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8 MIMO II: capacity and multiplexing
architectures

In this chapter, we will look at the capacity of MIMO fading channels and
discuss transceiver architectures that extract the promised multiplexing gains
from the channel. We particularly focus on the scenario when the transmitter
does not know the channel realization. In the fast fading MIMO channel, we
show the following:

• At high SNR, the capacity of the i.i.d. Rayleigh fast fading channel scales
like nmin log SNR bits/s/Hz, where nmin is the minimum of the number
of transmit antennas nt and the number of receive antennas nr . This is
a degree-of-freedom gain.

• At low SNR, the capacity is approximately nrSNR log2 e bits/s/Hz. This is
a receive beamforming power gain.

• At all SNR, the capacity scales linearly with nmin. This is due to a combi-
nation of a power gain and a degree-of-freedom gain.

Furthermore, there is a transmit beamforming gain together with an oppor-
tunistic communication gain if the transmitter can track the channel as well.
Over a deterministic time-invariant MIMO channel, the capacity-achieving

transceiver architecture is simple (cf. Section 7.1.1): independent data streams
are multiplexed in an appropriate coordinate system (cf. Figure 7.2). The
receiver transforms the received vector into another appropriate coordinate
system to separately decode the different data streams. Without knowledge
of the channel at the transmitter the choice of the coordinate system in which
the independent data streams are multiplexed has to be fixed a priori. In
conjunction with joint decoding, we will see that this transmitter architecture
achieves the capacity of the fast fading channel. This architecture is also
called V-BLAST1 in the literature.

1 Vertical Bell Labs Space-Time Architecture. There are several versions of V-BLAST with
different receiver structures but they all share the same transmitting architecture of
multiplexing independent streams, and we take this as its defining feature.
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333 8.1 The V-BLAST architecture

In Section 8.3, we discuss receiver architectures that are simpler than joint
ML decoding of the independent streams. While there are several receiver
architectures that can support the full degrees of freedom of the channel, a par-
ticular architecture, the MMSE-SIC, which uses a combination of minimum
mean square estimation (MMSE) and successive interference cancellation
(SIC), achieves capacity.
The performance of the slow fading MIMO channel is characterized through

the outage probability and the corresponding outage capacity. At low SNR,
the outage capacity can be achieved, to a first order, by using one transmit
antenna at a time, achieving a full diversity gain of nt nr and a power gain
of nr . The outage capacity at high SNR, on the other hand, benefits from a
degree-of-freedom gain as well; this is more difficult to characterize succinctly
and its analysis is relegated until Chapter 9.
Although it achieves the capacity of the fast fading channel, the V-BLAST

architecture is strictly suboptimal for the slow fading channel. In fact, it does
not even achieve the full diversity gain promised by the MIMO channel.
To see this, consider transmitting independent data streams directly over the
transmit antennas. In this case, the diversity of each data stream is limited
to just the receive diversity. To extract the full diversity from the channel,
one needs to code across the transmit antennas. A modified architecture,
D-BLAST2, which combines transmit antenna coding with MMSE-SIC, not
only extracts the full diversity from the channel but its performance also
comes close to the outage capacity.

8.1 The V-BLAST architecture

We start with the time-invariant channel (cf. (7.1))

y�m�=Hx�m�+w�m�� m= 1�2� � � � (8.1)

When the channel matrix H is known to the transmitter, we have seen in
Section 7.1.1 that the optimal strategy is to transmit independent streams in the
directions of the eigenvectors of H∗H, i.e., in the coordinate system defined
by the matrix V, where H=U�V∗ is the singular value decomposition of H.
This coordinate system is channel-dependent. With an eye towards dealing
with the case of fading channels where the channel matrix is unknown to
the transmitter, we generalize this to the architecture in Figure 8.1, where
the independent data streams, nt of them, are multiplexed in some arbitrary

2 Diagonal Bell Labs Space-Time Architecture
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Figure 8.1 The V-BLAST
architecture for communicating
over the MIMO channel.
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coordinate system given by a unitary matrix Q, not necessarily dependent on
the channel matrix H. This is the V-BLAST architecture. The data streams
are decoded jointly. The kth data stream is allocated a power Pk (such that
the sum of the powers, P1+· · ·+Pnt

, is equal to P, the total transmit power
constraint) and is encoded using a capacity-achieving Gaussian code with rate
Rk. The total rate is R=∑nt

k=1Rk.
As special cases:

• If Q=V and the powers are given by the waterfilling allocations, then we
have the capacity-achieving architecture in Figure 7.2.

• If Q= Inr , then independent data streams are sent on the different transmit
antennas.

Using a sphere-packing argument analogous to the ones used in Chapter 5,
we will argue an upper bound on the highest reliable rate of communication:

R < logdet
(

Inr +
1
N0

HKxH
∗
)

bits/s/Hz� (8.2)

Here Kx is the covariance matrix of the transmitted signal x and is a function
of the multiplexing coordinate system and the power allocations:

Kx �=Q diag�P1� � � � �Pnt
	Q∗� (8.3)

Considering communication over a block of time symbols of length N , the
received vector, of length nrN , lies with high probability in an ellipsoid of
volume proportional to

det
N0Inr +HKxH
∗�N � (8.4)

This formula is a direct generalization of the corresponding volume for-
mula (5.50) for the parallel channel, and is justified in Exercise 8.2. Since
we have to allow for non-overlapping noise spheres (of radius

√
N0 and,

hence, volume proportional to N
nrN
0 ) around each codeword to ensure reliable
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communication, the maximum number of codewords that can be packed is
the ratio

det
N0Inr +HKxH
∗�N

N
nrN
0

� (8.5)

We can now conclude the upper bound on the rate of reliable communication
in (8.2).
Is this upper bound actually achievable by the V-BLAST architecture?

Observe that independent data streams are multiplexed in V-BLAST; perhaps
coding across the streams is required to achieve the upper bound (8.2)? To get
some insight on this question, consider the special case of a MISO channel
(nr = 1) and set Q= Int in the architecture, i.e., independent streams on each
of the transmit antennas. This is precisely an uplink channel, as considered in
Section 6.1, drawing an analogy between the transmit antennas and the users.
We know from the development there that the sum capacity of this uplink
channel is

log
(

1+
∑nt

k=1 �hk�2Pk

N0

)

� (8.6)

This is precisely the upper bound (8.2) in this special case. Thus, the
V-BLAST architecture, with independent data streams, is sufficient to achieve
the upper bound (8.2). In the general case, an analogy can be drawn between
the V-BLAST architecture and an uplink channel with nr receive antennas
and channel matrix HQ; just as in the single receive antenna case, the upper
bound (8.2) is the sum capacity of this uplink channel and therefore achievable
using the V-BLAST architecture. This uplink channel is considered in greater
detail in Chapter 10 and its information theoretic analysis is in Appendix B.9.

8.2 Fast fading MIMO channel

The fast fading MIMO channel is

y�m�=H�m�x�m�+w�m�� m= 1�2� � � � � (8.7)

where �H�m�	 is a random fading process. To properly define a notion of
capacity (achieved by averaging of the channel fading over time), we make
the technical assumption (as in the earlier chapters) that �H�m�	 is a stationary
and ergodic process. As a normalization, let us suppose that ���hij�2�= 1. As
in our earlier study, we consider coherent communication: the receiver tracks
the channel fading process exactly. We first start with the situation when the
transmitter has only a statistical characterization of the fading channel. Finally,
we look at the case when the transmitter also perfectly tracks the fading
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channel (full CSI); this situation is very similar to that of the time-invariant
MIMO channel.

8.2.1 Capacity with CSI at receiver

Consider using the V-BLAST architecture (Figure 8.1) with a channel-
independent multiplexing coordinate system Q and power allocations
P1� � � � �Pnt

. The covariance matrix of the transmit signal is Kx and is not
dependent on the channel realization. The rate achieved in a given channel
state H is

logdet
(

Inr +
1
N0

HKxH
∗
)

� (8.8)

As usual, by coding over many coherence time intervals of the channel, a
long-term rate of reliable communication equal to

�H

[

logdet
(

Inr +
1
N0

HKxH
∗
)]

(8.9)

is achieved. We can now choose the covariance Kx as a function of the
channel statistics to achieve a reliable communication rate of

C = max
Kx�Tr�Kx�≤P

�

[

logdet
(

Inr +
1
N0

HKxH
∗
)]

� (8.10)

Here the trace constraint corresponds to the total transmit power constraint.
This is indeed the capacity of the fast fading MIMO channel (a formal
justification is in Appendix B.7.2). We emphasize that the input covariance
is chosen to match the channel statistics rather than the channel realization,
since the latter is not known at the transmitter.
The optimal Kx in (8.10) obviously depends on the stationary distribution

of the channel process �H�m�	. For example, if there are only a few dominant
paths (no more than one in each of the angular bins) that are not time-
varying, then we can view H as being deterministic. In this case, we know
from Section 7.1.1 that the optimal coordinate system to multiplex the data
streams is in the eigen-directions of H∗H and, further, to allocate powers in
a waterfilling manner across the eigenmodes of H.
Let us now consider the other extreme: there are many paths (of approxi-

mately equal energy) in each of the angular bins. Some insight can be obtained
by looking at the angular representation (cf. (7.80)): Ha �= U∗

rHUt . The key
advantage of this viewpoint is in statistical modeling: the entries of Ha are
generated by different physical paths and can be modeled as being statistically
independent (cf. Section 7.3.5). Here we are interested in the case when the
entries of Ha have zero mean (no single dominant path in any of the angular
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windows). Due to independence, it seems reasonable to separately send infor-
mation in each of the transmit angular windows, with powers corresponding
to the strength of the paths in the angular windows. That is, the multiplex-
ing is done in the coordinate system given by Ut (so Q = Ut in (8.3)). The
covariance matrix now has the form

Kx = Ut�U∗
t � (8.11)

where � is a diagonal matrix with non-negative entries, representing the
powers transmitted in the angular windows, so that the sum of the entries is
equal to P. This is shown formally in Exercise 8.3, where we see that this
observation holds even if the entries of Ha are only uncorrelated.
If there is additional symmetry among the transmit antennas, such as when

the elements of Ha are i.i.d. �� 
0�1� (the i.i.d. Rayleigh fading model),
then one can further show that equal powers are allocated to each transmit
angular window (see Exercises 8.4 and 8.6) and thus, in this case, the optimal
covariance matrix is simply

Kx =
(
P

nt

)

Int � (8.12)

More generally, the optimal powers (i.e., the diagonal entries of �) are chosen
to be the solution to the maximization problem (substituting the angular
representation H= UrH

aU∗
t and (8.11) in (8.10)):

C = max
��Tr���≤P

�

[

logdet
(

Inr +
1
N0

UrH
a�Ha∗U∗

r

)]

(8.13)

= max
��Tr���≤P

�

[

logdet
(

Inr +
1
N0

Ha�Ha∗
)]

� (8.14)

With equal powers (i.e., the optimal � is equal to 
P/nt�Int�, the resulting
capacity is

C = �

[

logdet
(

Inr +
SNR
nt

HH∗
)]

� (8.15)

where SNR �= P/N0 is the common SNR at each receive antenna.
If �1 ≥ �2 ≥ · · · ≥ �nmin

are the (random) ordered singular values of H, then
we can rewrite (8.15) as

C = �

[
nmin∑

i=1

log
(

1+ SNR
nt

�2
i

)]

=
nmin∑

i=1

�

[

log
(

1+ SNR
nt

�2
i

)]

� (8.16)
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Comparing this expression to the waterfilling capacity in (7.10), we see the
contrast between the situation when the transmitter knows the channel and
when it does not. When the transmitter knows the channel, it can allocate
different amounts of power in the different eigenmodes depending on their
strengths. When the transmitter does not know the channel but the channel
is sufficiently random, the optimal covariance matrix is identity, resulting in
equal amounts of power across the eigenmodes.

8.2.2 Performance gains

The capacity, (8.16), of the MIMO fading channel is a function of the distri-
bution of the singular values, �i, of the random channel matrix H. By Jensen’s
inequality, we know that

nmin∑

i=1

log
(

1+ SNR
nt

�2
i

)

≤ nmin log

(

1+ SNR
nt

[
1

nmin

nmin∑

i=1

�2
i

])

� (8.17)

with equality if and only if the singular values are all equal. Hence, one would
expect a high capacity if the channel matrix H is sufficiently random and
statistically well conditioned, with the overall channel gain well distributed
across the singular values. In particular, one would expect such a channel to
attain the full degrees of freedom at high SNR.
We plot the capacity for the i.i.d. Rayleigh fading model in Figure 8.2

for different numbers of antennas. Indeed, we see that for such a random
channel the capacity of a MIMO system can be very large. At moderate to
high SNR, the capacity of an n by n channel is about n times the capacity
of a 1 by 1 system. The asymptotic slope of capacity versus SNR in dB
scale is proportional to n, which means that the capacity scales with SNR like
n log SNR.

High SNR regime
The performance gain can be seen most clearly in the high SNR regime. At
high SNR, the capacity for the i.i.d. Rayleigh channel is given by

C ≈ nmin log
SNR
nt

+
nmin∑

i=1

��log�2
i �� (8.18)

and

��log�2
i � >−�� (8.19)

for all i. Hence, the full nmin degrees of freedom is attained. In fact, further
analysis reveals that

nmin∑

i=1

��log�2
i �=

max�nt�nr	∑

i=�nt−nr �+1

��log2
2i�� (8.20)
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Figure 8.2 Capacity of an i.i.d.
Rayleigh fading channel.
Upper: 4 by 4 channel. Lower:
8 by 8 channel.
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where 2
2i is a -square distributed random variable with 2i degrees of

freedom.
Note that the number of degrees of freedom is limited by the minimum

of the number of transmit and the number of receive antennas, hence, to get
a large capacity, we need multiple transmit and multiple receive antennas.
To emphasize this fact, we also plot the capacity of a 1 by nr channel in
Figure 8.2. This capacity is given by

C = �

[

log

(

1+ SNR
nr∑

i=1

�hi�2
)]

bits/s/Hz� (8.21)

We see that the capacity of such a channel is significantly less than that of an
nr by nr system in the high SNR range, and this is due to the fact that there
is only one degree of freedom in a 1 by nr channel. The gain in going from
a 1 by 1 system to a 1 by nr system is a power gain, resulting in a parallel



340 MIMO II: capacity and multiplexing architectures

shift of the capacity versus SNR curves. At high SNR, a power gain is much
less impressive than a degree-of-freedom gain.

Low SNR regime
Herewe use the approximation log2
1+x�≈ x log2 e for x small in (8.15) to get

C =
nmin∑

i=1

�

[

log
(

1+ SNR
nt

�2
i

)]

≈
nmin∑

i=1

SNR
nt

�
[
�2
i

]
log2 e

= SNR
nt

��Tr�HH∗�� log2 e

= SNR
nt

�

[
∑

i�j

�hij�2
]

log2 e

= nrSNR log2 e bits/s/Hz�

Thus, at low SNR, an nt by nr system yields a power gain of nr over a single
antenna system. This is due to the fact that the multiple receive antennas can
coherently combine their received signals to get a power boost. Note that
increasing the number of transmit antennas does not increase the power gain
since, unlike the case when the channel is known at the transmitter, transmit
beamforming cannot be done to constructively add signals from the different
antennas. Thus, at low SNR and without channel knowledge at the transmitter,
multiple transmit antennas are not very useful: the performance of an nt by
nr channel is comparable with that of a 1 by nr channel. This is illustrated
in Figure 8.3, which compares the capacity of an n by n channel with that
of a 1 by n channel, as a fraction of the capacity of a 1 by 1 channel. We
see that at an SNR of about −20 dB, the capacities of a 1 by 4 channel and
a 4 by 4 channel are very similar.
Recall from Chapter 4 that the operating SINR of cellular systems with

universal frequency reuse is typically very low. For example, an IS-95 CDMA
system may have an SINR per chip of −15 to −17dB. The above observation
then suggests that just simply overlaying point-to-point MIMO technology on
such systems to boost up per link capacity will not provide much additional
benefit than just adding antennas at one end. On the other hand, the story
is different if the multiple antennas are used to perform multiple access and
interference management. This issue will be revisited in Chapter 10.
Another difference between the high and the low SNR regimes is that while

channel randomness is crucial in yielding a large capacity gain in the high
SNR regime, it plays little role in the low SNR regime. The low SNR result
above does not depend on whether the channel gains, �hij	, are independent
or correlated.
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Figure 8.3 Low SNR capacities.
Upper: a 1 by 4 and a 4 by 4
channel. Lower: a 1 by 8 an 8
by 8 channel. Capacity is a
fraction of the 1 by 1 channel
in each case.
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Large antenna array regime
We saw that in the high SNR regime, the capacity increases linearly with the
minimum of the number of transmit and the number of receive antennas. This
is a degree-of-freedom gain. In the low SNR regime, the capacity increases
linearly with the number of receive antennas. This is a power gain. Will the
combined effect of the two types of gain yield a linear growth in capacity at
any SNR, as we scale up both nt and nr? Indeed, this turns out to be true. Let
us focus on the square channel nt = nr = n to demonstrate this.
With i.i.d. Rayleigh fading, the capacity of this channel is (cf. (8.15))

Cnn
SNR�= �

[
n∑

i=1

log
(

1+ SNR
�2
i

n

)]

� (8.22)

where we emphasize the dependence on n and SNR in the notation. The �i/
√
n

are the singular values of the random matrixH/
√
n. By a random matrix result
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due to Marc̆enko and Pastur [78], the empirical distribution of the singular
values of H/

√
n converges to a deterministic limiting distribution for almost

all realizations of H. Figure 8.4 demonstrates the convergence. The limiting
distribution is the so-called quarter circle law.3 The corresponding limiting
density of the squared singular values is given by

f ∗
x�=





1
�

√
1
x
− 1

4 0 ≤ x ≤ 4�

0 else�
(8.23)

Hence, we can conclude that, for increasing n,

1
n

n∑

i=1

log
(

1+ SNR
�2
i

n

)

→
∫ 4

0
log
1+ SNRx�f ∗
x�dx� (8.24)

If we denote

c∗
SNR� �=
∫ 4

0
log
1+ SNRx�f ∗
x�dx� (8.25)

Figure 8.4 Convergence of the
empirical singular value
distribution of H/

√
n. For

each n, a single random
realization of H/

√
n is

generated and the empirical
distribution (histogram) of the
singular values is plotted. We
see that as n grows, the
histogram converges to the
quarter circle law.
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3 Note that although the singular values are unbounded, in the limit they lie in the interval
�0�2� with probability 1.



343 8.2 Fast fading MIMO channel

we can solve the integral for the density in (8.23) to arrive at (see Exer-
cise 8.17)

c∗
SNR�= 2 log
(

1+ SNR− 1
4
F
SNR�

)

− log e
4SNR

F
SNR�� (8.26)

where

F
SNR� �=
(√

4SNR+1−1
)2

� (8.27)

The significance of c∗
SNR� is that

lim
n→�

Cnn
SNR�
n

= c∗
SNR�� (8.28)

So capacity grows linearly in n at any SNR and the constant c∗
SNR� is the
rate of the growth.
We compare the large-n approximation

Cnn
SNR�≈ nc∗
SNR�� (8.29)

with the actual value of the capacity for n = 2�4 in Figure 8.5. We see the
approximation is very good, even for such small values of n. In Exercise 8.7,
we see statistical models other than i.i.d. Rayleigh, which also have a linear
increase in capacity with an increase in n.

Linear scaling: a more in-depth look
To better understand why the capacity scales linearly with the number of
antennas, it is useful to contrast the MIMO scenario here with three other
scenarios:

Figure 8.5 Comparison
between the large-n
approximation and the actual
capacity for n= 2� 4.
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• MISO channel with a large transmit antenna array Specializing (8.15)
to the n by 1 MISO channel yields the capacity

Cn1 = �

[

log

(

1+ SNR
n

n∑

i=1

�hi�2
)]

bits/s/Hz� (8.30)

As n→�, by the law of large numbers,

Cn1 → log
1+ SNR�= Cawgn� (8.31)

For n = 1, the 1 by 1 fading channel (with only receiver CSI) has lower
capacity than the AWGN channel; this is due to the “Jensen’s loss”
(Section 5.4.5). But recall from Figure 5.20 that this loss is not large for
the entire range of SNR. Increasing the number of transmit antennas has
the effect of reducing the fluctuation of the instantaneous SNR

1
n

n∑

i=1

�hi�2 · SNR� (8.32)

and hence reducing the Jensen’s loss, but the loss was not big to start
with, hence the gain is minimal. Since the total transmit power is fixed,
the multiple transmit antennas provide neither a power gain nor a gain in
spatial degrees of freedom. (In a slow fading channel, the multiple transmit
antennas provide a diversity gain, but this is not relevant in the fast fading
scenario considered here.)

• SIMO channel with a large receive antenna array A 1 by n SIMO
channel has capacity

C1n = �

[

log

(

1+ SNR
n∑

i=1

�hi�2
)]

� (8.33)

For large n

C1n ≈ log
nSNR�= logn+ log SNR� (8.34)

i.e., the receive antennas provide a power gain (which increases linearly
with the number of receive antennas) and the capacity increases logarith-
mically with the number of receive antennas. This is quite in contrast to
the MISO case: the difference is due to the fact that now there is a lin-
ear increase in total received power due to a larger receive antenna array.
However, the increase in capacity is only logarithmic in n; the increase
in total received power is all accumulated in the single degree of freedom
of the channel. There is power gain but no gain in the spatial degrees of
freedom.
The capacities, as a function of n, are plotted for the SIMO, MISO and

MIMO channels in Figure 8.6.
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Figure 8.6 Capacities of the n
by 1 MISO channel, 1 by n
SIMO channel and the n by n
MIMO channel as a function of
n, for SNR= 0 dB
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• AWGN channel with infinite bandwidth Given a power constraint of
P̄ and AWGN noise spectral density N0/2, the infinite bandwidth limit is
(cf. 5.18)

C� = lim
W→�

W log
(

1+ P̄

N0W

)

= P̄

N0

bits/s� (8.35)

Here, although the number of degrees of freedom increases, the capacity
remains bounded. This is because the total received power is fixed and
hence the SNR per degree of freedom vanishes. There is a gain in the
degrees of freedom, but since there is no power gain the received power
has to be spread across the many degrees of freedom.

In contrast to all of these scenarios, the capacity of an n by n MIMO
channel increases linearly with n, because simultaneously:

• there is a linear increase in the total received power, and
• there is a linear increase in the degrees of freedom, due to the substantial
randomness and consequent well-conditionedness of the channel matrix H.

Note that the well-conditionedness of the matrix depends on maintaining the
uncorrelated nature of the channel gains, �hij	, while increasing the number
of antennas. This can be achieved in a rich scattering environment by keeping
the antenna spacing fixed at half the wavelength and increasing the aperture,
L, of the antenna array. On the other hand, if we just pack more and more
antenna elements in a fixed aperture, L, then the channel gains will become
more and more correlated. In fact, we know from Section 7.3.7 that in the
angular domain a MIMO channel with densely spaced antennas and aperture
L can be reduced to an equivalent 2L by 2L channel with antennas spaced
at half the wavelength. Thus, the number of degrees of freedom is ultimately
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limited by the antenna array aperture rather than the number of antenna
elements.

8.2.3 Full CSI

We have considered the scenario when only the receiver can track the channel.
This is the most interesting case in practice. In a TDD system or in an FDD
system where the fading is very slow, it may be possible to track the channel
matrix at the transmitter. We shall now discuss how channel capacity can
be achieved in this scenario. Although channel knowledge at the transmitter
does not help in extracting an additional degree-of-freedom gain, extra power
gain is possible.

Capacity
The derivation of the channel capacity in the full CSI scenario is only a slight
twist on the time-invariant case discussed in Section 7.1.1. At each time m,
we decompose the channel matrix as H�m� = U�m���m�V�m�∗, so that the
MIMO channel can be represented as a parallel channel

ỹi�m�= �i�m�x̃i�m�+ w̃i�m�� i= 1� � � � � nmin� (8.36)

where �1�m� ≥ �2�m� ≥ � � � ≥ �nmin
�m� are the ordered singular values of

H�m� and

x̃�m� = V∗�m�x�m��

ỹ�m� = U∗�m�y�m��

w̃�m� = U∗�m�w�m��

We have encountered the fast fading parallel channel in our study of the
single antenna fast fading channel (cf. Section 5.4.6). We allocate powers to
the sub-channels based on their strength according to the waterfilling policy

P∗
��=
(

�− N0

�2

)+
� (8.37)

with � chosen so that the total transmit power constraint is satisfied:

nmin∑

i=1

�

[(

�− N0

�2
i

)+]

= P� (8.38)

Note that this is waterfilling over time and space (the eigenmodes). The
capacity is given by

C =
nmin∑

i=1

�

[

log
(

1+ P∗
�i��
2
i

N0

)]

� (8.39)
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Transceiver architecture
The transceiver architecture that achieves the capacity follows naturally from
the SVD-based architecture depicted in Figure 7.2. Information bits are split
into nmin parallel streams, each coded separately, and then augmented by nt −
nmin streams of zeros. The symbols across the streams at time m form the vec-
tor x̃�m�. This vector is pre-multiplied by the matrix V�m� before being sent
through the channel, where H�m� = U�m���m�V∗�m� is the singular value
decomposition of the channel matrix at time m. The output is post-multiplied
by the matrix U∗�m� to extract the independent streams, which are then sepa-
rately decoded. The power allocated to each stream is time-dependent and is
given by the waterfilling formula (8.37), and the rates are dynamically allo-
cated accordingly. If anAWGNcapacity-achieving code is used for each stream,
then the entire system will be capacity-achieving for the MIMO channel.

Performance analysis
Let us focus on the i.i.d. Rayleigh fading model. Since with probability 1,
the random matrix HH∗ has full rank (Exercise 8.12), and is, in fact, well-
conditioned (Exercise 8.14), it can be shown that at high SNR, the waterfilling
strategy allocates an equal amount of power P/nmin to all the spatial modes,
as well as an equal amount of power over time. Thus,

C ≈
nmin∑

i=1

�

[

log
(

1+ SNR
nmin

�2
i

)]

� (8.40)

where SNR = P/N0. If we compare this to the capacity (8.16) with only
receiver CSI, we see that the number of degrees of freedom is the same 
nmin�

but there is a power gain of a factor of nt/nmin when the transmitter can track
the channel. Thus, whenever there are more transmit antennas then receive
antennas, there is a power boost of nt/nr from having transmitter CSI. The
reason is simple. Without channel knowledge at the transmitter, the transmit
energy is spread out equally across all directions in �nt . With transmitter CSI,
the energy can now be focused on only the nr non-zero eigenmodes, which
form a subspace of dimension nr inside �nt . For example, with nr = 1, the
capacity with only receiver CSI is

�

[

log

(

1+ SNR/nt

nt∑

i=1

�hi�2
)]

�

while the high SNR capacity when there is full CSI is

�

[

log

(

1+ SNR
nt∑

i=1

�hi�2
)]

�
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Thus a power gain of a factor of nt is achieved by transmit beamforming.
With dual transmit antennas, this is a gain of 3 dB.
At low SNR, there is a further gain from transmitter CSI due to dynamic

allocation of power across the eigenmodes: at any given time, more power
is given to stronger eigenmodes. This gain is of the same nature as the one
from opportunistic communication discussed in Chapter 6.
What happens in the large antenna array regime?Applying the randommatrix

result of Marc̆enko and Pastur from Section 8.2.2, we conclude that the random
singular values�i�m�/

√
n of the channelmatrixH�m�/

√
n converge to the same

deterministic limiting distribution f ∗ across all timesm. This means that in the
waterfilling strategy, there is no dynamic power allocation over time, only over
space. This is sometimes known as a channel hardening effect.

Summary 8.1 Performance gains in a MIMO channel

The capacity of an nt ×nr i.i.d. Rayleigh fading MIMO channel H with
receiver CSI is

Cnn
SNR�= �

[

logdet
(

Inr +
SNR
nt

HH∗
)]

� (8.41)

At high SNR, the capacity is approximately equal (up to an additive
constant) to nmin log SNR bits/s/Hz.

At low SNR, the capacity is approximately equal to nr SNR log2 e bits/s/Hz,
so only a receive beamforming gain is realized.

With nt = nr = n, the capacity can be approximated by nc∗
SNR� where
c∗
SNR� is the constant in (8.26).

Conclusion: In an n×n MIMO channel, the capacity increases linearly
with n over the entire SNR range.

With channel knowledge at the transmitter, an additional nt/nr-fold trans-
mit beamforming gain can be realized with an additional power gain from
temporal–spatial waterfilling at low SNR.

8.3 Receiver architectures

The transceiver architecture of Figure 8.1 achieves the capacity of the fast
fading MIMO channel with receiver CSI. The capacity is achieved by joint
ML decoding of the data streams at the receiver, but the complexity grows
exponentially with the number of data streams. Simpler decoding rules
that provide soft information to feed to the decoders of the individual data
streams is an active area of research; some of the approaches are reviewed
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in Exercise 8.15. In this section, we consider receiver architectures that use
linear operations to convert the problem of joint decoding of the data streams
into one of individual decoding of the data streams. These architectures
extract the spatial degree of freedom gains characterized in the previous
section. In conjunction with successive cancellation of data streams, we can
achieve the capacity of the fast fading MIMO channel. To be able to focus on
the receiver design, we start with transmitting the independent data streams
directly over the antenna array (i.e., Q= Int in Figure 8.1).

8.3.1 Linear decorrelator

Geometric derivation
Is it surprising that the full degrees of freedom of H can be attained even
when the transmitter does not track the channel matrix? When the transmitter
does know the channel, the SVD architecture enables the transmitter to send
parallel data streams through the channel so that they arrive orthogonally
at the receiver without interference between the streams. This is achieved
by pre-rotating the data so that the parallel streams can be sent along the
eigenmodes of the channel. When the transmitter does not know the channel,
this is not possible. Indeed, after passing through the MIMO channel of (7.1),
the independent data streams sent on the transmit antennas all arrive cross-
coupled at the receiver. It is not clear a priori that the receiver can separate
the data streams efficiently enough so that the resulting performance has full
degrees of freedom. But in fact we have already seen such a receiver: the
channel inversion receiver in the 2× 2 example discussed in Section 3.3.3.
We develop the structure of this receiver in full generality here.
To simplify notations, let us first focus on the time-invariant case, where the

channel matrix is fixed. We can write the received vector at symbol timem as

y�m�=
nt∑

i=1

hixi�m�+w�m�� (8.42)

where h1� � � � �hnt
are the columns of H and the data streams transmitted on

the antennas, �xi�m�	 on the ith antenna, are all independent. Focusing on the
kth data stream, we can rewrite (8.42):

y�m�= hkxk�m�+∑
i 	=k

hixi�m�+w� (8.43)

Compared to the SIMO point-to-point channel from Section 7.2.1, we see
that the kth data stream faces an extra source of interference, that from
the other data streams. One idea that can be used to remove this inter-
stream interference is to project the received signal y onto the subspace
orthogonal to the one spanned by the vectors h1� � � � �hk−1�hk+1� � � � �hnt



350 MIMO II: capacity and multiplexing architectures

(denoted henceforth by Vk). Suppose that the dimension of Vk is dk. Projection
is a linear operation and we can represent it by a dk by nr matrix Qk, the
rows of which form an orthonormal basis of Vk; they are all orthogonal
to h1� � � � �hk−1�hk+1� � � � �hnt

. The vector Qkv should be interpreted as the
projection of the vector v onto Vk, but expressed in terms of the coordinates
defined by the basis of Vk formed by the rows of Qk. A pictorial depiction of
this projection operation is in Figure 8.7.
Now, the inter-stream interference “nulling” is successful (that is, the result-

ing projection of hk is a non-zero vector) if the kth data stream “spatial
signature” hk is not a linear combination of the spatial signatures of the other
data streams. In other words, if there are more data streams than the dimen-
sion of the received signal (i.e., nt > nr), then the nulling operation will not
be successful, even for a full rank H. Hence, we should choose the number
of data streams to be no more than nr . Physically, this corresponds to using
only a subset of the transmit antennas and for notational convenience we will
count only the transmit antennas that are used, by just making the assumption
nt ≤ nr in the decorrelator discussion henceforth.
After the projection operation,

ỹ�m� �=Qky�m�=Qkhkxk�m�+ w̃�m�

where w̃�m� �=Qkw�m� is the noise, still white, after the projection. Optional
demodulation of the kth stream can now be performed by match filtering to
the vector Qkhk. The output of this matched filter (or maximal ratio combiner)
has SNR

Pk
Qkhk
2
N0

� (8.44)

where Pk is the power allocated to stream k.

Figure 8.7 A schematic
representation of the
projection operation: y is
projected onto the subspace
orthogonal to h1 to
demodulate stream 2.

h1

h2

y
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The combination of the projection operation followed by the matched filter
is called the decorrelator (also known as interference nulling or zero-forcing
receiver). Since projection and matched filtering are both linear operations,
the decorrelator is a linear filter. The filter ck is given by

c∗k = 
Qkhk�
∗Qk� (8.45)

or

ck = 
Q∗
kQk�hk� (8.46)

which is the projection of hk onto the subspace Vk, expressed in terms of
the original coordinates. Since the matched filter maximizes the output SNR,
the decorrelator can also be interpreted as the linear filter that maximizes the
output SNR subject to the constraint that the filter nulls out the interference
from all other streams. Intuitively, we are projecting the received signal in
the direction within Vk that is closest to hk.
Only the kth stream has been in focus so far. We can now decorrelate each

of the streams separately, as illustrated in Figure 8.8. We have described the
decorrelator geometrically; however, there is a simple explicit formula for
the entire bank of decorrelators: the decorrelator for the kth stream is the kth
column of the pseudoinverse H† of the matrix H, defined by

H† �= 
H∗H�−1H∗� (8.47)

Figure 8.8 A bank of
decorrelators, each estimating
the parallel data streams.

Decorrelator 
for stream nt

Decorrelator 
for stream 2

Decorrelator 
for stream 1

y[m]
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The validity of this formula is verified in Exercise 8.11. In the special case
when H is square and invertible, H† =H−1 and the decorrelator is precisely
the channel inversion receiver we already discussed in Section 3.3.3.

Performance for a deterministic H
The channel from the kth stream to the output of the corresponding decor-
relator is a Gaussian channel with SNR given by (8.44). A Gaussian code
achieves the maximum data rate, given by

Ck �= log
(

1+ Pk
Qkhk
2
N0

)

� (8.48)

To get a better feel for this performance, let us compare it with the ideal
situation of no inter-stream interference in (8.43). As we observed above, if
there were no inter-stream interference in (8.43), the situation is exactly the
SIMO channel of Section 7.2.1; the filter would be matched to hk and the
achieved SNR would be

Pk
hk
2
N0

� (8.49)

Since the inter-stream interference only hampers the recovery of the kth
stream, the performance of the decorrelator (in terms of the SNR in (8.44))
must in general be less than that achieved by a matched filter with no inter-
stream interference. We can also see this explicitly: the projection operation
cannot increase the length of a vector and hence 
Qkhk
 ≤ 
hk
. We can
further say that the projection operation always reduces the length of hk

unless hk is already orthogonal to the spatial signatures of the other data
streams.
Let us return to the bank of decorrelators in Figure 8.8. The total rate

of communication supported here with efficient coding in each of the data
streams is the sum of the individual rates in (8.48) and is given by

nt∑

k=1

Ck�

Performance in fading channels
So far our analysis has focused on a deterministic channel H. As usual, in
the time-varying fast fading scenario, coding should be done over time across
the different fades, usually in combination with interleaving. The maximum
achievable rate can be computed by simply averaging over the stationary
distribution of the channel process �H�m�	m, yielding

Rdecorr =
nt∑

k=1

C̄k� (8.50)
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where

C̄k = �

[

log
(

1+ Pk
Qkhk
2
N0

)]

� (8.51)

The achievable rate in (8.50) is in general less than or equal to the capacity
of the MIMO fading channel with CSI at the receiver (cf. (8.10)) since
transmission using independent data streams and receiving using the bank
of decorrelators is only one of several possible communication strategies.
To get some further insight, let us look at a specific statistical model, that
of i.i.d. Rayleigh fading. Motivated by the fact that the optimal covariance
matrix is of the form of scaled identity (cf. (8.12)), let us choose equal powers
for each of the data streams (i.e., Pk = P/nt). Continuing from (8.50), the
decorrelator bank performance specialized to i.i.d. Rayleigh fading is (recall
that for successful decorrelation nmin = nt)

Rdecorr = �

[
nmin∑

k=1

log
(

1+ SNR
nt


Qkhk
2
)]

� (8.52)

Sincehk ∼ �� 
0� Inr�, we know that
hk
2 ∼ 2
2nr
, where2

2i is a-squared ran-
domvariablewith2idegreesof freedom(cf. (3.36)).HereQkhk ∼ �� 
0� IdimVk

�

(since QkQ
∗
k = IdimVk

). It can be shown that the channel H is full rank with
probability 1 (see Exercise 8.12), and this means that dimVk = nr −nt +1 (see
Exercise 8.13). Thus 
Qkhk
2 ∼ 2

2
nr−nt+1�� This provides us with an explicit
example for our earlier observation that the projection operation reduces the
length. In the special case of a square system, dimVk = 1, and Qkhk is a scalar
distributed as circular symmetricGaussian;wehave already seen this in the2×2
example of Section 3.3.3.
Rdecorr is plotted in Figure 8.9 for different numbers of antennas. We see

that the asymptotic slope of the rate obtained by the decorrelator bank as a

Figure 8.9 Rate achieved
(in bits/s/Hz) by the
decorrelator bank.
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function of SNR in dB is proportional to nmin; the same slope in the capacity
of the MIMO channel. More specifically, we can approximate the rate in
(8.52) at high SNR as

Rdecorr ≈ nmin log
SNR
nt

+�

[
nt∑

k=1

log
(
Qkhk
2

)
]

� (8.53)

= nmin log
(
SNR
nt

)

+nt�
[
log2

2
nr−nt+1�

]
� (8.54)

Comparing (8.53) and (8.54) with the corresponding high SNR expansion of
the capacity of this MIMO channel (cf. (8.18) and (8.20)), we can make the
following observations:

• The first-order term (in the high SNR expansion) is the same for both
the rate achieved by the decorrelator bank and the capacity of the MIMO
channel. Thus, the decorrelator bank is able to fully harness the spatial
degrees of freedom of the MIMO channel.

• The next term in the high SNR expansion (constant term) shows the per-
formance degradation, in rate, of using the decorrelator bank as compared
to the capacity of the channel. Figure 8.10 highlights this difference in the
special case of nt = nr = n.

The above analysis is for the high SNR regime. At any fixed SNR, it is also
straightforward to show that, just like the capacity, the total rate achievable
by the bank of decorrelators scales linearly with the number of antennas (see
Exercise 8.21).

Figure 8.10 Plot of rate
achievable with the
decorrelator bank for the
nt = nr = 8 i.i.d. Rayleigh
fading channel. The capacity of
the channel is also plotted for
comparison.
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8.3.2 Successive cancellation

We have just considered a bank of separate filters to estimate the data streams.
However, the result of one of the filters could be used to aid the operation of
the others. Indeed, we can use the successive cancellation strategy described in
the uplink capacity analysis (in Section 6.1): once a data stream is successfully
recovered, we can subtract it off from the received vector and reduce the
burden on the receivers of the remaining data streams. With this motivation,
consider the following modification to the bank of separate receiver structures
in Figure 8.8. We use the first decorrelator to decode the data stream x1�m�

and then subtract off this decoded stream from the received vector. If the first
stream is successfully decoded, then the second decorrelator has to deal only
with streams x3� � � � � xnt as interference, since x1 has been correctly subtracted
off. Thus, the second decorrelator projects onto the subspace orthogonal to that
spanned by h3� � � � �hnt

. This process is continued until the final decorrelator
does not have to deal with any interference from the other data streams
(assuming successful subtraction in each preceding stage). This decorrelator–
SIC (decorrelator with successive interference cancellation) architecture is
illustrated in Figure 8.11.
One problem with this receiver structure is error propagation: an error in

decoding the kth data stream means that the subtracted signal is incorrect
and this error propagates to all the streams further down, k+ 1� � � � � nt .
A careful analysis of the performance of this scheme is complicated, but
can be made easier if we take the data streams to be well coded and the
block length to be very large, so that streams are successfully cancelled
with very high probability. With this assumption the kth data stream sees
only down-stream interference, i.e., from the streams k+ 1� � � � � nt . Thus,

Figure 8.11 Decorrelator–SIC:
A bank of decorrelators with
successive cancellation of
streams.
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the corresponding projection operation (denoted by Q̃k) is onto a higher
dimensional subspace (one orthogonal to that spanned by hk+1� � � � �hnt

, as
opposed to being orthogonal to the span of h1� � � � �hk−1�hk+1� � � � �hnt

). As
in the calculation of the previous section, the SNR of the kth data stream is
(cf. (8.44))

Pk
Q̃khk
2
N0

� (8.55)

While we clearly expect this to be an improvement over the simple bank
of decorrelators, let us again turn to the i.i.d. Rayleigh fading model to see
this concretely. Analogous to the high SNR expansion of (8.52) in (8.53) for
the simple decorrelator bank, with SIC and equal power allocation to each
stream, we have

Rdec−sic ≈ nmin log
SNR
nt

+�

[
nt∑

k=1

log

Q̃khk
2�
]

� (8.56)

Similar to our analysis of the basic decorrelator bank, we can argue that

Q̃khk
2 ∼ 2

2
nr−nt+k� with probability 1 (cf. Exercise 8.13), thus arriving at

�
[
log

Q̃khk
2�

]
= ��log2

2
nr−nt+k��� (8.57)

Comparing this rate at high SNR with both the simple decorrelator bank and
the capacity of the channel (cf. (8.53) and (8.18)), we observe the following

• The first-order term in the high SNR expansion is the same as that in the
rate of the decorrelator bank and in the capacity: successive cancellation
does not provide additional degrees of freedom.

• Moving to the next (constant) term, we see the performance boost in
using the decorrelator–SIC over the simple decorrelator bank: the improved
constant term is now equal to that in the capacity expansion. This boost in
performance can be viewed as a power gain: by decoding and subtracting
instead of linear nulling, the effective SNR at each stage is improved.

8.3.3 Linear MMSE receiver

Limitation of the decorrelator
We have seen the performance of the basic decorrelator bank and the
decorrelator–SIC. At high SNR, for i.i.d. Rayleigh fading, the basic decorre-
lator bank achieves the full degrees of freedom in the channel. With SIC even
the constant term in the high SNR capacity expansion is achieved. What about
low SNR? The performance of the decorrelator bank (both with and without
the modification of successive cancellation) as compared to the capacity of
the MIMO channel is plotted in Figure 8.12.
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Figure 8.12 Performance of
the decorrelator bank, with
and without successive
cancellation at low SNR. Here
nt = nr = 8.
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The main observation is that while the decorrelator bank performs well at
high SNR, it is really far away from the capacity at low SNR. What is going
on here?
To get more insight, let us plot the performance of a bank of matched

filters, the kth filter being matched to the spatial signature hk of transmit
antenna k. From Figure 8.13 we see that the performance of the bank of
matched filters is far superior to the decorrelator bank at low SNR (although
far inferior at high SNR).

Derivation of the MMSE receiver
The decorrelator was motivated by the fact that it completely nulls out inter-
stream interference; in fact it maximizes the output SNR among all linear

Figure 8.13 Performance (ratio
of the rate to the capacity) of
the matched filter bank as
compared to that of the
decorrelator bank. At low SNR,
the matched filter is superior.
The opposite is true for the
decorrelator. The channel is
i.i.d. Rayleigh with nt = nr = 8.

Decorrelator
Matched fillter

SNR (dB)

20 30

0.1

0.8

0.9

0.7

0.6

0.5

0.4

0.3

0.2

–30 –20 –10 0 10

1

0



358 MIMO II: capacity and multiplexing architectures

receivers that completely null out the interference. On the other hand, matched
filtering (maximal ratio combining) is the optimal strategy for SIMO channels
without any inter-stream interference. We called this receive beamforming
in Example 1 in Section 7.2.1. Thus, we see a tradeoff between completely
eliminating inter-stream interference (without any regard to how much energy
of the stream of interest is lost in this process) and preserving as much energy
content of the stream of interest as possible (at the cost of possibly facing high
inter-stream interference). The decorrelator and the matched filter operate at
two extreme ends of this tradeoff. At high SNR, the inter-stream interference is
dominant over the additive Gaussian noise and the decorrelator performs well.
On the other hand, at low SNR the inter-stream interference is not as much of
an issue and receive beamforming (matched filter) is the superior strategy. In
fact, the bank of matched filters achieves capacity at low SNR (Exercise 8.20).
We can ask for a linear receiver that optimally trades off fighting inter-

stream interference and the background Gaussian noise, i.e., the receiver that
maximizes the output signal-to-interference-plus-noise ratio (SINR) for any
value of SNR. Such a receiver looks like the decorrelator when the inter-
stream interference is large (i.e., when SNR is large) and like the matched
filter when the interference is small (i.e., when SNR is small) (Figure 8.14).
This can be thought of as the natural generalization of receive beamforming
to the case when there is interference as well as noise.
To formulate this tradeoff precisely, let us first look at the following generic

vector channel:

y= hx+ z� (8.58)

where z is complex circular symmetric colored noise with an invertible covari-
ance matrixKz, h is a deterministic vector and x is the unknown scalar symbol

Figure 8.14 The optimal filter
goes from being the
decorrelator at high SNR to
being the matched filter at low
SNR.

Interference subspace

Decorrelator
Optimal filter

Signal direction
(matched filter)
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to be estimated. z and x are assumed to be uncorrelated. We would like to
choose a filter with maximum output SNR. If the noise is white, we know
that it is optimal to project y onto the direction along h. This observation
suggests a natural strategy for the colored noise situation: first whiten the
noise, and then follow the strategy used with white additive noise. That is,
we first pass y through the invertible4 linear transformation K

− 1
2

z such that
the noise z̃ �=K

− 1
2

z z becomes white:

K
− 1

2
z y=K

− 1
2

z hx+ z̃� (8.59)

Next, we project the output in the direction of K
− 1

2
z h to get an effective scalar

channel


K
− 1

2
z h�∗K− 1

2
z y= h∗K−1

z y= h∗K−1
z hx+h∗K−1

z z� (8.60)

Thus the linear receiver in (8.60), represented by the vector

vmmse �=K−1
z h� (8.61)

maximizes the SNR. It can also be shown that this receiver, with an appro-
priate scaling, minimizes the mean square error in estimating x (see Exer-
cise 8.18), and hence it is also called the linear MMSE (minimum mean
squared error) receiver. The corresponding SINR achieved is

�2
xh

∗K−1
z h� (8.62)

We can now upgrade the receiver structure in Section 8.3.1 by replacing
the decorrelator for each stream by the linear MMSE receiver. Again, let us
first consider the case where the channel H is fixed. The effective channel
for the kth stream is

y�m�= hkxk�m�+ zk�m�� (8.63)

where zk represents the noise plus interference faced by data stream k:

zk�m� �=∑
i 	=k

hixi�m�+w�m�� (8.64)

4 Kz is an invertible covariance matrix and so it can be written as U�U∗ for rotation matrix U

and diagonal matrix � with positive diagonal elements. Now K
1
2
z is defined as U�

1
2 U∗, with

�
1
2 defined as a diagonal matrix with diagonal elements equal to the square root of the

diagonal elements of �.
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With power Pi associated with the data stream i, we can explicitly calculate
the covariance of zk

Kzk
�= N0Inr +

nt∑

i 	=k

Pihih
∗
i � (8.65)

and also note that the covariance is invertible. Substituting this expression for
the covariance matrix into (8.61) and (8.62), we see that the linear receiver
in the kth stage is given by

(

N0Inr +
nt∑

i 	=k

Pihih
∗
i

)−1

hk� (8.66)

and the corresponding output SINR is

Pkh
∗
k

(

N0Inr +
nt∑

i 	=k

Pihih
∗
i

)−1

hk� (8.67)

Performance
We motivated the design of the linear MMSE receiver as something in
between the decorrelator and receiver beamforming. Let us now see this
explicitly. At very low SNR (i.e., P1� � � � �Pnt

are very small compared to N0)
we see that

Kzk
≈ N0Inr � (8.68)

and the linear MMSE receiver in (8.66) reduces to the matched filter. On the

other hand, at high SNR, the K
− 1

2
zk operation reduces to the projection of y

onto the subspace orthogonal to that spanned by h1� � � � �hk−1�hk+1� � � � �hnt

and the linear MMSE receiver reduces to the decorrelator.
Assuming the use of capacity-achieving codes for each stream, the maxi-

mum data rate that stream k can reliably carry is

Ck = log
(
1+Pkh

∗
kK

−1
zk
hk

)
� (8.69)

As usual, the analysis directly carries over to the time-varying fading
scenario, with data rate of the kth stream being

C̄k = ��log
1+Pkh
∗
kK

−1
zk
hk��� (8.70)

where the average is over the stationary distribution of H.
The performance of a bank of MMSE filters with equal power allocation

over an i.i.d. Rayleigh fading channel is plotted in Figure 8.15. We see that
the MMSE receiver performs strictly better than both the decorrelator and the
matched filter over the entire range of SNRs.
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Figure 8.15 Performance (the
ratio of rate to the capacity) of
a basic bank of MMSE
receivers as compared to the
matched filter bank and to the
decorrelator bank. MMSE
performs better than both,
over the entire range of SNR.
The channel is i.i.d. Rayleigh
with nt = nr = 8.
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MMSE–SIC
Analogous to what we did in Section 8.3.2 for the decorrelator, we can now
upgrade the basic bank of linear MMSE receivers by allowing successive
cancellation of streams as well, as depicted in Figure 8.16. What is the
performance improvement in using the MMSE–SIC receiver? Figure 8.17
plots the performance as compared to the capacity of the channel (with nt =
nr = 8) for i.i.d. Rayleigh fading. We observe a startling fact: the bank of linear
MMSE receivers with successive cancellation and equal power allocation
achieves the capacity of the i.i.d. Rayleigh fading channel.

Figure 8.16 MMSE–SIC: a
bank of linear MMSE receivers,
each estimating one of the
parallel data streams, with
streams successively cancelled
from the received vector at
each stage.
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Figure 8.17 The MMSE–SIC
receiver achieves the capacity
of the MIMO channel when
fading is i.i.d. Rayleigh.
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In fact, the MMSE–SIC receiver is optimal in a much stronger sense: it
achieves the best possible sum rate (8.2) of the transceiver architecture in
Section 8.1 for any given H. That is, if the MMSE–SIC receiver is used for
demodulating the streams and the SINR and rate for stream k are SINRk and
log
1+ SINRk� respectively, then the rates sum up to

nt∑

k=1

log
1+ SINRk�= logdet
Inr +HKxH
∗�� (8.71)

which is the best possible sum rate. While this result can be verified directly
by matrix manipulations (Exercise 8.22), the following section gives a deeper
explanation in terms of the underlying information theory (the background
of which is covered in Appendix B). Understanding at this level will be very
useful as we adapt the MMSE–SIC architecture to the analysis of the uplink
with multiple antennas in Chapter 10.

8.3.4 Information theoretic optimality∗

MMSE is information lossless
As a key step to understanding why the MMSE–SIC receiver is optimal, let
us go back to the generic vector channel with additive colored noise (8.58):

y= hx+ z� (8.72)

∗ This section can be skipped on a first reading. It requires knowledge of material in Appendix B
and is not essential for understanding the rest of the book, except for the analysis of the
MIMO uplink in Chapter 10.
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but now with the further assumption that x and z are Gaussian. In this case, it
can be seen that the linear MMSE filter (vmmse �=K−1

z h, cf. (8.61)) not only
maximizes the SNR, but also provides a sufficient statistic to detect x, i.e., it
is information lossless. Thus,

I
x�y�= I
x�v∗mmsey�� (8.73)

The justification for this step is carried out in Exercise 8.19.

A time-invariant channel
Consider again the MIMO channel with a time-invariant channel matrix H:

y�m�=Hx�m�+w�m��

We choose the input x to be �� 
0�diag�P1� � � � �Pnt
	�. We can rewrite the

mutual information between the input and the output as

I
x�y� = I
x1� x2� � � � � xnt �y�

= I
x1�y�+ I
x2�y�x1�+· · ·+ I
xnt �y�x1� � � � � xnt−1�� (8.74)

where the last equality is a consequence of the chain rule of mutual infor-
mation (see (B.18) in Appendix B). Let us look at the kth term in the chain
rule expansion: I
xk�y�x1� � � � � xk−1�. Conditional on x1� � � � � xk−1, we can
subtract their effect from the output and obtain

y′ �= y−
k−1∑

i=1

hixi = hkxk+
∑

i>k

hixi+w�

Thus,

I
xk�y�x1� � � � � xk−1�= I
xk�y
′�= I
xk�v

∗
mmsey

′�� (8.75)

where vmmse is the MMSE filter for estimating xk from y′ and the last equality
follows directly from the fact that the MMSE receiver is information-lossless.
Hence, the rate achieved in kth stage of the MMSE–SIC receiver is precisely
I
xk�y�x1� � � � � xk−1�, and the total rate achieved by this receiver is precisely
the overall mutual information between the input x and the output y of the
MIMO channel.
We now see why the MMSE filter is special: its scalar output preserves

the information in the received vector about xk. This property does not hold
for other filters such as the decorrelator or the matched filter.
In the special case of a MISO channel with a scalar output

y�m�=
nt∑

k=1

hkxk�m�+w�m�� (8.76)
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the MMSE receiver at the kth stage is reduced to simple scalar multiplication
followed by decoding; thus it is equivalent to decoding xk while treating
signals from antennas k+ 1� k+ 2� � � � � nt as Gaussian interference. If we
interpret (8.76) as an uplink channel with nt users, the MMSE–SIC receiver
thus reduces to the SIC receiver introduced in Section 6.1. Here we see another
explanation why the SIC receiver is optimal in the sense of achieving the
sum rate I
x1� x2� � � � � xK� y� of the K-user uplink channel: it “implements”
the chain rule of mutual information.

Fading channel
Now consider communicating using the transceiver architecture in Figure 8.1
but with the MMSE–SIC receiver on a time-varying fading MIMO channel
with receiver CSI. If Q= Int , the MMSE–SIC receiver allows reliable com-
munication at a sum of the rates of the data streams equal to the mutual
information of the channel under inputs of the form

�� 
0�diag�P1� � � � �Pnt
	�� (8.77)

In the case of i.i.d. Rayleigh fading, the optimal input is precisely �� 
0� Int�,
and so the MMSE–SIC receiver achieves the capacity as well.
More generally, we have seen that if a MIMO channel, viewed in the

angular domain, can be modeled by a matrix H having zero mean, uncor-
related entries, then the optimal input distribution is always of the form in
(8.77) (cf. Section 8.2.1 and Exercise 8.3). Independent data streams decoded
using the MMSE–SIC receiver still achieve the capacity of such MIMO
channels, but the data streams are now transmitted over the transmit angular
windows (instead of directly on the antennas themselves). This means that
the transceiver architecture of Figure 8.1 with Q = Ut and the MMSE-SIC
receiver, achieves the capacity of the fast fading MIMO channel.

Discussion 8.1 Connections with CDMA multiuser detection and ISI
equalization

Consider the situation where independent data streams are sent out
from each antenna (cf. (8.42)). Here the received vector is a combi-
nation of the streams arriving in different receive spatial signatures,
with stream k having a receive spatial signature of hk. If we make
the analogy between space and bandwidth, then (8.42) serves as a
model for the uplink of a CDMA system: the streams are replaced by
the users (since the users cannot cooperate, the independence between
them is justified naturally) and hk now represents the received signa-
ture sequence of user k. The number of receive antennas is replaced by
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the number of chips in the CDMA signal. The base-station has access
to the received signal and decodes the information simultaneously com-
municated by the different users. The base-station could use a bank of
linear filters with or without successive cancellation. The study of the
receiver design at the base-station, its complexities and performance, is
called multiuser detection. The progress of multiuser detection is well
chronicled in [131].
Another connection can be drawn to point-to-point communication over

frequency-selective channels. In our study of the OFDM approach to
communicating over frequency-selective channels in Section 3.4.4, we
expressed the effect of the ISI in a matrix form (see (3.139)). This rep-
resentation suggests the following interpretation: communicating over a
block length of Nc on the L-tap time-invariant frequency-selective chan-
nel (see (3.129)) is equivalent to communicating over an Nc×Nc MIMO
channel. The equivalent MIMO channel H is related to the taps of the
frequency-selective channel, with the �th tap denoted by h� (for � ≥ L,
the tap h� = 0), is

Hij =
{
hi−j for i ≥ j�

0 otherwise�
(8.78)

Due to the nature of the frequency-selective channel, previously trans-
mitted symbols act as interference to the current symbol. The study of
appropriate techniques to recover the transmit symbols in a frequency-
selective channel is part of classical communication theory under the
rubric of equalization. In our analogy, the transmitted symbols at different
times in the frequency-selective channel correspond to the ones sent over
the transmit antennas. Thus, there is a natural analogy between equaliza-
tion for frequency-selective channels and transceiver design for MIMO
channels (Table 8.1).

Table 8.1 Analogies between ISI equalization and MIMO communication
techniques. We have covered all of these except the last one, which will be
discussed in Chapter 10.

ISI equalization MIMO communication

OFDM SVD
Linear zero-forcing equalizer Decorrelator/interference nuller
Linear MMSE equalizer Linear MMSE receiver
Decision feedback equalizer (DFE) Successive interference cancellation (SIC)
ISI precoding Costa precoding
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8.4 Slow fading MIMO channel

We now turn our attention to the slow fading MIMO channel,

y�m�=Hx�m�+w�m�� (8.79)

where H is fixed over time but random. The receiver is aware of the channel
realization but the transmitter only has access to its statistical characterization.
As usual, there is a total transmit power constraint P. Suppose we want
to communicate at a target rate R bits/s/Hz. If the transmitter were aware
of the channel realization, then we could use the transceiver architecture in
Figure 8.1 with an appropriate allocation of rates to the data streams to achieve
reliable communication as long as

logdet
(

Inr +
1
N0

HKxH
∗
)

> R� (8.80)

where the total transmit power constraint implies a condition on the covariance
matrix: Tr�Kx� ≤ P. However, remarkably, information theory guarantees
the existence of a channel-state independent coding scheme that achieves
reliable communication whenever the condition in (8.80) is met. Such a
code is universal, in the sense that it achieves reliable communication on
every MIMO channel satisfying (8.80). This is similar to the universality
of the code achieving the outage performance on the slow fading parallel
channel (cf. Section 5.4.4). When the MIMO channel does not satisfy the
condition in (8.80), then we are in outage. We can choose the transmit strategy
(parameterized by the covariance) to minimize the probability of the outage
event:

pmimo
out 
R�= min

Kx�Tr�Kx�≤P
�

{

logdet
(

Inr +
1
N0

HKxH
∗
)

< R

}

� (8.81)

Section 8.5 describes a transceiver architecture which achieves this outage
performance.
The solution to this optimization problem depends, of course, on the statis-

tics of channel H. For example, if H is deterministic, the optimal solution is
to perform a singular value decomposition of H and waterfill over the eigen-
modes. When H is random, then one cannot tailor the covariance matrix to
one particular channel realization but should instead seek a covariance matrix
that works well statistically over the ensemble of the channel realizations.
It is instructive to compare the outage optimization problem (8.81) with

that of computing the fast fading capacity with receiver CSI (cf. (8.10)). If
we think of

f
Kx�H� �= logdet
(

Inr +
1
N0

HKxH
∗
)

� (8.82)
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as the rate of information flow over the channel H when using a coding
strategy parameterized by the covariance matrix Kx, then the fast fading
capacity is

C = max
Kx�Tr�Kx�≤P

�H�f
Kx�H��� (8.83)

while the outage probability is

pout
R�= min
Kx�Tr�Kx�≤P

��f
Kx�H� < R	� (8.84)

In the fast fading scenario, one codes over the fades through time and the
relevant performance metric is the long-term average rate of information flow
that is permissible through the channel. In the slow fading scenario, one is
only provided with a single realization of the channel and the objective is to
minimize the probability that the rate of information flow falls below the target
rate. Thus, the former is concerned with maximizing the expected value of the
random variable f
Kx�H� and the latter with minimizing the tail probability
that the same random variable is less than the target rate. While maximizing
the expected value typically helps to reduce this tail probability, in general
there is no one-to-one correspondence between these two quantities: the tail
probability depends on higher-order moments such as the variance.
We can consider the i.i.d. Rayleigh fading model to get more insight into

the nature of the optimizing covariance matrix. The optimal covariance matrix
over the fast fading i.i.d. Rayleigh MIMO channel is K∗

x = P/nt · Int . This
covariance matrix transmits isotropically (in all directions), and thus one
would expect that it is also good in terms of reducing the variance of the
information rate f
Kx�H� and, indirectly, the tail probability. Indeed, we have
seen (cf. Section 5.4.3 and Exercise 5.16) that this is the optimal covariance
in terms of outage performance for the MISO channel, i.e., nr = 1, at high
SNR. In general, [119] conjectures that this is the optimal covariance matrix
for the i.i.d. Rayleigh slow fading MIMO channel at high SNR. Hence, the
resulting outage probability

piid
out
R�= �

{

logdet
(

Inr +
SNR
nt

HH∗
)

< R

}

� (8.85)

is often taken as a good upper bound to the actual outage probability at high
SNR.
More generally, the conjecture is that it is optimal to restrict to a subset

of the antennas and then transmit isotropically among the antennas used.
The number of antennas used depends on the SNR level: the lower the SNR
level relative to the target rate, the smaller the number of antennas used. In
particular, at very low SNR relative to the target rate, it is optimal to use just
one transmit antenna. We have already seen the validity of this conjecture
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in the context of a single receive antenna (cf. Section 5.4.3) and we are
considering a natural extension to the MIMO situation. However, at typical
outage probability levels, the SNR is high relative to the target rate and it is
expected that using all the antennas is a good strategy.

High SNR
What outage performance can we expect at high SNR? First, we see that the
MIMO channel provides increased diversity. We know that with nr = 1 (the
MISO channel) and i.i.d. Rayleigh fading, we get a diversity gain equal to nt .
On the other hand, we also know that with nt = 1 (the SIMO channel) and
i.i.d. Rayleigh fading, the diversity gain is equal to nr . In the i.i.d. Rayleigh
fading MIMO channel, we can achieve a diversity gain of nt ·nr , which is the
number of independent random variables in the channel. A simple repetition
scheme of using one transmit antenna at a time to send the same symbol x
successively on the different nt antennas over nt consecutive symbol periods,
yields an equivalent scalar channel

ỹ =
nr∑

i=1

nt∑

j=1

�hij�2x+w� (8.86)

whose outage probability decays like 1/SNRntnr . Exercise 8.23 shows the
unsurprising fact that the outage probability of the i.i.d. Rayleigh fading
MIMO channel decays no faster than this.
Thus, a MIMO channel yields a diversity gain of exactly nt ·nr . The cor-

responding �-outage capacity of the MIMO channel benefits from both the
diversity gain and the spatial degrees of freedom. We will explore the high
SNR characterization of the combined effect of these two gains in Chapter 9.

8.5 D-BLAST: an outage-optimal architecture

We have mentioned that information theory guarantees the existence of cod-
ing schemes (parameterized by the covariance matrix) that ensure reliable
communication at rate R on every MIMO channel that satisfies the condition
(8.80). In this section, we will derive a transceiver architecture that achieves
the outage performance. We begin with considering the performance of the
V-BLAST architecture in Figure 8.1 on the slow fading MIMO channel.

8.5.1 Suboptimality of V-BLAST

Consider the V-BLAST architecture in Figure 8.1 with the MMSE–SIC
receiver structure (cf. Figure 8.16) that we have shown to achieve the
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capacity of the fast fading MIMO channel. This architecture has two main
features:

• Independently coded data streams are multiplexed in an appropriate coordi-
nate system Q and transmitted over the antenna array. Stream k is allocated
an appropriate power Pk and an appropriate rate Rk.

• A bank of linear MMSE receivers, in conjunction with successive cancel-
lation, is used to demodulate the streams (the MMSE–SIC receiver).

The MMSE–SIC receiver demodulates the stream from transmit antenna 1
using an MMSE filter, decodes the data, subtracts its contribution from the
stream, and proceeds to stream 2, and so on. Each stream is thought of as a
layer.
Can this same architecture achieve the optimal outage performance in the

slow fading channel? In general, the answer is no. To see this concretely,
consider the i.i.d. Rayleigh fading model. Here the data streams are transmitted
over separate antennas and it is easy to see that each stream has a diversity
of at most nr: if the channel gains from the kth transmit antenna to all the
nr receive antennas are in deep fade, then the data in the kth stream will
be lost. On the other hand, the MIMO channel itself provides a diversity
gain of nt ·nr . Thus, V-BLAST does not exploit the full diversity available
in the channel and therefore cannot be outage-optimal. The basic problem is
that there is no coding across the streams so that if the channel gains from
one transmit antenna are bad, the corresponding stream will be decoded in
error.
We have said that, under the i.i.d. Rayleigh fading model, the diversity of

each stream in V-BLAST is at most nr . The diversity would be exactly nr if
it were the only stream being transmitted; with simultaneous transmission of
streams, the diversity could be even lower depending on the receiver. This
can be seen most clearly if we replace the bank of linear MMSE receivers
in V-BLAST with a bank of decorrelators and consider the case nt ≤ nr . In
this case, the distribution of the output SNR at each stage can be explicitly
computed; this was actually done in Section 8.3.2:

SINRk ∼
Pk

N0

·2
2�nr−
nt−k��� (8.87)

The diversity of the kth stream is therefore nr − 
nt −k�. Since nt −k is the
number of uncancelled interfering streams at the kth stage, one can interpret
this as saying that the loss of diversity due to interference is precisely the
number of interferers needed to be nulled out. The first stream has the worst
diversity of nr−nt+1; this is also the bottleneck of the whole system because
the correct decoding of subsequent streams depends on the correct decoding
and cancellation of this stream. In the case of a square system, the first stream
has a diversity of only 1, i.e., no diversity gain. We have already seen this
result in the special case of the 2×2 example in Section 3.3.3. Though this
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analysis is for the decorrelator, it turns out that the MMSE receiver yields
exactly the same diversity gain (see Exercise 8.24). Using joint ML detection
of the streams, on the other hand, a diversity of nr can be recovered (as in
the 2×2 example in Section 3.3.3). However, this is still far away from the
full diversity gain ntnr of the channel.
There are proposed improvements to the basic V-BLAST architecture. For

instance, adapting the cancellation order as a function of the channel, and
allocating different rates to different streams depending on their position in the
cancellation order. However, none of these variations can provide a diversity
larger than nr , as long as we are sending independently coded streams on the
transmit antennas.

A more careful look
Here is a more precise understanding of why V-BLAST is suboptimal, which
will suggest how V-BLAST can be improved. For a given H, (8.71) yields
the following decomposition:

logdet
Inr +HKxH
∗�=

nt∑

k=1

log
1+ SINRk�� (8.88)

SINRk is the output signal-to-interference-plus-noise ratio of the MMSE
demodulator at the kth stage of the cancellation. The output SINRs are random
since they are a function of the channel matrix H. Suppose we have a target
rate of R and we split this into rates R1� � � � �Rnt

allocated to the individual
streams. Suppose that the transmit strategy (parameterized by the covariance
matrix Kx �= Q diag�P1� � � � �Pnt

	Q∗, cf. (8.3)) is chosen to be the one that
yields the outage probability in (8.81). Now we note that the channel is in
outage if

logdet
Inr +HKxH
∗� < R� (8.89)

or equivalently,

nt∑

k=1

log
1+ SINRk� <
nt∑

k=1

Rk� (8.90)

However, V-BLAST is in outage as long as the random SINR in any stream
cannot support the rate allocated to that stream, i.e.,

log
1+ SINRk� < Rk� (8.91)

for any k. Clearly, this can occur even when the channel is not in outage.
Hence, V-BLAST cannot be universal and is not outage-optimal. This problem
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did not appear in the fast fading channel because there we code over the
temporal channel variations and thus kth stream gets a deterministic rate of

��log
1+ SINRk�� bits/s/Hz� (8.92)

8.5.2 Coding across transmit antennas: D-BLAST

Significant improvement of V-BLAST has to come from coding across the
transmit antennas. How do we improve the architecture to allow that? To see
more clearly how to proceed, one can draw an analogy between V-BLAST
and the parallel fading channel. In V-BLAST, the kth stream effectively sees
a channel with a (random) signal-to-noise ratio SINRk; this can therefore be
viewed as a parallel channel with nt sub-channels. In V-BLAST, there is
no coding across these sub-channels: outage therefore occurs whenever one
of these sub-channels is in a deep fade and cannot support the rate of the
stream using that sub-channel. On the other hand, by coding across the sub-
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Figure 8.18 How D-BLAST
works. (a) A soft estimate of
block A of the first codeword
(layer) obtained without
interference. (b) A soft MMSE
estimate of block B is obtained
by suppressing the interference
from antenna 2. (c) The soft
estimates are combined to
decode the first codeword
(layer). (d) The first codeword
is cancelled and the process
restarts with the second
codeword (layer).

channels, we can average over the randomness of the individual sub-channels
and get better outage performance. From our discussion on parallel channels
in Section 5.4.4, we know reliable communication is possible whenever

nt∑

k=1

log
1+ SINRk� > R� (8.93)

From the decomposition (8.88), we see that this is exactly the no-outage
condition of the original MIMO channel as well. Therefore, it seems that
universal codes for the parallel channel can be transformed directly into
universal codes for the original MIMO channel.
However, there is a problem here. To obtain the second sub-channel (with

SINR2), we are assuming that the first stream is already decoded and its
received signal is cancelled off. However, to code across the sub-channels,
the two streams should be jointly decoded. There seems to be a chicken-and-
egg problem: without decoding the first stream, one cannot cancel its signal
and get the second stream in the first place. The key idea to solve this problem
is to stagger multiple codewords so that each codeword spans multiple trans-
mit antennas but the symbols sent simultaneously by the different transmit
antennas belong to different codewords.
Let us go through a simple example with two transmit antennas

(Figure 8.18). The ith codeword x
i� is made up of two blocks, x
i�A and x
i�B , each
of length N . In the first N symbol times, the first antenna sends nothing. The
second antenna sends x
1�A , blockA of the first codeword. The receiver performs
maximal ratio combining of the signals at the receive antennas to estimate x
1�A ;
this yields an equivalent sub-channel with signal-to-noise ratio SINR2, since the
other antenna is sending nothing.
In the second N symbol times, the first antenna sends x
1�B (block B of the

first codeword), while the second antenna sends x
2�A (block A of the second
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codeword). The receiver does a linear MMSE estimation of x
1�B , treating x
2�A

as interference to be suppressed. This produces an equivalent sub-channel of
signal-to-noise ratio SINR1. Thus, the first codeword as a whole now sees the
parallel channel described above (Exercise 8.25), and, assuming the use of a
universal parallel channel code, can be decoded provided that

log
1+ SINR1�+ log
1+ SINR2� > R� (8.94)

Once codeword 1 is decoded, x
1�B can be subtracted off the received signal
in the second N symbol times. This leaves x
2�A alone in the received signal,
and the process can be repeated. Exercise 8.26 generalizes this architecture
to arbitrary number of transmit antennas.
In V-BLAST, each coded stream, or layer, extends horizontally in the space-

time grid and is placed vertically above another. In the improved architecture
above, each layer is striped diagonally across the space-time grid (Figure 8.18).
This architecture is naturally called Diagonal BLAST, or D-BLAST for short.
The D-BLAST scheme suffers from a rate loss because in the initialization

phase some of the antennas have to be kept silent. For example, in the
two transmit antenna architecture illustrated in Figure 8.18 (with N = 1 and
5 layers), two symbols are set to zero among the total of 10; this reduces the
rate by a factor of 4/5 (Exercise 8.27 generalizes this calculation). So for a
finite number of layers, D-BLAST does not achieve the outage performance
of the MIMO channel. As the number of layers grows, the rate loss gets
amortized and the MIMO outage performance is approached. In practice,
D-BLAST suffers from error propagation: if one layer is decoded incorrectly,
all subsequent layers are affected. This puts a practical limit on the number
of layers which can be transmitted consecutively before re-initialization. In
this case, the rate loss due to initialization and termination is not negligible.

8.5.3 Discussion

D-BLAST should really be viewed as a transceiver architecture rather than a
space-time code: through signal processing and interleaving of the codewords
across the antennas, it converts the MIMO channel into a parallel channel.
As such, it allows the leveraging of any good parallel-channel code for the
MIMO channel. In particular, a universal code for the parallel channel, when
used in conjunction with D-BLAST, is a universal space-time code for the
MIMO channel.
It is interesting to compare D-BLAST with the Alamouti scheme discussed

in Chapters 3 and 5. The Alamouti scheme can also be considered as a
transceiver architecture: it converts the 2× 1 MISO slow fading channel
into a SISO slow fading channel. Any universal code for the SISO channel
when used in conjunction with the Alamouti scheme yields a universal code
for the MISO channel. Compared to D-BLAST, the signal processing is
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much simpler, and there are no rate loss or error propagation issues. On the
other hand, D-BLAST works for an arbitrary number of transmit and receive
antennas. As we have seen, the Alamouti scheme does not generalize to
arbitrary numbers of transmit antennas (cf. Exercise 3.16). Further, we will
see in Chapter 9 that the Alamouti scheme is strictly suboptimal in MIMO
channels with multiple transmit and receive antennas. This is because, unlike
D-BLAST, the Alamouti scheme does not exploit all the available degrees of
freedom in the channel.

Chapter 8 The main plot

Capacity of fast fading MIMO channels
In a rich scattering environment with receiver CSI, the capacity is approx-
imately
• min
nt� nr� log SNR at high SNR: a gain in spatial degrees of freedom;
• nrSNR log2 e at low SNR: a receive beamforming gain.
With nt = nr = n, the capacity is approximately nc∗
SNR� for all SNR.
Here c∗
SNR� is a constant.

Transceiver architectures

• With full CSI convert the MIMO channel into nmin parallel channels by
an appropriate change in the basis of the transmit and receive signals.
This transceiver structure is motivated by the singular value decomposi-
tion of any linear transformation: a composition of a rotation, a scaling
operation, followed by another rotation.

• With receiver CSI send independent data streams over each of the
transmit antennas. The ML receiver decodes the streams jointly and
achieves capacity. This is called the V-BLAST architecture.

Reciever structures
• Simple receiver structure Decode the data streams separately. Three

main structures:
– matched filter: use the receive antenna array to beamform to the
receive spatial signature of the stream. Performance close to capacity
at low SNR.

– decorrelator: project the received signal onto the subspace orthogonal
to the receive spatial signatures of all the other streams.
• to be able to do the projection operation, need nr ≥ nt .
• For nr ≥ nt , the decorrelator bank captures all the spatial degrees of
freedom at high SNR.

– MMSE: linear receiver that optimally trades off capturing the energy
of the data stream of interest and nulling the inter-stream interference.
Close to optimal performance at both low and high SNR.
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• Successive cancellation Decode the data streams sequentially, using the
results of the decoding operation to cancel the effect of the decoded data
streams on the received signal.

Bank of linear MMSE receivers with successive cancellation achieves the
capacity of the fast fading MIMO channel at all SNR.

Outage performance of slow fading MIMO channels
The i.i.d. Rayleigh slow fading MIMO channel provides a diversity gain
equal to the product of nt and nr . Since the V-BLAST architecture does not
code across the transmit antennas, it can achieve a diversity gain of at most
nr . Staggered interleaving of the streams of V-BLAST among the transmit
antennas achieves the full outage performance of the MIMO channel. This
is the D-BLAST architecture.

8.6 Bibliographical notes

The interest in MIMO communications was sparked by the capacity analysis of
Foschini [40], Foschini and Gans [41] and Telatar [119]. Foschini and Gans focused
on analyzing the outage capacity of the slow fading MIMO channel, while Telatar
studied the capacity of fixed MIMO channels under optimal waterfilling, ergodic
capacity of fast fading channels under receiver CSI, as well as outage capacity of slow
fading channels. The D-BLAST architecture was introduced by Foschini [40], while
the V-BLAST architecture was considered by Wolniansky et al. [147] in the context
of point-to-point MIMO communication.

The study of the linear receivers, decorrelator and MMSE, was initiated in the
context of multiuser detection of CDMA signals. The research in multiuser detection
is very well exposited and summarized in a book by Verdú [131], who was the pioneer
in this field. In particular, decorrelators were introduced by Lupas and Verdú [77] and
the MMSE receiver by Madhow and Honig [79]. The optimality of the MMSE receiver
in conjunction with successive cancellation was shown by Varanasi and Guess [129].

The literature on random matrices as applied in communication theory is summa-
rized by Tulino and Verdú [127]. The key result on the asymptotic distribution of
the singular values of large random matrices used in this chapter is by Marc̆enko and
Pastur [78].

8.7 Exercises

Exercise 8.1 (reciprocity) Show that the capacity of a time-invariant MIMO channel
with nt transmit, nr receive antennas and channel matrix H is the same as that of
the channel with nr transmit, nt receive antennas, matrix H∗, and same total power
constraint.
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Exercise 8.2 Consider coding over a block of length N on the data streams in the
transceiver architecture in Figure 8.1 to communicate over the time-invariant MIMO
channel in (8.1).
1. Fix � > 0 and consider the ellipsoid E
�� defined as

�a � a∗
HKxH
∗ ⊗ IN +N0InrN �

−1a ≤ N
nr + ��	� (8.95)

Here we have denoted the tensor product (or Kronecker product) between matrices
by the symbol ⊗. In particular, HKxH

∗⊗IN is a nrN ×nrN block diagonal matrix:

HKxH
∗ ⊗ IN =







HKxH
∗ 0
HKxH

∗
� � �

0 HKxH





 �

Show that, for every �, the received vector yN (of length nrN ) lies with high
probability in the ellipsoid E
��, i.e.,

��yN ∈ E
��	→ 1� as N →�� (8.96)

2. Show that the volume of the ellipsoid E
0� is equal to

det
N0Inr +HKxH
∗�N (8.97)

times the volume of a 2nrN -dimensional real sphere with radius
√
nrN . This

justifies the expression in (8.4).
3. Show that the noise vector wN of length nrN satisfies

��
wN
2 ≤ N0N
nr + ��	→ 1� as N →�� (8.98)

Thus wN lives, with high probability, in a 2nrN -dimensional real sphere of radius√
N0nrN . Compare the volume of this sphere to the volume of the ellipsoid in

(8.97) to justify the expression in (8.5).

Exercise 8.3 [130, 126] Consider the angular representation Ha of the MIMO
channel H. We statistically model the entries of Ha as zero mean and jointly uncor-
related.
1. Starting with the expression in (8.10) for the capacity of the MIMO channel with

receiver CSI and substituting H �= UrH
aU∗

t , show that

C = max
Kx�TrKx≤P

�

[

logdet
(

Inr +
1
N0

HaU∗
t KxUtH

a∗
)]

� (8.99)

2. Show that we can restrict the input covariance in (8.99), without changing the
maximal value, to be of the following special structure:

Kx = Ut�U∗
t � (8.100)
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where � is a diagonal matrix with non-negative entries that sum to P. Hint: We
can always consider a covariance matrix of the form

Kx = UtK̃xU
∗
t � (8.101)

with K̃ also a covariance matrix satisfying the total power constraint. To show that
K̃ can be restricted to be diagonal, consider the following decomposition:

K̃x =�+Koff � (8.102)

where � is a diagonal matrix and Koff has zero diagonal elements (and thus
contains all the off-diagonal elements of K̃). Validate the following sequence of
inequalities:

�

[

logdet
(

Inr +
1
N0

HaKoffH
a∗
)]

≤ log�
[

det
(

Inr +
1
N0

HaKoffH
a∗
)]

� (8.103)

= logdet
(

�

[

Inr +
1
N0

HaKoffH
a∗
])

� (8.104)

= 0� (8.105)

You can use Jensen’s inequality (cf. Exercise B.2) to get (8.103). In (8.104), we
have denoted ��X� to be the matrix with 
i� j�th entry equal to ��Xij �. Now use the
property that the elements of Ha are uncorrelated in arriving at (8.104) and (8.105).
Finally, using the decomposition in (8.102), conclude (8.100), i.e., it suffices to
consider covariance matrices K̃x in (8.101) to be diagonal.

Exercise 8.4 [119] Consider i.i.d. Rayleigh fading, i.e., the entries of H are i.i.d.
�� 
0�1�, and the capacity of the fast fading channel with only receiver CSI
(cf. (8.10)).
1. For i.i.d. Rayleigh fading, show that the distribution of H and that of HU are

identical for every unitary matrix U. This is a generalization of the rotational
invariance of an i.i.d. complex Gaussian vector (cf. (A.22) in Appendix A).

2. Show directly for i.i.d. Rayleigh fading that the input covariance Kx in (8.10) can
be restricted to be diagonal (without resorting to Exercise 8.3(2)).

3. Show further that among the diagonal matrices, the optimal input covariance is

P/nt�Int . Hint: Show that the map


p1� � � � � pK� �→ �

[

logdet
(

Inr +
1
N0

Hdiag�p1� � � � � pnt
	H∗

)]

(8.106)

is jointly concave. Further show that the map is symmetric, i.e., reordering the
argument p1� � � � � pnt

does not change the value. Observe that a jointly concave,
symmetric function is maximized, subject to a sum constraint, exactly when all the
function arguments are the same and conclude the desired result.

Exercise 8.5 Consider the uplink of the cellular systems studied in Chapter 4: the
narrowband system (GSM), the wideband CDMA system (IS-95), and the wideband
OFDM system (Flash-OFDM).
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1. Suppose that the base-station is equipped with an array of multiple receive antennas.
Discuss the impact of the receive antenna array on the performance of the three
systems discussed in Chapter 4. Which system benefits the most?

2. Now consider the MIMO uplink, i.e., the mobiles are also equipped with multiple
(transmit) antennas. Discuss the impact on the performance of the three cellular
systems. Which system benefits the most?

Exercise 8.6 In Exercise 8.3 we have seen that the optimal input covariance is of the
form Kx = Ut�U∗

t with � a diagonal matrix. In this exercise, we study the situations
under which� is 
P/nt�Int , making the optimal input covariance also equal to 
P/nt�Int .
(We have already seen one instance when this is true in Exercise 8.4: the i.i.d. Rayleigh
fading scenario.) Intuitively, this should be true whenever there is complete symmetry
among the transmit angular windows. This heuristic idea is made precise below.
1. The symmetry condition formally corresponds to the following assumption on the

columns (there are nt of them, one for each of the transmit angular windows) of
the angular representation Ha = UtHU∗

r : the nt column vectors are independent
and, further, the vectors are identically distributed. We do not specify the joint
distribution of the entries within any of the columns other than requiring that
they have zero mean. With this symmetry condition, show that the optimal input
covariance is 
P/nt�Int .

2. Using the previous part, or directly, strengthen the result of Exercise 8.4 by showing
that the optimal input covariance is 
P/nt�Int whenever

H �= �h1� � � hnt
�� (8.107)

where h1� � � � �hnt
are i.i.d. �� 
0�Kh� for some covariance matrix Kh.

Exercise 8.7 In Section 8.2.2, we showed that with receiver CSI the capacity of the
i.i.d. Rayleigh fading n×n MIMO channel grows linearly with n at all SNR. In this
reading exercise, we consider other statistical channel models which also lead to a
linear increase of the capacity with n.
1. The capacity of the MIMO channel with i.i.d. entries (not necessarily Rayleigh),

grows linearly with n. This result is derived in [21].
2. In [21], the authors also consider a correlated channel model: the entries of the

MIMOchannel are jointly complexGaussian (with invertible covariancematrix). The
authors show that the capacity still increases linearly with the number of antennas.

3. In [75], the authors show a linear increase in capacity for a MIMO channel with
the number of i.i.d. entries growing quadratically in n (i.e., the number of i.i.d.
entries is proportional to n2, with the rest of the entries equal to zero).

Exercise 8.8 Consider the block fading MIMO channel (an extension of the single
antenna model in Exercise 5.28):

y�m+nTc�=H�n�x�m+nTc�+w�m+nTc�� m= 1� � � � � Tc� n≥ 1� (8.108)

where Tc is the coherence time of the channel (measured in terms of the number of
samples). The channel variations across the blocks H�n� are i.i.d. Rayleigh. A pilot
based communication scheme transmits known symbols for k time samples at the
beginning of each coherence time interval: each known symbol is sent over a different
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transmit antenna, with the other transmit antennas silent. At high SNR, the k pilot
symbols allow the receiver to partially estimate the channel: over the nth block, k of
the nt columns of H�n� are estimated with a high degree of accuracy. This allows us
to reliably communicate on the k×nr MIMO channel with receiver CSI.
1. Argue that the rate of reliable communication using this scheme at high SNR is

approximately at least
(
Tc−k

Tc

)

min
k�nr� log SNR bits/s/Hz� (8.109)

Hint: An information theory fact says that replacing the effect of channel uncer-
tainty as Gaussian noise (with the same covariance) can only make the reliable
communication rate smaller.

2. Show that the optimal training time (and the corresponding number of transmit
antennas to use) is

k∗ �=min
(

nt� nr�
Tc

2

)

� (8.110)

Substituting this in (8.109) we see that the number of spatial degrees of freedom
using the pilot scheme is equal to

(
Tc−k∗

Tc

)

k∗� (8.111)

3. A reading exercise is to study [155], which shows that the capacity of the non-
coherent block fading channel at high SNR also has the same number of spatial
degrees freedom as in (8.111).

Exercise 8.9 Consider the time-invariant frequency-selective MIMO channel:

y�m�=
L−1∑

�=0

H�x�m−��+w�m�� (8.112)

Construct an appropriate OFDM transmission and reception scheme to transform the
original channel to the following parallel MIMO channel:

ỹn = H̃nx̃n+ w̃n� n= 0� � � � �Nc−1� (8.113)

Here Nc is the number of OFDM tones. Identify H̃n, n = 0� � � � �Nc − 1 in terms of
H�� �= 0� � � � �L−1.

Exercise 8.10 Consider a fixed physical environment and a corresponding flat fad-
ing MIMO channel. Now suppose we double the transmit power constraint and the
bandwidth. Argue that the capacity of the MIMO channel with receiver CSI exactly
doubles. This scaling is consistent with that in the single antenna AWGN channel.

Exercise 8.11 Consider (8.42) where independent data streams �xi�m�	 are transmitted
on the transmit antennas (i= 1� � � � nt):

y�m�=
nt∑

i=1

hixi�m�+w�m�� (8.114)

Assume nt ≤ nr .
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1. We would like to study the operation of the decorrelator in some detail here. So
we make the assumption that hi is not a linear combination of the other vectors
h1� � � � �hi−1�hi+1� � � � �hnt

for every i= 1� � � � � nt . DenotingH= �h1 · · ·hnt
�, show

that this assumption is equivalent to the fact that H∗H is invertible.
2. Consider the following operation on the received vector in (8.114):

x̂�m� �= 
H∗H�−1H∗y�m� (8.115)

= x�m�+ 
H∗H�−1H∗w�m�� (8.116)

Thus x̂i�m�= xi�m�+ w̃i�m� where w̃�m� �= 
H∗H�−1H∗w�m� is colored Gaussian
noise. This means that the ith data stream sees no interference from any of the other
streams in the received signal x̂i�m�. Show that x̂i�m� must be the output of the
decorrelator (up to a scaling constant) for the ith data stream and hence conclude
the validity of (8.47). This property, and many more, about the decorrelator can be
learnt from Chapter 5 of [99]. The special case of nt = nr = 2 can be verified by
explicit calculations.

Exercise 8.12 Suppose H (with nt < nr) has i.i.d. �� 
0�1� entries and denote
h1� � � � �hnt

as the columns of H. Show that the probability that the columns are
linearly dependent is zero. Hence, conclude that the probability that the rank of H is
strictly smaller than nt is zero.

Exercise 8.13 Suppose H (with nt < nr) has i.i.d. �� 
0�1� entries and denote the
columns ofH as h1� � � � �hnt

. Use the result of Exercise 8.12 to show that the dimension
of the subspace spanned by the vectors h1� � � � �hk−1�hk+1� � � � �hnt

is nt − 1 with
probability 1. Hence conclude that the dimension of the subspace Vk, orthogonal to
this one, has dimension nr −nt +1 with probability 1.

Exercise 8.14 Consider the Rayleigh fading n× n MIMO channel H with i.i.d.
�� 
0�1� entries. In the text we have discussed a random matrix result about the
convergence of the empirical distribution of the singular values of H/

√
n. It turns out

that the condition number of H/
√
n converges to a deterministic limiting distribution.

This means that the random matrix H is well-conditioned. The corresponding limiting
density is given by

f
x� �= 4
x3

e−2/x2 � (8.117)

A reading exercise is to study the derivation of this result proved in Theorem 7.2 of [32].

Exercise 8.15 Consider communicating over the time-invariant nt×nr MIMO channel:

y�m�=Hx�m�+w�m�� (8.118)

The information bits are encoded using, say, a capacity-achieving Gaussian code such
as an LDPC code. The encoded bits are then modulated into the transmit signal x�m�;
typically the components of the transmit vector belong to a regular constellation such as
QAM. The receiver, typically, operates in two stages. The first stage is demodulation:
at each time, soft information (a posteriori probabilities of the bits that modulated the
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transmit vector) about the transmitted QAM symbol is evaluated. In the second stage,
the soft information about the bits is fed to a channel decoder.

In this reading exercise, we study the first stage of the receiver. At time m, the
demodulation problem is to find the QAM points composing the vector x�m� such
that 
y�m�−Hx�m�
2 is the smallest possible. This problem is one of classical “least
squares”, but with the domain restricted to a finite set of points. When the modulation
is QAM, the domain is a finite subset of the integer lattice. Integer least squares is
known to be a computationally hard problem and several heuristic solutions, with less
complexity, have been proposed. One among them is the sphere decoding algorithm.
A reading exercise is to use [133] to understand the algorithm and an analysis of the
average (over the fading channel) complexity of decoding.

Exercise 8.16 In Section 8.2.2 we showed two facts for the i.i.d. Rayleigh fading
channel: (i) for fixed n and at low SNR, the capacity of a 1 by n channel approaches
that of an n by n channel; (ii) for fixed SNR but large n, the capacity of a 1 by n

channel grows only logarithmically with n while that of an n by n channel grows
linearly with n. Resolve the apparent paradox.

Exercise 8.17 Verify (8.26). This result is derived in [132].

Exercise 8.18 Consider the channel (8.58):

y= hx+ z� (8.119)

where z is �� 
0�Kz�, h is a (complex) deterministic vector and x is the zero mean
unknown (complex) random variable to be estimated. The noise z and the data symbol
x are assumed to be uncorrelated.
1. Consider the following estimate of x from y using the vector c (normalized so that


c
 = 1):

x̂ �= a c∗y= a c∗hx+a c∗z� (8.120)

Show that the constant a that minimizes the mean square error (���x− x̂�2�) is
equal to

���x�2��c∗h�2
���x�2��c∗h�2+ c∗Kzc

h∗c
�h∗c� � (8.121)

2. Calculate the minimal mean square error (denoted by MMSE) of the linear estimate
in (8.120) (by using the value of a in (8.121)). Show that

���x�2�
MMSE

= 1+SNR �= 1+ ���x�2��c∗h�2
c∗Kzc

� (8.122)

3. Since we have shown that c = K−1
z h maximizes the SNR (cf. (8.61)) among all

linear estimators, conclude that this linear estimate (along with an appropriate
choice of the scaling a, as in (8.121)), minimizes the mean square error in the
linear estimation of x from (8.119).
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Exercise 8.19 Consider detection on the generic vector channel with additive colored
Gaussian noise (cf. (8.72)).
1. Show that the output of the linear MMSE receiver,

v∗mmsey� (8.123)

is a sufficient statistic to detect x from y. This is a generalization of the scalar
sufficient statistic extracted from the vector detection problem in Appendix A (cf.
(A.55)).

2. From the previous part, we know that the random variables y and x are independent
conditioned on v∗mmsey. Use this to verify (8.73).

Exercise 8.20 We have seen in Figure 8.13 that, at low SNR, the bank of linear
matched filter achieves capacity of the 8 by 8 i.i.d. Rayleigh fading channel, in the
sense that the ratio of the total achievable rate to the capacity approaches 1. Show
that this is true for general nt and nr .

Exercise 8.21 Consider the n by n i.i.d. flat Rayleigh fading channel. Show that
the total achievable rate of the following receiver architectures scales linearly with
n: (a) bank of linear decorrelators; (b) bank of matched filters; (c) bank of linear
MMSE receivers. You can assume that independent information streams are coded
and sent out of each of the transmit antennas and the power allocation across antennas
is uniform. Hint: The calculation involving the linear MMSE receivers is tricky. You
have to show that the linear MMSE receiver performance, asymptotically for large
n, depends on the covariance matrix of the interference faced by each stream only
through its empirical eigenvalue distribution, and then apply the large-n random matrix
result used in Section 8.2.2. To show the first step, compute the mean and variance of
the output SINR, conditional on the spatial signatures of the interfering streams. This
calculation is done in [132, 123]

Exercise 8.22 Verify (8.71) by direct matrix manipulations.
Hint: You might find useful the following matrix inversion lemma (for invertible A),


A+xx∗�−1 = A−1− A−1xx∗A−1

1+x∗A−1x
� (8.124)

Exercise 8.23 Consider the outage probability of an i.i.d. Rayleigh MIMO channel
(cf. (8.81)). Show that its decay rate in SNR (equal to P/N0) is no faster than nt ·nr by
justifying each of the following steps.

pout
R� ≥ ��logdet
Inr + SNRHH∗� < R	 (8.125)

≥ ��SNR Tr�HH∗� < R	 (8.126)

≥ 
��SNR �h11�2 < R	�ntnr (8.127)

=
(
1− e−

R
SNR

)ntnr
(8.128)

≈ Rntnr

SNRntnr
� (8.129)
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Exercise 8.24 Calculate the maximum diversity gains for each of the streams in the
V-BLAST architecture using the MMSE–SIC receiver.Hint: At high SNR, interference
seen by each stream is very high and the SINR of the linear MMSE receiver is very
close to that of the decorrelator in this regime.

Exercise 8.25 Consider communicating over a 2× 2 MIMO channel using the
D-BLAST architecture with N = 1 and equal power allocation P1 = P2 = P for both
the layers. In this exercise, we will derive some properties of the parallel channel
(with L= 2 diversity branches) created by the MMSE–SIC operation. We denote the
MIMO channel by H= �h1�h2� and the projections

h1
2 �=
h∗
1h2


h2
2
h2� h1⊥2 �= h1−h1
2� (8.130)

Let us denote the induced parallel channel as

y� = g� x�+w�� �= 1�2� (8.131)

1. Show that

�g1�2 = 
h1⊥2
2+

h1
2
2

SNR
h2
2+1
� �g2�2 = 
h2
2� (8.132)

where SNR= P/N0.
2. What is the marginal distribution of �g1�2 at high SNR? Are �g1�2 and �g2�2 positively

correlated or negatively correlated?
3. What is the maximum diversity gain offered by this parallel channel?
4. Now suppose �g1�2 and �g2�2 in the parallel channel in (8.131) are independent,

while still having the same marginal distribution as before. What is the maximum
diversity gain offered by this parallel channel?

Exercise 8.26 Generalize the staggered stream structure (discussed in the context of
a 2× nr MIMO channel in Section 8.5) of the D-BLAST architecture to a MIMO
channel with nt > 2 transmit antennas.

Exercise 8.27 Consider a block length N D-BLAST architecture on a MIMO channel
with nt transmit antennas. Determine the rate loss due to the initialization phase as a
function of N and nt .


