
EE 3025 S2005 Homework Set #12
(due 10:10 AM Friday, May 6, 2005)

Directions: Work all 5 problems. We will grade Problem 1 and will randomly choose two
of the other problems for grading.

1. This Matlab problem concerns power spectrum estimation. Refer to Recitation 14 to help
you with this problem.

A discrete-time ergodic Gaussian zero mean WSS process Xn has the autocorrelation
function

RX(�) =

8>>><
>>>:

8; � = 0
�4; � = �1
1; � = �2
0; elsewhere

(a) Find the exact expression for SX(f) and then plot SX(f) using Matlab for 0 �
f � 2. Turn in printout of your plot. (You should see two periods of the SX(f)
function in your plot.)

(b) Using the solution to Problem 1 of Homework Set 10, write a Matlab script that
will simulate N consecutive samples of the process Xn. (N will be a parameter
of your script.)

(c) Using your script for N simulated samples from (b), write and run a Matlab script
to compute a periodogram estimate of SX(f) for 0 � f � 2. Use as many samples
N as your platform will allow you to use. Turn in your script and a plot of your
estimated power spectral density function.

(d) Using your script for N simulated samples from (b), write and run a Matlab script
to compute a Bartlett estimate of SX(f) for 0 � f � 2. Use as many samples
N as your platform will allow you to use. Turn in your script and a plot of your
estimated power spectral density function.

2. Refer back to the WSS process X(t) in Homework 10, Problem 4(a). This was a process
whose realizations are all periodic signals with period 1. The autocorrelation function
RX(�) was computed and you can �nd this function in the Solutions to Homework 10
and use it in the present problem. Suppose we pass random signal X(t) through the
ideal low pass �lter with frequency response function H(f) as follows:

H(f) =

(
1; �B � f � B
0; elsewhere

Let Y (t) denote the output random signal coming out of this �lter in response to �lter
input signal X(t).

(a) Express SX(f) as a linear combination of the in�nite collection of delta functions

Æ(f � i); i = 0;�1;�2;�3;�4; � � �



(b) For each of the �ve �lter bandwidths

B = 1:5; 2:5; 3:5; 4:5; 5:5

compute the power ratio PY =PX and then convert it to a percentage. Put your
results in a two column table: the left column heading will be \bandwidth" and
the right column heading will be \power ratio percentage".

(c) Among all possible �lter bandwidths

B = N + 0:5; N = 0; 1; 2; 3; � � � ;

�nd the smallest such bandwidth so that the power ratio PY =PX , converted to a
percentage, will be � 90%.

3. In the block diagram below, the channel is an additive white noise channel in which the
additive noise is modeled as a WSS process Zn with �Z = 0 and RZ(�) = Æ[� ].

Xn ! channel ! Yn = Xn + Zn !
optimal �lter

(impulse response h[n])
! X̂n

The channel input is a WSS process Xn satisfying �X = 0 and

RX(�) = 2Æ[� ] + Æ[� � 1] + Æ[� + 1]:

As usual, we assume that the random variables comprising the process Xn are inde-
pendent of the random variables comprising the channel noise process Zn. An optimal
linear time-invariant �lter with impulse response h[n] is to be designed which �lters
the channel output random signal Yn = Xn + Zn into a signal X̂n so that the mean
square estimation error

E[(Xn � X̂n)
2]

is minimized for all n. We suppose that the optimal �lter is required to be a three-tap
causal �lter. This means that

h[n] =

(
0; n < 0
0; n � 3

The estimate X̂n is therefore of the form

X̂n = h[0]Yn + h[1]Yn�1 + h[2]Yn�2:

(a) Use the orthogonality principle to set up three linear equations in the three un-
knowns h[0]; h[1]; h[2]: Solve for h[0]; h[1]; h[2]:

(b) The mean square estimation error E[(Xn � X̂n)
2] for our optimal three-tap �lter

can be computed in terms of cross-correlations as follows:

E[(Xn � X̂n)
2] = E[(Xn � X̂n)Xn]

= = RX(0)� h[0]E[XnYn]� h[1]E[XnYn�1]� h[2]E[XnYn�2]



Compute the cross-correlations E[XnYn], E[XnYn�1], E[XnYn�2]. Then compute
the estimation error in decibels as follows:

10 log
10

"
E[X2

n]

E[(Xn � X̂n)2]

#
: (1)

(c) The best possible LTI estimation �lter to estimate Xn is the so-called noncausal
Wiener �lter, which is an IIR LTI stable �lter that possibly uses all the Y process
samples (at all times). The mean square estimation error of the noncausal Wiener
�lter is known to be

EWiener =
Z

1

0

SX(f)SZ(f)

SX(f) + SZ(f)
df:

Compute what this is in decibels, that is, compute

10 log
10

"
E[X2

n]

EWiener

#
: (2)

(Meaning of this result: the di�erence of the decibel �gures (2) and (1) tells you
how much of an improvement can be made if you design a more sophisticated
estimation �lter.)

4. We assume the same channel model as Problem 3, with the same random channel input
signal Xn, the same random channel noise signal Zn, and the same channel output
random signal Yn = Xn + Zn. In this problem, you are going to construct a 3-tap
causal LTI �lter with impulse response h[n] to process the Yn signal, but you are going
to choose h[n] in a di�erent way than in Problem 3. We can write our block diagram
as

Xn ! channel ! Yn = Xn + Zn ! h[n] ! X0

n + Z0

n;

where X0

n is that component of the h[n] �lter output that is in response to Xn, and
Z0

n is that component of the h[n] �lter output that is in response to Zn. The so-called
signal-to-noise ratio (SNR) at the h[n] �lter output is measured in decibels as

SNR(decibels) = 10 log
10

"
X0

n power

Z0
n power

#
: (3)

For a three-tap �lter h[n], it is not hard to show that

X0

n power =
2X
i=0

2X
j=0

h[i]h[j]RX(i� j)

Z0

n power = h[0]2 + h[1]2 + h[2]2

In Problem 3, you found the 3-tap �lter h[n] to minimize the mean square estimation
error. In the current problem, you will instead design the 3-tap �lter h[n] to maximize
the �lter output SNR given by (3).



(a) Compute SNR(decibels) in (3) for the case when h[n] = Æ[n]. (The �lter h[n]
does nothing in this case, so this is the same thing as the SNR at the input to
the h[n] �lter. This is the SNR �gure we are trying to improve upon by properly
designing the �lter h[n].)

(b) Compute SNR(decibels) in (3) for the case when h[n] is the 3-tap �lter you found
in Problem 3 (which minimized the MS estimation error). (The decibel �gure you
obtain here may or may not be bigger than the decibel �gure you found in (a),
where no �ltering was done.)

(c) Use Matlab to �nd a choice for the 3 tap weights h[0], h[1], h[2] which will make
SNR(decibels) in (3) a maximum. Give not only your choice for h[0]; h[1]; h[2],
but also give the SNR(decibels) �gure that this �lter will give, which will be a
higher decibel �gure that for (a). (Hint: If you apply the same scaling factor to
the tap weights h[0]; h[1]; h[2], the SNR(decibels) �gure does not change. So, it
is OK to assume that

h[0]2 + h[1]2 + h[2]2 = 1:

Subject to this constraint, there might only be two possible solutions for h[0],
h[1], h[2] to maximize SNR(decibels).)

5. Let Z(t) be Gaussian white noise with RZ(�) = Æ(�). Let X(t) be the Gaussian process

X(t) =
Z t

0

sZ(s)ds; t � 0:

(a) Compute the mean and variance of the random variable X(4). Write down the
PDF of this random variable.

(b) Compute Cov(X(4); X(7)) and compute the correlation coeÆcient � for the ran-
dom variables X(4) and X(7). Write down the joint PDF of the random variables
X(4) and X(7).

Supplementary Problems: (not to hand in) From the textbook, you can try Problems
11.4.5, 11.8.6, 11.8.7, 11.8.10, 11.9.2


