the differential entropy of a vector of
continuous random variables with moment conditions.
1. Consider the class of continuous real random vectors x with the covariance condi-

tion: ��xxt�=K. Show that the jointly Gaussian random vector with covariance K
has the maximal differential entropy among this set of covariance constrained
random variables.

2. Now consider a complex random variable x. Show that among the class of contin-
uous complex random variables x with the second moment condition ���x�2�≤ P,
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the circularly symmetric Gaussian complex random variable has the maximal dif-
ferential entropy. Hint: View x as a length 2 vector of real random variables and
use the previous part of this question.

Exercise B.8 Consider a zero mean complex random vector x with fixed covariance
��xx∗�=K. Show the following upper bound on the differential entropy:

h�x�≤ logdet��eK�� (B.95)

with equality when x is �� �0�K�. Hint: This is a generalization of Exercise B.7(2).

Exercise B.9 Show that the structure of the input distribution in (5.28) optimizes the
mutual information in the MISO channel. Hint: Write the second moment of y as a
function of the covariance of x and see which covariance of x maximizes the second
moment of y. Now use Exercise B.8 to reach the desired conclusion.

Exercise B.10 Consider the real random vector x with i.i.d. � �0�P� components. In
this exercise, we consider properties of the scaled vector x̃ �= �1/

√
N�x. (The material

here is drawn from the discussion in Chapter 5.5 in [148].)
1. Show that ����x�2��/N = P, so the scaling ensured that the mean length of �x̃�2

is P, independent of N .
2. Calculate the variance of �x̃�2 and show that �x̃�2 converges to P in probability.

Thus, the scaled vector is concentrated around its mean.
3. Consider the event that x̃ lies in the shell between two concentric spheres of radius

�−� and �. (See Figure B.9.) Calculate the volume of this shell to be

BN

(
�N − ��−��N

)
� whereBN =

{
�N/2/� N2 �! N even

�2N��N−1�/2���N −1�/2�!/N ! N odd	
(B.96)

4. Show that we can approximate the volume of the shell by

NBN�
N−1�� for�/�� 1	 (B.97)

Figure B.9 The shell between
two concentric spheres of
radius �−� and �.
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Figure B.10 Behavior of
���−�≤ �x̃�< �� as a
function of �.

(ρ e−ρ 
2 / 2P)

N

ρ e−ρ 
2 / 2P

√P ρ

5. Let us approximate the density of x̃ inside this shell to be

fx̃�a�≈
(

N

2�P

)N/2

exp
(

−N�2

2P

)

� r−� < �a� ≤ �	 (B.98)

Combining (B.98) and (B.97), show that for �/�= a constant � 1,

���−�≤ �x̃�< ��≈
[

� exp
(

− �2

2P

)]N
	 (B.99)

6. Show that the right hand side of (B.99) has a single maximum at �2 = P (see
Figure B.10).

7. Conclude that as N becomes large, the consequence is that only values of �x̃�2 in
the vicinity of P have significant probability. This phenomenon is called sphere
hardening.

Exercise B.11 Calculate the mutual information achieved by the isotropic input dis-
tribution x is �� �0�P/L · IL� in the MISO channel (cf. (5.27)) with given channel
gains h1� � � � � hL.

Exercise B.12 In this exercise, we will study the capacity of the L-tap frequency-
selective channel directly (without recourse to the cyclic prefix idea). Consider a
length Nc vector input x on to the channel in (5.32) and denote the vector output (of
length Nc+L−1) by y. The input and output are linearly related as

y=Gx+w� (B.100)

where G is a matrix whose entries depend on the channel coefficients h0� � � � � hL−1

as follows: G�i� j�= hi−j for i ≥ j and zero everywhere else. The channel in (B.100)
is a vector version of the basic AWGN channel and we consider the rate of reliable
communication I�x
y�/Nc.
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1. Show that the optimal input distribution is x is �� �0�Kx�, for some covariance
matrix Kx meeting the power constraint. (Hint: You will find Exercise B.8 useful.)

2. Show that it suffices to consider only those covariances Kx that have the same set
of eigenvectors as G∗G. (Hint: Use Exercise B.8 to explicitly write the reliable
rate of communiation in the vector AWGN channel of (B.100).)

3. Show that

�G∗G�ij = ri−j� (B.101)

where

rn �=
L−l−1∑

�=0

�h��
∗h��+n�� n≥ 0� (B.102)

rn �= r∗−n� n≤ 0	 (B.103)

Such a matrix G∗G is said to be Toeplitz.
4. An important result about the Hermitian Toeplitz matrix GG∗ is that the empirical

distribution of its eigenvalues converges (weakly) to the discrete-time Fourier
transform of the sequence �rl�. How is the discrete-time Fourier transform of the
sequence �rl� related to the discrete-time Fourier transform H�f� of the sequence
h0� � � � � hL−1?

5. Use the result of the previous part and the nature of the optimal K∗
x (discussed in

part (2)) to show that the rate of reliable communication is equal to

∫ W

0
log

(

1+ P∗�f��H�f��2
N0

)

df	 (B.104)

Here the waterfilling power allocation P∗�f� is as defined in (5.47). This answer
is, of course, the same as that derived in the text (cf. (5.49)). The cyclic prefix
converted the frequency-selective channel into a parallel channel, reliable commu-
nication over which is easier to understand. With a direct approach we had to use
analytical results about Toeplitz forms; more can be learnt about these techniques
from [53].


