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Lecture 1

Chapter 1 Part 1

In Lecture 1, I gave some motivating examples concerning potential practical uses of probability. I
also introduced the concepts of random experiment, sample space, and events.

1.1 Motivating Examples

EE 3025 helps you make decisions in the face of uncertainty caused by randomness. For an engineer,
these decisions would typically be design decisions. You design some component of an engineering
system based on some sort of probability model which governs how the system works.

There are hundreds (thousands?) of potential applications of probability. I give you some
examples of some of these applications falling into the following general categories:

� estimation

� control

� prediction

� quality control

� reliability testing

1.1.1 Estimation

A frequent scenario in which estimation problems arise is when you are transmitting some information-
bearing signal through a communication system. The following block diagram illustrates such a
system:
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x(t)!
system
h(t)

! y(t) = x(t) � h(t) + n(t)!
estimation

�lter
g(t)

! x̂(t)

In this diagram, x(t) represents the information-bearing signal that is to be transmitted. This
signal is passed through a �xed LTI system with impulse response h(t). At the system output,
a random noise signal n(t) is added on. An estimation �lter with impulse response g(t) is to be
designed so that its output signal x̂(t) is highly likely to be close to the transmitted signal x(t).
Later on in EE 3025, I will show you how to design some estimation �lters. In order to design
an estimation �lter, you would need a probability model that tells you how likely it is that each
di�erent possibility for n(t) will occur. As a simple example, suppose n(t) is equally likely to be
any one of three speci�c signals n1(t), n2(t), n3(t). Then you would combine these three signals
n1(t), n2(t), n3(t) in some way to obtain the impulse response g(t) of the estimation �lter.

Discussion. In EE 3015, you maybe got the wrong impression that when you apply a deter-
ministic input signal x(t) as input to a linear system, then the output signal is also deterministic.
In electronic systems (and other systems), this may not be the case: the system response to a de-
terministic input signal may be a random signal. In other words, if you apply one �xed input signal
as input to a system several times, you may get a di�erent output signal each time. This might be
because the system generates internal random noise (typically called ambient noise). In the above
block diagram, the system is generating internal random noise n(t); this randomly generated signal
n(t) will appear as an additive component of the output signal|it will appear at the output even
if the input to the system is zero!

1.1.2 Control

Suppose you again have a system generating internal noise like in our previous block diagram:

x(t)!
system
h(t)

! y(t) = x(t) � h(t) + n(t)

However, unlike the estimation problem considered earlier, we are going to consider a control
problem. We suppose that we want the system output y(t) to be some speci�c signal y�(t). (One
possible reason for this may be that you want the signal y�(t) to be a driving signal for some other
system such as a piece of machinery.) A control system design engineer would attempt to �nd some
choice x(t) = x�(t) for the input signal so that the output signal y(t) is highly likely to be close
to the desired output y�(t). In order to properly generate a signal x�(t) that will do the job, the
control engineer could make use of a probability model for the randomly generated internal noise
signal n(t). In practice, the control engineer might insert a feedback loop with a �lter in it in order
to help generate the desired input x(t) by using a �ltered form of the output|this yields what is
called a feedback stochastic control system. Unfortunately, the design of a feedback control system
can be quite complicated. Control engineers have to use a whole bunch of specialized tricks that I



LECTURE 1. CHAPTER 1 PART 1 3

guess it would not be possible to tell you about in EE 3025. But at least you are now aware of the
potential uses of probability in stochastic control. There is a senior level elective course that you
could take in control systems.

Remark. The word stochastic means the same thing as random. We will see this terminology
again in the last 5 weeks of EE 3025. We can talk about stochastic processes or random processes.
They are the same thing.

1.1.3 Prediction

There are many applications in which prediction is important. I will briey discuss stock market

prediction. Suppose the daily price of a share of your favorite company's stock is observed over N
consecutive days:

x1; x2; � � � ; xN

Since day N + 1 has not yet occurred, the stock price xN+1 for that day is not yet known and
therefore it must be modeled as a random quantity. One can attempt to build a prediction x̂N+1

of what xN+1 will be based upon the observations from the previous k days as follows:

x̂N+1 =
xN + xN�1 + xN�2 + � � �+ xN�k+1

k

Principles learned in EE 3025 can tell us which of the following three values of k will give us the
best prediction:

� k = 1

� k = 10

� k = 100

In order to determine the best prediction method, you'd have to use a probability model for the
di�erent possibilities for xN+1. The best prediction x̂N+1 would be the one for which x̂N+1 is most
likely to be close to xN+1.

Discussion. I gave three examples of possible prediction methods above. All three of these
employed a simple arithmetic average of observed stock prices as the prediction for the future stock
price. It could turn out that the best thing to do is to take a weighted average: The most recently
observed stock price xN might receive the highest weight, with the weights decreasing as you move
further into the past. For example, here is such a weighted average used for prediction, based on
the four most recent stock price observations:

x̂N+1 = (0:4)xN + (0:3)xN�1 + (0:2)xN�2 + (0:1)xN�3:

We will encounter probability models later on in EE 3025 where the best prediction will be a
weighted average with decreasing weights, such as the example just given.

Here are some other applications of prediction:
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Weather Prediction: It is hard to predict weather more than a few days in advance. With
weather satellites, one can make meteorological observations within each grid cell of the entire
planet Earth partitioned into a grid of cells. With grid computing methods, one can make
good weather predictions. The grid computing method you would use would be dictated by
a probability model for the meteorological observations as a function of the grid cell location
and time.

Fire Control: Suppose you are a �ghter jet pilot. You spot an enemy aircraft taking evasive
action. Your plane's computer has to make an e�ective prediction of where the enemy aircraft
will be �t seconds in the future, where �t is the length of time it would take for a missile
�red by you to reach this target.

Data Compression: You have a big data �le. You want to store it by representing each character
in the �le with just a small number of bits. If you scan the �le characters in raster scan order
(left to right and top to bottom), then you can make a good prediction of what the next
character will be based upon the previously scanned characters. Using this prediction, the
next character can be represented with as few a number of bits as possible. (This data
compression technique is called arithmetic coding. I teach it in EE 5585.)

1.1.4 Quality Control

A company manufactures N items where N is very large. The quality control engineer must extract
a sample of n of these items, where n is small relative to N . The items in the sample are tested
to see what fraction of them are defective. It is desired that n be chosen so that the fraction of
defectives in the sample will be a good indicator of the fraction of defectives in the entire set of N
items. (If n is chosen properly, then upon repeated random extraction of a sample of size n, it will
be found that the fraction of defectives in the sample will uctuate only a little bit about the �xed
fraction of defectives in the entire set of N items.) Principles you learn in EE 3025 will help you
handle quality control problems. Here's an example. Suppose you test the sample and �nd 1% of
the items to be defective. You'd be able to answer the following two questions:

Question 1: How likely is it that the percentage of defectives in the entire set of items is close to
1%?

Question 2: If it is not very likely that the percentage of defectives in the entire set of items is close
to 1%, how many more items should be sampled in order to be more sure that the percentage
of defectives in the sample is highly likely to be close to the percentage of defectives in the
entire set?

There are other applications in which one can see what to do by analogy with the quality control
problem. One of these applications is polling. For example, suppose you are a pollster and you
poll a few hundred potential voters, �nding that 49% of them are in favor of political candidate A.



LECTURE 1. CHAPTER 1 PART 1 5

Among all potential voters in the United States, you might then be highly con�dent that 49 � p
percent of them are in favor of candidate A. For example, if p = 4, you'd be saying that you're
highly con�dent that between 45 and 53 percent of all potential voters in the United States are
in favor of Candidate A. A statistical technique you learn later on in EE 3025 will enable you to
determine p. This technique is called con�dence interval estimation. (Remark: In the leadup to
our recent presidential election, some pollsters only expressed con�dence in their results to within
an 8 point spread like I've just described. Since the two candidates were so close in preference
among the general population, these pollsters produced worthless results, due to the fact that they
used too small a sample size.)

1.1.5 Reliability Testing

Here's an example of reliability testing. Suppose you want to test a particular integrated circuit
chip in order to see that it is doing what it was designed to do. This chip has a certain number
of binary input terminals and a certain number of binary output terminals. Suppose the number
of input terminals is N , where N is large. Then the number of di�erent possible sets of inputs
is 2N , and 2N is extremely large. It would be impossible to test all of these 2N possibilities in
order to see that the chip is performing satisfactorily in each case. Alternatively, you could do
the following: you could select the binary input at each of the N input terminals randomly to be
either 0 or 1; for this randomly selected set of inputs, you could then see whether the chip works
OK. If the mechanism for randomly selecting the inputs is chosen appropriately, one would be able
to say that the chip will work well for other sets of inputs once the chip is seen to work OK for
the randomly selected inputs (without actually checking these other sets of inputs). I was asked
in class to provide an example of a mechanism for randomly selecting the inputs. Here is a trivial
way to do it: Flip N fair coins, and for each coin write down a 0 or 1 depending on whether that
coin comes up heads or tails; each coin in this way determines a binary input for one of the N
terminals. In practice, the particular random input selection mechanism I have just described is
too simplistic. The way you'd do it in practice would depend upon the internal machanism of the
chip.

1.2 Some Basic Concepts

1.2.1 Random Experiments

A random experiment is an experiment whose outcome is not known in advance of performing the
experiment. We require that a random experiment be reproducible, that is, we should be able to
perform the experiment over and over again under identical conditions (these separate performances
are called independent trials). If the experiment is reproducible, we can gain information about
how likely each possible outcome is by performing the experiment a large number of times.



LECTURE 1. CHAPTER 1 PART 1 6

Example. Here is an example of a nonreproducible experiment. You discover a new type of
nuclear bomb which when exploded will destroy the entire planet Earth. The outcome of the
experiment would be to measure how far out from planet Earth the radius of destruction of the
bomb extends. (This example is not as farfetched as it sounds. When the �rst atomic bomb was
about to be exploded in the New Mexico desert in the 1940's, the physicists who designed the bomb
didn't know whether that bomb would destroy the entire planet Earth. This fact, which horri�ed
me, is pointed out in an interesting book I read about the history of the Manhattan Project.)

The next section gives examples of reproducible experiments.

1.2.2 Sample Space

The sample space S of a random experiment is de�ned to be the set of all possible outcomes of the
random experiment.

Example 1.1. The random experiment is \Flip a coin and see whether you get heads or tails".
The sample space is

S = fH;Tg:

Example 1.2. The random experiment is \Flip three coins and see what each of them comes up
as". The sample space can be taken to be

S = fHHH;HHT;HTH;HTT; THH; THT; TTH; TTTg:

Each outcome is of the form
(H or T;H or T;H or T ):

We have assumed that the three coins are distinguishable (Coin 1, Coin 2, Coin 3) and that the
preceding 3-tuple represents the outcome for Coins 1,2,3 in succession. There were 8 outcomes in
the sample space because

2 � 2 � 2 = 8:

We can also obtain these 8 outcomes by using the following tree:
HHHHHHHHHHH
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The H;T branches at the top of the tree denote the result obtained for Coin 1. The H;T branches
in the middle of the tree denote the result obtained for Coin 2. The H;T branches at the bottom
of the tree denote the result obtained for Coin 3. There are 8 di�erent root-to-leaf paths you can
follow in this tree. If you write down the sequence of H's and T's obtained along each such path,
you obtain the 8 outcomes in S which appear as labels on the leaves at the bottom of the tree.

Example 1.3. The random experiment is \Flip a pair of dies and see what number comes up on
each die". We can take the sample space to be

S = f (1; 1); (1; 2); (1; 3); (1; 4); (1; 5); (1; 6);

(2; 1); (2; 2); (2; 3); (2; 4); (2; 5); (2; 6);

(3; 1); (3; 2); (3; 3); (3; 4); (3; 5); (3; 6);

(4; 1); (4; 2); (4; 3); (4; 4); (4; 5); (4; 6);

(5; 1); (5; 2); (5; 3); (5; 4); (5; 5); (5; 6);

(6; 1); (6; 2); (6; 3); (6; 4); (6; 5); (6; 6) g

The outcomes are regarded as pairs (i; j) where i; j both range between 1 and 6 independently of
each other. We are assuming distinguishable dies (Die 1, Die 2). The entry i in (i; j) represents
the number coming up on Die 1 and the entry j denotes the number coming up on Die 2. There
are 36 outcomes because

6 � 6 = 36:

The reader can also draw a tree for obtaining these 36 outcomes. However, the tree is pretty big!

1.2.3 Events

An event can be any subset of the sample space S. It can either be described verbally or it can be
speci�ed by listing all of the outcomes in it.

Example 1.4. For the \three coin ip" experiment, we describe an event E verbally as

E = fexactly two heads occurg:

We can rewrite E as
E = fHHT;HTH; THHg:

There are three outcomes in E (three ways for event E to occur when you perform the experiment).
Example 1.5. For the \two die ip" experiment, we describe an event E verbally as

E = ftotal on dies is 7g:

We can rewrite E as
E = f(1; 6); (2; 5); (3; 4); (4; 3); (5; 2); (6; 1)g:
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There are six outcomes in E (six ways for event E to occur when you perform the experiment).
We can pictorially represent events using Venn Diagrams. The following Venn Diagram rep-

resents two events A, B as the interiors of the two circles; the entire rectangular box denotes the
sample space S.

&%
'$
&%
'$A B

Here is what happens to the Venn Diagram when we put in a third event C:

&%
'$
&%
'$

&%
'$
A B

C



Lecture 2

Chapter 1 Part 2

In Lecture 2, I talked about the calculus of events, and started material on probability models.

2.1 Calculus of Events

You can combine events to get other events using the three operations of union [, intersection \,
and complementation c:

[iEi = f! 2 S : ! 2 Ei for at least one ig

\iEi = f! 2 S : ! 2 Ei for all ig

Ec = f! 2 S : ! 62 Eg

If you look on pages 4-5 of your textbook, you will �nd examples of illustrations of these operations
using Venn Diagrams.

We say that a given event E occurs on a given performance (trial) of the random experiment if
the observed outcome ! belongs to E. With this in mind, we can say the following:

� The union event [iEi occurs if and only if event Ei occurs for at least one i.

� The intersection event \iEi occurs if and only if event Ei occurs for all i.

� The complementary event Ec occurs if and only if the event E does not occur.

\Exclusive or" Event. You can think of the event A[B as meaning \A or B or both". That
is, the \or" is the \inclusive or" which includes the possibility that both A;B occur. Sometimes
we want the \exclusive or" event, meaning that exactly one of the events A;B occurs. This is
commonly written as

A�B:

9



LECTURE 2. CHAPTER 1 PART 2 10

In terms of our three operations, we can rewrite this as

A�B = (A \Bc) [ (B \Ac):

In the Venn Diagram below, the exclusive or event A�B consists of Region 2 together with Region
4.

A B

2 3 41

Di�erence Event. Another event that pops up a lot is the event A�B, which consists of the
outcomes in A with the outcomes in B taken away:

A�B = f! 2 S : ! 2 A;! 62 Bg:

This is the same thing as
A�B = A \Bc;

which is Region 2 in the above Venn Diagram.
Useful Fact: Given k events, there are exactly 2(2

k) events that arise from these events by
means of the three operations [, \, c.

Example 2.1. Given events A;B;C as in the Venn Diagram below. By the preceding \Useful
Fact," there should be 2(2

3

) = 256 events we can build up from these. I explain how to do this.

8

7

65

4 3

2

1

C

BA
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First, note that the sample space, represented by the rectangular box in the Venn Diagram, is
partitioned into the eight events labeled 1 through 8. These events are represented in terms of
A;B;C as follows:

1 = A \B \ C

2 = A \B \ Cc

3 = B \ C \Ac

4 = A \ C \Bc

5 = A \Bc \ Cc

6 = B \Ac \ Cc

7 = C \Ac \Bc

8 = Ac \Bc \ Cc

These eight events give rise to 28 = 256 events by choosing every possible subset of the eight events
(there are 28 = 256 subsets of a set of size 8) and taking the unions of the events in each subset.
Some of these 256 events may not be very interesting, but some of them are. Here are a couple of
interesting ones:

2 [ 3 [ 4 = fexactly two of A;B;C occurg

5 [ 6 [ 7 = fexactly one of A;B;C occurg

2.1.1 Laws About Events

Sometimes an event can be computed using the three operations [,\, c in two di�erent ways. In
such a case, we have a law expressing equality between two event formation methods. There are a
lot of these laws. You may have gone over sum of them in calculus. Here are a few:

A \ ([iEi) = [i(A \Ei)

A [ (\iEi) = \i(A [Ei)

([iEi)
c = \iE

c
i

(\iEi)
c = [iE

c
i

(Ec)c = E

The �rst two laws are distributive laws. The third and fourth laws are DeMorgan's Laws. The third
law is perhaps the most important of these �ve laws. It says that [iEi does not occur if and only
if all of the events Ei do not occur. This is pretty clear if you realize that [iEi is the event that at
least one of the Ei's occur:

fat least onegc = fnoneg:
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If you have just two or three events, it's pretty easy to demonstrate the truth of a law by
referring to a Venn Diagram. The following example illustrates this technique.

Example 2.2. Suppose we want to prove that

A \ (B [ C) = (A \ C) [ (A \B): (2.1)

Refer to the preceding Venn Diagram. Event B[C consists of regions 1; 2; 3; 4; 6; 7. Event A consists
of regions 1; 2; 4; 5. Intersecting these, we get regions 1; 2; 4, which is the left side of equation (2.1).
By similar reasoning, we leave it to the reader to show that the right side of (2.1) also consists of
regions 1; 2; 4.

2.2 De�nition of Probability Model

� We say that a sequence of events fEig is mutually exclusive if

Ei \Ej = �; i 6= j;

where � is the empty set. In other words, no two of the events have any outcomes in common.
In particular, if we have two events A;B, we say that A;B are mutually exclusive if and only
if

A \B = �:

� We say that event E is the disjoint union of the sequence of events fEig if

E = [iEi

and the events fEig are mutually exclusive. For example, in the Venn Diagram below, event
E is the disjoint union of events E1; E2; E3; E4.

E

E1 E2

E3 E4

S

We obtain a probability model for a given random experiment by assigning to each event E
a number P (E) (which we call the probability of the event E) so that the following axioms are
satsis�ed:
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Axiom 1: 0 � P (E) � 1 for every E.

Axiom 2: P (S) = 1:

Axiom 3: Anytime an event E is a disjoint union of events fEig, we must have

P (E) =
X
i

P (Ei):

Axiom 3 says probabilities act like areas: \the probability (area) of the whole is the sum of the
probabilities (areas) of the parts." Intuitively, the probability of an event should reect our feeling
about how likely that event will occur upon repeated trials. For example, if P (E) = 1=2 is the
assigned probability, this is probably because we expect that E will occur on roughly one half of a
large number of trials. We discuss this intuitive notion of probability further later in this section.

2.3 Types of Probability Models

Discrete Probability Models

In a discrete probability model, the sample space consists of a �nite or in�nite sequence of outcomes:

S = f!1; !2; !3; � � �g:

The discrete probability model is completely and uniquely speci�ed once you assign a nonnegative
probability P (!i) to each outcome !i so that the probabilities of the outcomes add up to 1:X

i

P (!i) = 1:

In fact, the probability P (E) of any event E is then uniquely computable via the formula

P (E) =
X
!i2E

P (!i);

by Axiom 3.
Example 2.3. Consider the discrete probability model in which the outcomes are the positive

integers
S = f1; 2; 3; � � �g;

and in which the probabilities of the outcomes are given by the formula

P (i) = 2�i; i = 1; 2; 3; � � � :

For this to be a legitimate probability model, you just have to show that

1

2
+
1

4
+
1

8
+

1

16
+ � � � = 1:
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(Can you do that?) Let us compute the probability of getting an odd number:

P (f1; 3; 5; 7; � � �g) =
1

2
+

1

23
+

1

25
+

1

27
+ � � � : (2.2)

Recall how to sum a geometric series:

a+ ar + ar2 + ar3 + � � � =
a

1� r
;

if the modulus of the ratio r is less than one. Applying this summation formula to (2.2),

P (f1; 3; 5; 7; � � �g) =
(1=2)

1� (1=4)
= 2=3:

Exercise. In Example 2.3, use Matlab to compute the probability of getting a prime number
(to four decimal places). That is, compute

1

2
+

1

23
+

1

25
+

1

27
+

1

211
+

1

213
+

1

217
+ � � � :

Remark. The reader may be wondering what random experiments would yield the probability
model Example 2.3. Here is one such random experiment:

\Flip a fair coin until you get heads for the �rst time; count the number of ips required."

Can you satisfy yourself that this experiment does indeed give us our probability model?

Equiprobable Probability Models

In an equiprobable probability model, there are �nitely many outcomes in the sample space, and
they are \equally likely," that is, they are all assigned the same probability. This requirement leads
to a unique probability model. To see this, suppose there are k outcomes in the sample space S.
The k probabilities of these outcomes must add up to one and they are equal. This forces each of
these probabilities to be equal to 1=k. We have proved that for an equiprobable probability model,
the probability of each outcome is equal to the reciprocal of the number of outcomes in S. It is
then easy to prove that the probability of any event E can be computed via the formula

P (E) =
number of outcomes in E

number of outcomes in S
: (2.3)

(The outcomes in E all have the same probability and so in order to sum up these probabilities,
you can simply multiply the probability of any one of these outcomes by the number of outcomes
in E.)
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Example 2.4. Go back to the \three coin ip" experiment of Lecture 1. Suppose the coins are
all fair. This is the tipo� that the resulting probability model will be an equiprobable one. We
determined earlier that the sample space is

S = fHHH;HHT;HTH;HTT; THH; THT; TTH; TTTg:

There are 8 of these outcomes so they each have probability equal to 1=8. We can now easily
compute the probability of any event connected with this experiment simply by dividing the number
of outcomes in the event by 8. We can therefore say that

P (three heads occur) = P (HHH) =
1

8
;

P (exactly two heads occur) = P (HHT;HTH; THH) =
3

8
;

P (exactly one head occurs) = P (TTH; THT;HTT ) =
3

8
;

P (no heads occur) = P (TTT ) =
1

8
:

Exercise. Flip two fair coins. Prove that the probability of getting a total of seven is 1=6.

Warning. If you do not have an equiprobable probability model, do not use formula (2.3) to
compute probabilities. It won't be valid!

Independent Discrete Probability Models

In an independent discrete probability model, each outcome can be written in the form of a k-tuple

(x1; x2; � � � ; xk)

for some positive integer k, where the separate entries xi are chosen independently of each other
(they arise from k independent trials of di�erent experiments or the same experiment). The prob-
ability of each outcome is computed as a product

P (x1; x2; � � � ; xk) =
kY
i=1

Pi(xi);

where for each i = 1; 2; � � � ; k, we have a probability model Pi governing the selection of the i-th
coordinate of (x1; x2; � � � ; xk). (If the k independent trials are all of the same experiment, then all
of the Pi's are the same.)

Example 2.5. Suppose our random experiment is to ip 3 separate coins and then to record
whether each coin comes upH or T . Intuitively, since the coins act independently of each other, our
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probability model should be an independent probability model. The sample space is the following
set of 3-tuples:

S = fHHH;HHT;HTH;HTT; THH; THT; TTH; TTTg:

So far, this is just like the sample space for ipping 3 fair coins. However, to make things more
interesting, we suppose that not all of the three coins are fair coins. Suppose Coin 1 is fair. The
outcome for Coin 1 is then governed by the equiprobable model

P1(H) = 1=2; P1(T ) = 1=2:

We suppose that Coin 2 and Coin 3 are unfair (biased) coins governed by the respective probability
models

P2(H) = 1=3; P2(T ) = 2=3:

P3(H) = 2=3; P3(T ) = 1=3:

Then the probability model for S is

P (HHH) = P1(H)P2(H)P3(H) = (1=2)(1=3)(2=3) = 1=9;

P (HHT ) = P1(H)P2(H)P3(T ) = (1=2)(1=3)(1=3) = 1=18;

P (HTH) = P1(H)P2(T )P3(H) = (1=2)(2=3)(2=3) = 2=9;

P (HTT ) = P1(H)P2(T )P3(T ) = (1=2)(2=3)(1=3) = 1=9;

P (THH) = P1(T )P2(H)P3(H) = (1=2)(1=3)(2=3) = 1=9;

P (THT ) = P1(T )P2(H)P3(T ) = (1=2)(1=3)(1=3) = 1=18;

P (TTH) = P1(T )P2(T )P3(H) = (1=2)(2=3)(2=3) = 2=9;

P (TTT ) = P1(T )P2(T )P3(T ) = (1=2)(2=3)(1=3) = 1=9:

Exercise. For the preceding model, verify that the eight probabilities add up to one. Then
compute the following:

P (three heads occur) = ?

P (exactly two heads occur) = ?

P (exactly one head occurs) = ?

P (no heads occur) = ?

Empirical Probability Models

Suppose we have a �nite sample space

S = f!1; !2; � � � ; !kg:
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Maybe you're unsure what probability model to take on this sample space. One can always come
up with an empirical model based upon performing the underlying random experiment a certain
number of times. Let us explain how an empirical model is obtained. Suppose we perform n
independent trials of the random experiment. Then you can de�ne a probability model as follows:

P (!i) =
number of trials in which !i occurs

n
; i = 1; 2; � � � ; k:

That is, each probability is simply the frequency with which the given outcome occurs in the
n trials. The problem with an empirical model is that it can change every time you perform
the independent trials anew. If you are using a probability model as a design tool (such as in
applications we discussed in Lecture 1), you naturally want to have a �xed probability model.
It may be that when you look at a whole bunch of di�erent empirical models for your random
experiment, you will be able to decide upon one particular model such that all of the empirical
models are approximately equal to the particular model. Then that particular probability model
would be a good model to select as your �xed probability model that will be used by you now
and forever (in order to make predictions, form estimates, or whatever it is that your application
requires).

Example 2.6. Execute the Matlab command

floor(2*rand(1,10))

You will see printed out on your Matlab screen 10 numbers, each equal to 0 or 1. You will �nd that
the 10 numbers you obtain will vary as you execute the preceding command over and over again.
If you use 0 to represent \heads" and 1 to represent \tails", you can regard the 10 numbers you
obtain as the result of 10 independent trials of the experiment

\Flip a fair coin and see if heads or tails comes up."

Suppose you get the following by executing the Matlab command:

0; 1; 1; 0; 1; 0; 0; 0; 1; 0:

We can think of this as representing the following results from ipping a fair coin 10 times:

H;T; T;H; T;H;H;H; T;H:

The resulting empirical probability model is

P (H) = 6=10; P (T ) = 4=10:

For a fair coin, the �xed probability model you would probably want to use is

P (H) = 1=2; P (T ) = 1=2:

The empirical model we got varies slightly from this. If we had taken a larger number of trials,
the variation between the empirical model and the (1=2; 1=2) model would have been less. Try the
Matlab command
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floor(2*rand(1,10000))

instead (which simulates the result of 10000 fair coin ips) and see if your resulting empirical model
is closer to the (1=2; 1=2) model.

In Lecture 3, I will give some more types of probability models.



Lecture 3

Chapter 1 Part 3

In this lecture, I covered some more types of probability models. I also gave some indications on
how to do probability calculations using Venn Diagrams.

3.1 Types of Probability Models (Continued)

Tree Models

Trees can be used to represent multiple step experiments. The branches from the root node at
the top of the tree represent possibilities for the �rst step. Branching at the next level of the tree
represents the second step, etc. The branches emanating from a �xed node are given probability
labels adding up to one. You obtain the di�erent outcomes of the experiment by following each
root-to-leaf path; the product of probabilities along such a path yields the probability of that
particular outcome.

Example 3.1. The Dodgers and Braves play a best 3 out of 5 playo� series. (The �rst team to
win 3 games wins the series.) We assume that the two teams are equally matched. The tree below
will be used to obtain the probability model for this random experiment.
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DD
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D

D D

DD

D D D
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D D D
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B
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Following all paths in the tree from the root to the leaf vertices, there are 20 outcomes in the
sample space S:

S = fDDD;DDBD;DDBBD;DDBBB;DBDD;DBDBD;

DBDBB;DBBDD;DBBDB;DBBB;BDDD;BDDBD;BDDBB;

BDBDD;BDBDB;BDBB;BBDDD;BBDDB;BBDB;BBBg

Each branch of the tree should be assigned a probability label of 1=2. Multiplying along each
root-to-leaf path, we then get the following probability model for this experiment:

P [DDD] = 1=8 P [DDBD] = 1=16 P [DDBBD] = 1=32 P [DDBBB] = 1=32
P [DBDD] = 1=16 P [DBDBD] = 1=32 P [DBDBB] = 1=32 P [DBBDD] = 1=32
P [DBBDB] = 1=32 P [DBBB] = 1=16 P [BDDD] = 1=16 P [BDDBD] = 1=32
P [BDDBB] = 1=16 P [BDBDD] = 1=16 P [BDBDB] = 1=32 P [BDBB] = 1=16
P [BBDDD] = 1=32 P [BBDDB] = 1=32 P [BBDB] = 1=16 P [BBB] = 1=8

We can use this model to compute the probability of any event associated with this random exper-
iment. For example, suppose E is the event that the series lasts exactly four games. Since

E = fDDBD;DBDD;DBBB;BDDD;BDBB;BBDBg;

we can compute

P (E) = P (DDBD) + P (DBDD) + P (DBBB) + P (BDDD) + P (BDBB) + P (BBDB)

= 6(1=16) = 3=8

That is, if a large number of \best 3 of 5" series are played involving equally matched teams, we'd
expect that about 37:5% of these series would take exactly 4 games to play.

Example 3.2. In Example 3.1, let us suppose that the two teams are not equally matched.
Assume that

P (D) = 0:6; P (B) = 0:4

are the respective probabilities with which the Dodgers and Braves will be the winner of any game,
respectively. In the tree at the bottom of the previous page, you would then assign a probability
label 0:6 to any branch labelled D, and a probability label 0:4 to any branch labelled B. This
would give us a di�erent probability model than the one in Example 3.1. Using this new model,
we would re-compute the probability of the series going exactly 4 games as follows:

P (E) = P (DDBD) + P (DBDD) + P (DBBB) + P (BDDD) + P (BDBB) + P (BBDB)

= P (D)P (D)P (B)P (D) + P (D)P (B)P (D)P (D) + � � � + P (B)P (B)P (D)P (B)

= 3(0:6)3(0:4) + 3(0:4)3(0:6) = 0:3744:
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Example 3.3. We have three coins. Coin 1 is a fair coin. Coin 2 has P (H) = 0:4. Coin 3
has P (H) = 0:55. Consider the following 3-step experiment. On Step 1, Coin 1 is tossed and the
outcome (H or T) is recorded. On Step 2, Coin 2 is tossed and the outcome (H or T) is recorded.
On Step 3, Coin 3 is tossed and the outcome (H or T) is recorded. The tree for this experiment is
the following.
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The sample space is

S = fHHH;HHT;HTH;HTT; THH; THT; TTH; TTTg:

Multiplying along the 8 root-to-leaf paths in the tree, you get the following probability model for
this experiment:

P (HHH) = (0:5)(0:4)(0:55) = 0:11 (3.1)

P (HHT ) = (0:5)(0:4)(0:45) = 0:09 (3.2)

P (HTH) = (0:5)(0:6)(0:55) = 0:165 (3.3)

P (HTT ) = (0:5)(0:6)(0:45) = 0:135 (3.4)

P (THH) = (0:5)(0:4)(0:55) = 0:11 (3.5)

P (THT ) = (0:5)(0:4)(0:45) = 0:09 (3.6)

P (TTH) = 7(0:5)(0:6)(0:55) = 0:165 (3.7)

P (TTT ) = (0:5)(0:6)(0:45) = 0:135 (3.8)

This probability model can be used to compute the probability of any event connected with this
experiment. To illustrate, let us compute the probability that there are exactly two heads. Letting

E = fHHT;HTH; THHg;
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we have
P (E) = P (HHT ) + P (HTH) + P (THH) = 0:09 + 0:165 + 0:11 = 0:365:

Another way to derive the probability model of this example is to consider the model as an inde-
pendent model, as in Example 2.5. Conversely, we could have attacked Example 2.5 using a tree
model as we did in the present example. This just goes to show you that there may be more than
one way to derive the probability model for a given random experiment.

Example 3.4. The tree used to derive a probability model may be in�nite. Here is an example
where this occurs. Our experiment is to keep ipping a fair coin until we �rst obtain a head, at
which point the experiment stops.
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The three dots at the bottom of the above tree for this experiment indicate that the tree keeps
going on forever. The probability label on every branch is 1=2. The sample space is in�nite:

S = fH;TH; TTH; TTTH; TTTTH; � � �g:

We obtain the probabilities of these outcomes by multiplying along the root-to-leaf path in the tree
corresponding to each outcome:

P (H) = 1=2

P (TH) = (1=2)2

P (TTH) = (1=2)3

P (TTTH) = (1=2)4

P (TTTTH) = (1=2)5; etc:
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Derived Models

By applying a function to the sample space, you can go from the original probability model for an
experiment to a new model, which we call a derived model. Let the sample space for the experiment
be S, which we assume to be discrete. Let X be any function mapping S into the real line. (The
function X is called a discrete random variable.) Instead of the original experiment, in which the
outcome is an element ! of the set S, we can consider a new experiment in which the outcome
instead is X(!), a point on the real line. Suppose the values of X are the real numbers

x1; x2; � � � ; xk:

Then the new sample space is
Snew = fx1; x2; � � � ; xkg:

The derived probability model is denoted by the notation PX ; it is a probability model de�ned
on Snew. The derived model PX is obtained from the original probability model P on S via the
following formula:

PX(xi) = P [f! 2 S : X(!) = xig] =
X

!2S; X(!)=xi

P (!): (3.9)

In other words, you add up the probabilities of all outcomes ! of the original experiment which are
mapped by the function X into the real value xi.

Example 3.5. Let the original experiment be the \three coin ip" experiment of Example 2.4.
The original sample space is

S = fHHH;HHT;HTH;HTT; THH; THT; TTH; TTTg:

The probability of each outcome is 1=8. Let X be the function on S which counts the number of
heads:

X(HHH) = 3; X(HHT ) = 2; X(HTH) = 2; X(HTT ) = 1

X(THH) = 2; X(THT ) = 1; X(TTH) = 1; X(TTT ) = 0

The possible values of X are therefore the real numbers 0; 1; 2; 3. Our new sample space is

Snew = f0; 1; 2; 3g:

If you look at the last half of Example 2.4, you will see that what we are computing there is the
probability model PX on Snew, according to formula (3.9):

PX(0) = 1=8; PX(1) = 3=8; PX(2) = 3=8; PX(3) = 1=8:

In Chapter 2, where we deal with discrete random variables, it can be convenient to represent a
derived model PX via a plot of the PX values (vertical axis) versus the X values (horizontal axis).
Here is the PX plot you obtain for this example:
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Example 3.6. Let the original experiment be the two fair die toss. The sample space S was
given in Example 1.3, and consists of 36 outcomes each having probability 1=36. Let X be the
total of the numbers on the two dies. The plot of the derived model is the following, and the reader
should verify this result:

7 8 9 10 11 123
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The largest PX probability takes place at the central value 7 with the probabilities descending
symmetrically on the two sides of the central value as you move away from the central value.
Typically, when you take X to be the total in tossing �nitely many fair dies, or the number of
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heads in ipping �nitely many fair coins, you get a PX plot which descends symetrically on two
sides of either one central value (like in this example) or two central values (like in the previous
example).

Continuous Probability Models

In a continuous probability model, the outcomes of the experiment are n-tuples of real numbers

(x1; x2; � � � ; xn)

for some �xed positive integer n. To compute a probability P (E), where E is a subregion of the
n-dimensional space consisting of all n-tuples, you would perform an n-fold integral over E of the
form

P (E) =

Z Z
� � �

Z
E
f(x1; x2; � � � ; xn)dx1dx2 � � � dxn;

where f(x1; x2; � � � ; xn) is a nonnegative function of n variables called a probability density function.
You will see various continuous probability models later in the course when we cover Chapters 3,4,5.
For the time being, here is possibly the simplest example of a continuous probability model.

Example 3.7. We take the dimension n of the continuous probability model to be n = 1 (one-
dimensional model). Then the outcome of the random experiment is a real number. In particular,
let us consider the following random experiment: Pick a point at random from the interval of real
numbers [0; 1]; this is the outcome of the experiment. The sample space is

S = [0; 1]:

The events can be subintervals of [0; 1] (or unions of them). The probability density function f(x)
for this experiment turns out to be the unit rectangular pulse from x = 0 to x = 1:

f(x) =

(
1; 0 � x � 1
0; elsewhere

Let [c; d] be a subinterval of the interval [0; 1]. We can then compute the probability P ([c; d]) that
the selected outcome falls in the interval [c; d] via integration as follows:

P ([c; d]) =

Z d

c
f(x)dx =

Z d

c
dx = d� c:

In other words, the probability assigned by this model to any subinterval of the interval [0; 1] is
simply the length of the subinterval. We remark that the Matlab command \rand(1,1)" simulates
the outcome of this particular random experiment.
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3.2 Probability Calculations Via Venn Diagram Reasoning

Let us consider again the general Venn Diagram for three events A;B;C given above. As we have
remarked before, there are 256 events in this diagram determined by A;B;C via the operations of
union, intersection, and complementation. If you are given the following 7 probabilities

P (A); P (B); P (C); P (A \B); P (A \ C); P (B \ C); P (A \B \ C); (3.10)

then you can compute the probability of any of these 256 events. First, by simple Venn Diagram
reasoning (thinking of probabilities as areas), you can compute the probabilities

P (1); P (2); P (3); P (4); P (5); P (6); P (7); P (8) (3.11)

from the probabilities (3.10). Any of the 256 events determined by A;B;C is a disjoint union of
some subset of the events 1; 2; 3; 4; 5; 6; 7; 8. Therefore, we are able to compute the probability of
any of these 256 events once we have determined the probabilities (3.11). Using \area reasoning",
we can compute (3.11) from (3.10) by starting in the middle of the Venn Diagram and then working
our way outwards:

P (1) = P (A \B \ C)

P (2) = P (A \B)� P (1)

P (3) = P (B \ C)� P (1)

P (4) = P (A \C)� P (1)

P (5) = P (A)� (P (1) + P (2) + P (4))

P (6) = P (B)� (P (1) + P (2) + P (3))

P (7) = P (C)� (P (1) + P (3) + P (4))

P (8) = 1� (P (1) + P (2) + P (3) + P (4) + P (5) + P (6) + P (7))

Example 3.8. Suppose the probabilities (3.10) as given as:

P (A) = P (B) = P (C) = 0:5
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P (A \B) = P (A \ C) = P (B \ C) = 0:3

P (A \B \ C) = 0:18

Then using the equations prior to this example, you compute

P (1) = 0:18

P (2) = 0:12

P (3) = 0:12

P (4) = 0:12

P (5) = 0:08

P (6) = 0:08

P (7) = 0:08

P (8) = 0:22

We can now compute the probabilities of any of the 256 events determined by A;B;C. For example,

P[at least one of A,B,C occur]=P(1)+P(2)+P(3)+P(4)+P(5)+P(6)+P(7)=0.78

P[none of A,B,C occur] = P(8)= 0.22

P[exactly one of A,B,C occur] = P(5)+P(6)+P(7)= 0.24

P[exactly two of A,B,C occur] = P(2)+P(3)+P(4) = 0.36

Sometimes you are not directly given the probabilities (3.10), but instead you are given equations
relating these probabilities. You can then re-express these equations in terms of the variables
P (1); P (2); � � � ; P (8), and solve the equations simultaneously for these variables. The following
example is of this type.

Example 3.9. In Problem 3 of Homework Set 1, you are given the following relationships among
the probabilities (3.10):

� P (A) = 0:25, P (B) = 0:2, P (C) = 0:25

� P (A \B) = 0:1, P (A \B \ C) = 0:05, P (A \C) = 2P (B \ C)

� The probability that at least two of the events A;B;C occur is 0:3.

If you think about it for a few moments, you will see that under these assumptions, the following
system of 8 equations in 8 unknowns must hold:
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2
6666666666664

1 1 1 1 1 1 1 1
1 1 1 0 0 1 0 0
1 1 0 1 1 0 0 0
1 0 1 1 0 0 1 0
1 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 �1 2 0 0 0 0
1 1 1 1 0 0 0 0

3
7777777777775

2
6666666666664

P (1)
P (2)
P (4)
P (3)
P (6)
P (5)
P (7)
P (8)

3
7777777777775
=

2
6666666666664

1
0:25
0:2
0:25
0:1
0:05

0
0:3

3
7777777777775

This system has a unique solution for P (1); P (2); � � � ; P (8) which is left as an exercise for you to
�nd.
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Chapter 1 Part 4

In Lecture 4, I talked about Laws of Probability, Independent Events, and Application to Relay

Circuits.

4.1 Laws of Probability

There are quite a number of probability laws that can be proved from the axioms. Here are some
of the most common laws.

(i): P (A [B) = P (A) + P (B)� P (A \B)

(ii): P (A�B) = P (A)� P (A \B)

(iii): P (Ec) = 1� P (E)

(iv): E � F ) P (E) � P (F )

If you are trying to prove a probability law involving a small number of events, Venn Diagrams can
help you to come up with a proof. To illustrate, let us prove Law(i) this way.

Proof of Law(i): We use the Venn Diagram

A B

2 3 41

29
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The following facts are obvious from the Venn Diagram:

P (A) = P (2) + P (3)

P (B) = P (3) + P (4)

P (A \B) = P (3)

P (A [B) = P (2) + P (3) + P (4)

From the �rst three of these equations, we obtain

P (A) + P (B)� P (A \B) = P (2) + P (3) + P (4);

which is P (A [B). This completes the proof of Law(i).

Proof of Law(iii): S is the disjoint union of E and Ec. Therefore,

1 = P (S) = P (E) + P (Ec):

Solving for P (Ec) in terms of P (E), we obtain Law(iii).

Proof of Law(iv): Event E is assumed to be inside event F . Therefore, event F is the disjoint
union of event E and event F � E. (If you need to, draw a Venn Diagram to help you see this.)
This allows us to write down the equation

P (F ) = P (E) + P (F �E):

Since P (F �E) � 0, it clearly follows that P (E) � P (F ).

Exercise. Prove Law(ii).

Exercise. Prove
P (E�F ) � jP (E) � P (F )j:

Exercise. Prove the following statement about the union of any three events:

P (A[B [C) = P (A) +P (B) +P (C)�P (A\B)�P (A\C)�P (B \C) +P (A\B \C): (4.1)

(Hint: Refer to our earlier Venn Diagram involving events A;B;C and the eight disjoint regions
1; 2; 3; 4; 5; 6; 7; 8. Express the left side of (4.1) and each term on the right side of (4.1) as a linear
combination of the eight probabilities

P (1); P (2); P (3); P (4); P (5); P (6); P (7); P (8):

The two sides of (4.1) should then cancel each other out.)
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4.2 Independent Events

Let E+1 denote the event E and let E�1 denote the event Ec.
De�nition. We say that events E1; E2; � � � ; Ek are independent events if

P (E�1
1 \E�1

2 \E�1
3 \ � � � \E�1

k ) = P (E�1
1 )P (E�1

2 )P (E�1
3 ) � � �P (E�1

k ); (4.2)

where, on the left side, we make all possible choices of �1 in each position, and, on the right side,
we make these same choices. Thus, to show that k events are independent, we have to check 2k

equations of the form (4.2).
If events E1; E2; � � � ; Ek fail to be independent, then we say that they are dependent events.

Two Independent Events

The de�nition just given says that to show two events A;B are independent, we have to verify the
four equations

P (A \B) = P (A)P (B) (4.3)

P (Ac \B) = P (Ac)P (B) (4.4)

P (A \Bc) = P (A)P (Bc) (4.5)

P (Ac \Bc) = P (Ac)P (Bc) (4.6)

Let me show you that these just reduce to the single equation

P (A \B) = P (A)P (B):

There is a \brute force" way to do this (just show that equations (4.4)-(4.6) must all be true if
(4.3) is true). Instead, I use a more clever approach which uses ideas that will also be of use to us
later in the course. Consider the following 2� 2 array:

 P (B) P (Bc)

P (A) P (A \B) P (A \Bc)
P (Ac) P (Ac \B) P (Ac \Bc)

!
(4.7)

Using a Venn Diagram, you can show the following useful facts:

� The row headings P (A); P (Ac) are the row sums for the respective rows of the 2� 2 array.

� The column headings P (B); P (Bc) are the column sums for the respective columns of the
2� 2 array.
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Let us also consider the following array in which the row headings and column headings are easily
veri�ed to have this same interpretation:

 P (B) P (Bc)

P (A) P (A)P (B) P (A)P (Bc)
P (Ac) P (Ac)P (B) P (Ac)P (Bc)

!
(4.8)

Arrays (4.7) and (4.8) have the same row and column sums and the same upper left hand corner
(the number P (A \ B), assumed to be the same as the number P (A)P (B)). Therefore, these two
arrays are identical! (It is easy to argue that two 2� 2 arrays must coincide if they have the same
row and column sums and the same entry in the upper left hand corner.) Since our two arrays
(4.7), (4.8) coincide, equations (4.3)-(4.6) must hold, and we are done.

Three Independent Events

To verify that events A;B;C are independent, the following eight equations would have to be
veri�ed:

P (A \B \ C) = P (A)P (B)P (C)

P (Ac \B \ C) = P (Ac)P (B)P (C)

P (A \Bc \ C) = P (A)P (Bc)P (C)

P (A \B \Cc) = P (A)P (B)P (Cc)

P (Ac \Bc \ C) = P (Ac)P (Bc)P (C)

P (Ac \B \Cc) = P (Ac)P (B)P (Cc)

P (A \Bc \Cc) = P (A)P (Bc)P (Cc)

P (Ac \Bc \Cc) = P (Ac)P (Bc)P (Cc)

Exercise. You can pick out 5 of the preceding equations, such that if these 5 equations are true,
then the remaining 3 equations are true. Which 5 equations can you pick? (There is more than
one possible answer.)

Intuitiveness of Independence Concept

Suppose we have a multiple step experiment in which the outcome on any step is not contingent
upon other steps. If E1; E2; � � � ; Ek are events associated with di�erent steps, then our intuition
suggests that these events are independent.

Example 4.1. Flip three fair dies. For any i; j; k belonging to the set f1; 2; 3; 4; 5; 6g, intuition
tells us that the following three events should be independent:

E1 = fdie 1 = ig; E2 = fdie 2 = jg; E3 = fdie 3 = jg:
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Let us see whether this intuition is justi�ed. Since

P (E1)P (E2)P (E3) = (1=6)(1=6)(1=6) = 1=216

and
P (E1 \E2 \E3) = P (i; j; k) = 1=216

give the same result, this is a strong suggestion that these three events are indeed independent, and
this can be veri�ed. (You'd have to verify a total of 8 equations, but since i; j; k are arbitrary, these
equations will be true. The arbitrariness of i; j; k gives us 216 equations, from which the 8 equations
we need are veri�able. You can �ll in the details.) The fact that E1; E2; E3 are independent (which
is a mathematical fact) con�rms our intuition that they should be independent.

Example 4.2. Go back to Example 3.3, in which three coins were tossed, one of them fair and
the other two unfair. Intuition tells us that any three events of the form

fCoin 1 = H or Tg; fCoin 2 = H or Tg; fCoin 3 = H or Tg (4.9)

should be independent. In the 8 equations (3.1)-(3.8), you see how the probability of the intersection
of these three events would be computed as the product of the probabilities of the individual events.
(This is because we have an independent probability model, which is reected in the fact that in
the tree on page 21 the H;T probability labels across each level of the tree are the same.) These 8
equations are precisely the 8 equations you'd have to check to make sure any three events of type
(4.9) are independent. Therefore, any three events of type (4.9) are indeed independent from the
mathematical de�nition of independence, which con�rms our intuition.

Example 4.3. Here we examine cases of pairs of events in which we cannot use our intuition to
see whether we have independence or not. Flip two fair dies and consider the events

A = ffirst die = 2g; B = ftotal = 7g:

Then we have
P (A \B) = P (2; 5) = 1=36:

On the other hand, we have

P (A)P (B) = (1=6)(6=36) = 1=36:

Since P (A \B) = P (A)P (B); events A;B are independent but we have no intuition for saying so.
To make this more evident, suppose we change the second event a little bit:

B1 = ftotal = 6g:

Then
P (A \B1) = P (2; 4) = 1=36;
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but
P (A)P (B1) = (1=6)(5=36) 6= 1=36:

We conclude (based upon the above mathematics) that A;B1 are dependent events, but we have
no intuition for saying so.

Probability Calculations Involving Independent Events

Events E1; E2; � � � ; Ek determine a total 2(2
k) events if you take all possible events formed by means

of unions, intersections, and complementation. If the events E1; E2; � � � ; Ek are independent, it is
useful to know that the probability of any of these 2(2

k) events can be uniquely determined as a
combination of the probabilities

P (E1); P (E2); � � � ; P (Ek):

The following two examples illustrate this fact.
Example 4.4. Let A;B be independent events. Then

P (A [B) = P (A) + P (B)� P (A)P (B):

To see this, go back to Law(i) proved at the beginning of this Lecture and substitute P (A)P (B)
for P (A [B).

Example 4.5. Let A;B;C be independent events. Then it is easy to show that any two of these
three events are independent. (Try to prove this.) Go back to formula (4.1) developed earlier for
computing the probability of the union of A;B;C. In that formula, you can make the following
substitutions on the right side:

P (A \B) = P (A)P (B)

P (A \ C) = P (A)P (C)

P (B \ C) = P (B)P (C)

P (A \B \ C) = P (A)P (B)P (C)

This gives us the formula

P (A [B [C) = P (A) + P (B) + P (C)� P (A)P (B)� P (A)P (C)� P (B)P (C)� P (A)P (B)P (C):
(4.10)

Here is another way to obtain the same result. Using the complementation Law(iii) several times
we have

P (A [B [ C) = 1� P (Ac \Bc \ Cc)

= 1� P (Ac)P (Bc)P (Cc)

= 1� (1� P (A))(1 � P (B))(1 � P (C))

It is a simple exercise in algebra to show that 1� (1� P (A))(1 � P (B))(1� P (C)) is the same as
the right side of (4.10).
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4.3 Application of Independence to Relay Circuits

Switches in Series

We start with the relay circuit
A! 1 ! 2 ! 3 ! B

The circuit elements 1; 2; 3 are switches which each have only two possible states: \on" or \o�".
You are attempting to have some quantity (such as information or an electrical current) ow from
point A to point B. With the three switches connected in series as we have here, the only way that
can happen is if all the switches are \on". We suppose that the switches operate randomly and
independently, with

pi = P (fswitch i is \on"g),

and therefore it is automatically true that

1� pi = P (fswitch i is\o�"g).

Let fA! Bg denote the event that a connection from A to B is possible. Our goal is to compute
P (fA! Bg), the probability that the A to B connection can be made. Note that fA! Bg is the
intersection of three independent events:

fA! Bg = fswitch 1 is \on"g \ fswitch 2 is \on"g \ fswitch 3 is \on"g.

Taking the probability of both sides, we conclude that

P (fA! Bg) = p1p2p3:

The argument we just made is applicable to any relay circuit consisting of k switches connected in
series, where k can be any positive integer. For k switches in series, we'd have

P (fA! Bg) = p1p2p3 � � � pk:

Switches in Parallel

BA

3

2

1
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For the preceding relay circuit, the connection from A to B will be operative if and only if at least
one of the switches is \on". That is, we have a union event:

fA! Bg = fswitch 1 is \on"g [ fswitch 2 is \on"g [ fswitch 3 is \on"g.

Complementing both sides, we have

fA! Bgc = fswitch 1 is \o�"g \ fswitch 2 is \o�"g \ fswitch 3 is \o�"g.

Taking the probability of both sides,

P (fA! Bgc) = 1� P (fA! Bg) = (1� p1)(1 � p2)(1� p3);

and then we conclude that

P (fA! Bg) = 1� (1� p1)(1� p2)(1� p3):

If we have k switches connected in parallel, then the answer is

P (fA! Bg) = 1�
kY
i=1

(1� pi):

Combined Series/Parallel Circuits

Some relay circuits can be handled via a combination of the series and parallel approaches. Here
is one:

43

21

BA

You can replace the series connection of switches 1,2 with a single switch that operates with
probabiity q1 = p1p2. Similarly, you can replace switches 3; 4 with a single switch that operates
with probability q2 = p3p4. You then have a parallel connection of two switches that operate with
probabilities q1, q2, respectively. We conclude that

P (fA! Bg) = 1� (1� q1)(1 � q2) = 1� (1� p1p2)(1� p3p4):

Exercise. For the relay circuit at the top of the next page, prove that

P (fA! Bg) = [1� (1� p1)(1 � p2)]p3:
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A B

1

2

3

General Circuits

Some relay circuits can't be handled by our previous approaches. We cover here a method applicable
to all relay circuits to determine P (fA! Bg). Let us examine the circuit:

43

21

BA

Our general method begins by listing all paths that allow a possible connection from A to B. In
this case, we have four such paths:

12; 14; 32; 34:

A connection from A to B can be made along a given path if and only if all switches along that
path are \on". This allows one to express P (fA! Bg) as the probability of a union event

P (fA! Bg) = P (E1 [E2 [E3 [E4);

where E1; E2; E3; E4 are the events

E1 = f12 all ong

E2 = f14 all ong

E3 = f32 all ong

E4 = f34 all ong

The probability of any union event can be expressed as a linear combination of probabilities of
intersection events. (We have seen this already for unions of 2 events and 3 events.) Here is what



LECTURE 4. CHAPTER 1 PART 4 38

you get for the union of 4 events:

P (E1[E2[E3[E4) =
4X
i=1

P (Ei)�
X

1�i<j�4

P (Ei\Ej)+
X

1�i<j<k�4

P (Ei\Ej\Ek)�P (E1\E2\E3\E4):

(4.11)
The second summation contains 6 terms:

P (E1 \E2) + P (E1 \E3) + P (E1 \E4) + P (E2 \E3) + P (E2 \E4) + P (E3 \E4):

The third summation contains 4 terms:

P (E1 \E2 \E3) + P (E1 \E2 \E4) + P (E1 \E3 \E4) + P (E2 \E3 \E4)

Evaluating all the terms, we obtain

P (E1) = p1p2

P (E2) = p1p4

P (E3) = p3p2

P (E4) = p3p4

P (E1 \E2) = p1p2p4

P (E1 \E3) = p1p2p3

P (E1 \E4) = p1p2p3p4

P (E2 \E3) = p1p2p3p4

P (E2 \E4) = p1p3p4

P (E3 \E4) = p2p3p4

P (E1 \E2 \E3) = p1p2p3p4

P (E1 \E2 \E4) = p1p2p3p4

P (E1 \E3 \E4) = p1p2p3p4

P (E2 \E3 \E4) = p1p2p3p4

P (E1 \E2 \E3 \E4) = p1p2p3p4

In case the reader may be confused by how we arrived at the preceding results, we compute
P (E1\E3) as an example: E1; E3 both occur if and only if switches 1,2,3 are all on, and so E1\E3

is the intersection of 3 independent events; the result p1p2p3 should now be evident. Plugging back
into (4.11), a lot of cancellation occurs. Putting the answer in simplest form, we got:

P (fA! Bg) = p1p2 + p1p4 + p3p2 + p3p4 � p1p2p4 � p1p2p3 � p1p3p4 � p2p3p4 + p1p2p3p4:

We have just illustrated the use of one general method for handling relay circuits. There is a
second general method, which works as follows. Suppose there are k switches in the circuit. Let
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E+1
i be the event that switch i is \on", and let E�1

i be the event that switch i is \o�". Consider
the 2k events of form

E�1
1 \E�1

2 \E�1
3 \ � � � \E�1

k : (4.12)

Using independence, the probability of each such event is easy to compute according to formula
(4.2). The event fA! Bg is a disjoint union of certain of the events of form (4.12). Find out which
events these are, and then add up their probabilities|the result is P (fA ! Bg). For some relay
circuits, this second method works better than the method we described earlier. For an example
using this second method, see Problem 6.1 in the Chapter 1 Solved Problems.

Exercise. Show that the last circuit we considered can be handled in a simpler way.



Lecture 5

Chapter 1 Part 5

In Lecture 5, we started to talk about conditional probability. I derived what the conditional prob-
ability formula P (EjF ) should be, and then started to look at some examples involving conditional
probability. One signi�cant application of conditional probabilities throughout the course will be
to the discrete communication channel; I will complete these notes by explaining what this channel
model is.

5.1 Conditional Probability Derivation

When we originally came up with a probability model P on our sample space S, we assumed that
we did not have any advance information about where the experiment's outcome ! might lie within
S. Suppose instead that we know that the outcome ! will lie in F , an event contained in S. To
reect this knowledge, we should change our probability model P to a new probability model which
I will call PF . We need to �gure out what the \conditional probability model" PF is.

For simplicity, let us assume a discrete sample space S. Then P (!) is de�ned for every ! 2 S.
We now have to de�ne PF (!) for every ! 2 S. In order to do this, we will be guided by the
following two principles:

(i): PF (!) should 0 for outcomes ! lying outside of F (because these outcomes cannot occur under
the conditional information).

(ii): For outcomes ! in F , the PF (!)'s should be in the same proportions as the P (!)'s. (In other
words, if an outcome !1 in F is twice as likely under model P as some other outcome !2 in
F , then under the conditional model PF , outcome !1 will still be twice as likely as outcome
!2.)

Because of assumption (ii), there will exist a positive constant C such that

PF (!) = CP (!); ! 2 F: (5.1)

40
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Once we �gure out what the value of C is, then we will know what PF (!) is for every ! 2 F .
Summing both sides of equation (5.1) over all ! 2 F , we obtain

PF (F ) = C
X
!2F

P (!) = CP (F ):

We must have PF (F ) = 1 (why?). Therefore, we conclude that

C =
1

P (F )
:

Here is then our formula for all the PF (!) values as ! ranges through S:

PF (!) =

(
0; ! 62 F

P (!)
P (F ) ; ! 2 F

Let E be any event. We will denote the probability PF (E) by the standard notation P (EjF ).
We call P (EjF ) the \conditional probability of E given F". Let us derive a formula for P (EjF )
based upon our preceding work. We have:

PF (E) =
X
!2E

PF (!)

=
X

!2E;! 62F

PF (!) +
X

!2E;!2F

PF (!)

= 0 +
X

!2E;!2F

P (!)

P (F )

=

�
1

P (F )

� X
!2E\F

P (!)

=
P (E \ F )

P (F )

We have derived the formula P (EjF ) = P (E \ F )=P (F ). We can reverse the roles of E and F to
obtain a formula for P (F jE), the conditional probability for F given E. We can also multiply both
sides of P (EjF ) = P (E \ F )=P (F ) by P (F ) to obtain a formula for P (E \ F ) as a product of an
unconditional probability and a conditional probability. This gives us several formulas, which we
list below.

Some Formulas Involving Conditional Probability

(a): P (EjF ) = P (E\F )
P (F )

(b): P (F jE) = P (E\F )
P (E)
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(c): P (E \ F ) = P (E)P (F jE)

(d): P (E \ F ) = P (F )P (EjF )

These four formulas are really saying the same thing. We wrote the formulas separately for em-
phasis. In some applications, you will compute conditional probabilities using (a) or (b). In other
applications, you will already know the conditional probabilities and will be using them to compute
the left side of (c),(d).

Example 5.1. Let us harken back to Example 4.3. We ip a pair of fair dice. Consider the
events

F = ffirst die = 2g

E = ftotal = 6g

Then

P (EjF ) =
P (E \ F )

P (F )
=

P (2; 4)

P (first die = 2)
=

1=36

1=6
= 1=6:

We know from earlier work that P (E) = 5=36, which is less than 1=6. This is a case where given
information has made an event more likely to occur than it would have been in the absence of any
information. There can be other cases where given information will make an event less likely to
occur.

In Example 5.1, let us change the E event slightly to

E = ftotal = 7g:

The reader can show that P (EjF ) = 1=6 for this case (the above argument for our previous choice
of E will work here almost word for word). However, we know from our previous work that
P (E) = 1=6. Therefore, P (E) and P (EjF ) are the same. In other words, we have an event that is
just as likely to occur given some information as it is to occur in the absence of any information.
When does this situation occur? In formula(d) above, substitute P (E) for P (EjF ) and you will
see that P (E \ F ) = P (F )P (E); that is, events E;F are independent. It follows that two events
are independent if and only if the conditional probability of either event given the other one is the
same as the unconditional probability of that event. In this way, the concept of independent events
can be considered as a byproduct of the theory of conditional probabilities. We summarize our
conclusions below.

Independence and Conditional Probabilities

Let E;F be events. The following statements are equivalent:

(e): E;F are independent.
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(f): P (EjF ) = P (E).

(g): P (F jE) = P (F ).

(Note: When we say that statements (e),(f),(g) above are equivalent, we mean that if any one of
them is true, then the other two statements are also true.)

5.2 Sampling Without Replacement

Suppose you draw items randomly from a pool of items one by one, without putting previously
selected items back into the pool before selecting the next item. This procedure is called sampling
without replacement (abbreviated as \sampling w/o replacement"). Quality control would be
one important application in which sampling w/o replacement would take place; see Section 1.1.4
of Lecture 1. It is natural for us to consider sampling w/o replacement here in the context of
conditional probabilities, because in such a scenario it is easy to describe the likelihood of what
happens on draws after the �rst draw in terms of conditional probabilities.

In this our �rst exposure to sampling w/o replacement, we illustrate some ideas using a \toy
problem" involving a so-called urn model.

Example 5.2. Suppose we have an urn containing 2 black balls and 3 white balls. We draw two
balls from the urn without replacement. We record as the outcome of this experiment only the
color of each ball selected. The sample space is therefore

S = fBB;BW;WB;WWg;

where in each outcome the �rst entry denotes the color of the �rst ball selected and the second
entry denotes the color of the second ball selected. Note that each of the four outcomes is the
intersection of two events. It is therefore natural for us to use formula(c) as a means to determine
the probability of an outcome in S. Let B1; B2;W1;W2 denote the events

B1 = fBall 1 is blackg

B2 = fBall 2 is blackg

W1 = fBall 1 is whiteg

W2 = fBall 2 is whiteg

Using formula(c) repeatedly, we have

P (BB) = P (B1)P (B2jB1) = (2=5)(1=4) = 0:10

P (BW ) = P (B1)P (W2jB1) = (2=5)(3=4) = 0:30

P (WB) = P (W1)P (B2jW1) = (3=5)(2=4) = 0:30

P (WW ) = P (W1)P (W2jW1) = (3=5)(2=4) = 0:30
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It should be obvious how we obtained the values of P (B1) and P (W1). It is also not hard to see
how we obtain the conditional probabilities. For example, let me explain how I obtained the values
for P (B2jB1) and P (W2jB1). Given that the �rst draw results in a black ball, since this ball is set
aside, the composition of the urn at the beginning of the second draw is 1 black ball and 3 white
balls. You then have 1 chance in 4 of drawing a second ball which is black and therefore 3 chances
in 4 of drawing a second ball which is white; that is,

P (B2jB1) = 1=4; P (W2jB1) = 3=4:

Notice that these two conditional probabilities form a probability distribution (i.e., they add up
to one). This is because when we condition on a �xed event (event B1 in this case), we obtain a
conditional probability model given that event (we called this conditional model PF back at the
beginning of Lecture 5 notes; event F is B1 in this case).

We have just illustrated how to use the conditional probability concept to �nd the probability
model in Example 5.2. Alternatively, we could have found this probability model by using a tree
to model the experiment in Example 5.2, as we did a few lectures ago. It is interesting to look at
this tree and see how it relates to the computations we just completed above. The tree is:

WWWBBWBB

2/42/43/41/4

3/52/5

WBWB

WB

Look at the probability labels on the tree branches at the second level. When we earlier considered
tree models, we did not have a terminology for designating these labels. Now, on the basis of our
treatment of conditional probabilities up to this point, we can interpret these four second level
probability labels (from left to right) as:

P (B2jB1); P (W2jB1); P (B2jW1); P (W2jW1):

In the tree above, we do not have any branches below the second level. This is because we made
only two draws from the urn. If we draw more than two balls, then our tree goes deeper beyond
the second level. However, we will still be able to interpret any probability label on a branch below
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the �rst level as some sort of conditional probability. We will ultimately consider an example in
which we draw more than two balls from an urn.

Exercise. We have a standard 52 card deck of playing cards. You are dealt two cards at random
without replacement. Compute the probability that you obtain exactly one K card (K=king). I
will get you started on a solution. Take the sample space as

S = f(K;K); (K;NK); (NK;K); (NK;NK)g;

where \NK" denotes a \nonking" card, i.e., a card which is not a king. You need to compute

P (K;NK) + P (NK;K):

I will compute P (K;NK) for you. You can compute P (NK;K).

P (K;NK) = P (K1)P (NK2jK1) = (4=52)(48=51):

To see why this is true, note that initially you have 4 king cards, and 48 cards which are not kings.
The �rst card then has 4 chances in 52 of being a king, that is,

P (K1) = 4=52:

After being dealt a king card as the �rst card, the deck now contains 3 king cards and 48 cards
which are not kings. Therefore, you have 48 chances in 51 of drawing a nonking card as your second
card:

P (NK2jK1) = 48=51:

5.3 Discrete Communication Channel Model

In data communications, conditional probabilities are used to describe the various likelihoods with
which a communication channel will generate possible outputs given each �xed possible input. Let
us conceptualize such a channel via the following block diagram:

input ! channel ! output

There is a �nite set of possible inputs and a �nite set of possible outputs. For the sake of
illustration, let us suppose that there are two possble inputs, which come from the set

fa1; a2g; (5.2)

and that there are three possible outputs, which come from the set

fb1; b2; b3g: (5.3)
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Suppose we perform the random experiment in which we select an input at random from the set
(5.2) and transmit it through the channel, which results in a randomly generated output from the
set (5.3). The sample space S of this random experiment consists of 2 � 3 = 6 input-output pairs
of the form (ai; bj). There is a convenient convention for representing these pairs pictorially:

 b1 b2 b3

a1 (a1; b1) (a1; b2) (a1; b3)
a2 (a2; b1) (a2; b2) (a2; b3)

!

Notice that the 6 outcomes in the sample space appear within the parentheses as a 2 � 3 array.
The row headings are the possible inputs and the column headings are the possible outputs. If the
input is ai and the output is bj, then the input-output pair (ai; bj) appears at the intersection of
the row with heading ai and the column with heading bj .

To specify the probability model for our random experiment, we need to be able to compute six
probabilities of the form P (ai; bj). It is also convenient to put these probabilities in a 2� 3 array
as follows:

 b1 b2 b3

a1 P (a1; b1) P (a1; b2) P (a1; b3)
a2 P (a2; b1) P (a2; b2) P (a2; b3)

!
(5.4)

Let P (bj jai) denote the conditional probability that the channel output is bj given that the channel
input is ai. Let P (ai) denote the probability with which input ai is chosen. From our earlier work
with conditional probabilities in the Lecture 5 notes, we have the following six equations via which
each P (ai; bj) can be computed:

P (ai; bj) = P (ai)P (bj jai); i = 1; 2; j = 1; 2; 3:

It will be convenient for us to view these computations from the matrix point of view. To do this,
let us put the 6 conditional proabilities P (bj jai) in the following array:

 b1 b2 b3

a1 P (b1ja1) P (b2ja1) P (b3ja1)
a2 P (b1ja2) P (b2ja2) P (b3ja2)

!
(5.5)

In array (5.5), row 1 represents the conditional probability model for the di�erent channel outputs
that can arise when the channel input is a1. Row 2 represents the conditional probability model
for the di�erent channel outputs that can arise when the channel input is a2. Since each row of
(5.5) is a conditional probability model, each row of (5.5) sums up to one. In order to specify a
discrete channel model, you would be given a matrix like (5.5) in which each row sums up to one.
This matrix is called the channel matrix. Given the channel matrix (5.5) and the probabilities
P (a1); P (a2) of the inputs, then it is easy to describe how you compute the array (5.4) which gives
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the probability model on our sample S of input-output pairs: You multiply each row of the channel
matrix (5.5) by the probability P (ai) for the ai that is the row header for that row. Equivalently,
we can do the following matrix product: 

P (a1) 0
0 P (a2)

! 
P (b1ja1) P (b2ja1) P (b3ja1)
P (b1ja2) P (b2ja2) P (b3ja2)

!
=

 
P (a1; b1) P (a1; b2) P (a1; b3)
P (a2; b1) P (a2; b2) P (a2; b3)

!

Conclusion: Suppose we are given the channel matrix which speci�es a given discrete channel

model. Suppose we are also given the probabilities with which the channel inputs are to

be selected. Perform the following random experiment: Select a channel input at random,
transmit it through the channel, and record the resulting input-output pair. The probability

model for this experiment can then be computed as the matrix product

D � C;

where D is the diagonal matrix which has the input probabilities on the diagonal, and C is

the channel matrix.

Example 5.3. Suppose the channel matrix is given as

 0 1

0 0:90 0:10
1 0:05 0:95

!

What does this mean? From the row and column headings, we see that the possible inputs are
0; 1 and the possible outputs are also 0; 1. From the �rst row of the channel matrix, we see that
when the channel input is 0, the channel output will also be 0 with probability 0:90. That is, when
the channel input is 0, the channel will operate correctly 90% of the time. (If we were to transmit
thousands of 0's through this channel, then we would see that about 90% of the resulting outputs
are 0 and about 10% of them are incorrect (i.e., equal to 1). From the second row of the channel
matrix, we see that when the channel input is 1, the channel output will also be 1 with probability
0:95. That is, when the channel input is 1, the channel will operate correctly 95% of the time.
Suppose we select a channel input equally likely to be 0 or 1:

P (0) = 1=2; P (1) = 1=2:

Having selected the channel input randomly, we then transmit this input through the channel, and
then record the pair consisting of this input with the observed output as the outcome of our random
experiment. The probability model for this random experiment is then the matrix product: 

1=2 0
0 1=2

! 
0:90 0:10
0:05 0:95

!
=

 
0:45 0:05
0:025 0:475

!
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At this point, it helps to put the row and column headings back in, which gives us

 0 1

0 0:45 0:05
1 0:025 0:475

!

The sample space of our experiment consists of the four possible input-output pairs:

S = f(0; 0); (0; 1); (1; 0); (1; 1)g

From our preceding array with the row and column headings, we can now read o� the probabilities
for the probability model for our experiment as follows:

P (0; 0) = 0:45

P (0; 1) = 0:05

P (1; 0) = 0:025

P (1; 1) = 0:475

As we go through the course, we will do more and more things with the discrete channel model.
(This is just the beginning!)



Lecture 6

Chapter 1 Part 6

In this set of Lecture notes, I �nish Chapter 1. The principal topic is Bayes Method. As a
byproduct of developing Bayes Method, I obtain some Laws of Conditional Probability, which I
will state separately with some examples at the end of these notes.

6.1 Bayes Method Explained

Let events fAig partition the sample space S. (This means that S is a disjoint union of these
events.) Let events fBjg also partition S. Suppose you are given the P (Ai)'s and the P (Bj jAi)'s
(these conditional probabilities are called forward conditional probabilities). The goal of Bayes
Method is to do the following:

� Compute the P (Bj)'s.

� Compute the P (AijBj)'s, which are called the backward conditional probabilities.

As a by-product of Bayes Method, we will also compute the probabilities P (Ai \ Bj), called joint

probabilities.
In order to explain how Bayes Method works, it will be convenient for us to deal with three

di�erent matrices, described as follows.

Matrix of Forward Conditional Probabilities: This is the matrix in which the matrix ele-
ment in Row i and Column j is P (Bj jAi). For example, if there are two Ai's and three Bj 's,
the matrix of forward conditional probabilities is:

 B1 B2 B3

A1 P (B1jA1) P (B2jA1) P (B3jA1)
A2 P (B1jA2) P (B2jA2) P (B3jA2)

!

49
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We use the Ai's as row headings and the Bj 's as column headings for the matrix of forward
cond probs. (This is a useful bookkeeping device which we use for all three types of matrices
we are de�ning here.)

Matrix of Joint Probabilities: This is the matrix in which the matrix element in Row i and
Column j is the joint probability P (Ai \ Bj). For example, if there are two Ai's and three
Bj 's, the matrix of joint probabilities is:

 B1 B2 B3

A1 P (B1 \A1) P (B2 \A1) P (B3 \A1)
A2 P (B1 \A2) P (B2 \A2) P (B3 \A2)

!

Matrix of Backward Conditional Probabilities: This is the matrix in which the matrix ele-
ment in Row i and Column j is the backward conditional probability P (AijBj). For example,
if there are two Ai's and three Bj's, the matrix of backward conditional probabilities is:

 B1 B2 B3

A1 P (A1jB1) P (A1jB2)) P (A1jB3)
A2 P (A2jB1) P (A2jB2) P (A2jB3)

!

Matrix Properties

(i): Each row of the matrix of forward conditional probabilities adds up to one. This is because
Row i is the conditional probability model for the Bj 's given Ai.

(ii): Each column of the matrix of backward conditional probabilities adds up to one. This is
because Column j is the conditional probability model for the Ai's given Bj.

(iii): The sum of all of the elements of the joint probability matrix is equal to 1.

(iv): For each i, the sum of row i of the joint probability matrix is P (Ai).

(v): For each j, the sum of column j of the joint probability matrix is P (Bj).

Using the following Venn Diagram, it is not hard to see why the last three properties are true.

B3B2B1

A2

A1

A2 \B3A2 \B2A2 \B1

A1 \B3A1 \B2A1 \B1
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Property(iii) is true because S (the entire Venn Diagram) is the disjoint union of all the Ai \Bj 's.
Property(iv) is true because Ai is the disjoint union of the events Ai \Bj in which j is allowed to
vary and i is held �xed (the events in Row i of the Venn Diagram). Property(v) is true because
Bj is the disjoint union of the events Ai \ Bj in which i varies and j is held �xed (the events in
Column j of the Venn Diagram).

Remark. The discrete communication channel model, discussed at the end of the Lecture 5
Notes, yields a particular application of the Bayes Method machinery. The inputs to the channel
yield the events Ai, the outputs to the channel yield the events Bj , and the matrix of forward
conditional probabilities is the channel matrix.

Bayes Method involves three steps, which I now describe.

6.1.1 Step 1 of Bayes Method

This step consists of the computation of the joint probabilities, the P (Ai \ Bj)'s. There are two
ways to do this:

(i): If you want to compute the joint probabilities one by one, just plug into the right side of the
following formula:

P (Ai \Bj) = P (Ai)P (Bj jAi): (6.1)

(ii): If you want to compute the matrix of joint probabilities all at once, then for each i, you
multiply row i of the matrix of forward conditional probabilities by P (Ai). Equivalently, this
operation can be performed as the following matrix product:�

P (A1) 0
0 P (A2)

��
P (B1jA1) P (B2jA1) P (B3jA1)
P (B1jA2) P (B2jA2) P (B3jA2)

�
=
�

P (A1 \ B1) P (A1 \ B2) P (A1 \B3)
P (A2 \ B1) P (A2 \ B2) P (A2 \B3)

�
In other words, you form a diagonal matrix whose diagonal entries are the P (Ai)'s, and
then multiply this diagonal matrix (on the left) times the matrix of forward conditional
probabilities; the result of this matrix product is the matrix of joint probabilities.

Formula (6.1) was covered in Lecture 5 notes. It is a special case of a Conditional Probability
Law called the Multiplication Law; the general case of the Multiplication Law (which applies to
intersections of possibly more than two events) will be given at the end of this set of notes.

6.1.2 Step 2 of Bayes Method

This step consists of the computation of the P (Bj)'s. There are two ways to do this:

(i): If you want to compute the P (Bj)'s one by one, just plug into the right side of the following
formula:

P (Bj) =
X
i

P (Ai)P (Bj jAi): (6.2)
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(ii): If you want to compute the P (Bj)'s all at once, multiply the matrix of forward cond probs
on the left by the row vector whose entries are the P (Ai)'s:

(P (A1) P (A2))

�
P (B1jA1) P (B2jA1) P (B3jA1)
P (B1jA2) P (B2jA2) P (B3jA2)

�
= (P (B1) P (B2) P (B3)) :

Equation (6.2) is the \Law of Total Probability". It is easy to prove. We defer its proof and a
discussion of other applications of this Law to the end of the Lecture 6 Notes.

6.1.3 Step 3 of Bayes Method

This step consists of the computation of the backward conditional probabilities, the P (AijBj)'s.
There are two ways to do this:

(i): If you want to compute the P (AijBj)'s one by one, just plug into the right side of the formula

P (AijBj) =
P (Ai)P (Bj jAi)P
i0 P (Ai0)P (Bj jAi0)

: (6.3)

(ii): If you want to compute the backward conditional probabilities all at once, then for each j,
divide Column j of the joint probability matrix by the column sum for that column (which
is P (Bj)). These column operations yield the matrix of backward conditional probabilities.
You can also accomplish this by multiplying the joint probability matrix on the right by a
diagonal matrix as follows:

 
P (B1 \A1) P (B2 \A1) P (B3 \A1)
P (B1 \A2) P (B2 \A2) P (B3 \A2)

!0B@ 1=P (B1) 0 0
0 1=P (B2) 0
0 0 1=P (B3)

1
CA =

 
P (A1jB1) P (A1jB2) P (A1jB3)
P (A2jB1) P (A2jB2) P (A2jB3)

!
(6.4)

Remark. Equation (6.3) is called Bayes Law. It is easy to prove. First, write

P (AijBj) =
P (Ai \Bj)

P (Bj)
=

P (Ai)P (Bj jAi)

P (Bj)
:

Then, substitute for P (Bj) the right side of (6.2).
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6.2 Bayes Method Examples

Example 6.1. We consider the discrete channel model with binary input and output and channel
matrix

 0 1

0 1� p p
1 p 1� p

!

This is a famous channel model called the binary symmetric channel (BSC). The parameter p is
called the crossover probability. It is the probability that the channel makes an error (in which
either a transmitted 0 is received as a 1, or vice-versa). Suppose a binary channel input is selected
at random according to the probability model

P (input = 0) = 0:6; P (input = 1) = 0:4:

Let us answer the following two questions via Bayes Methodology.

(a) Compute p if it is measured that

P (output = 0) = 0:59:

(b) Compute p if it is measured that

P (input = 0joutput = 0) = 0:97:

Solution to (a). The output probability distribution is

(0:6; 0:4)

 
1� p p
p 1� p

!
= (0:6(1 � p) + (0:4)p; (0:6)p + 0:4(1 � p)) :

Setting
0:6(1 � p) + (0:4)p = 0:59;

we see that p = 0:05:
Solution to (b). The joint probability matrix is

 
0:6(1 � p) (0:6)p
(0:4)p 0:4(1 � p)

!
:

If we divide the left column by the column sum of that column, the top left corner of the new
column will be

0:6(1 � p)

0:6(1 � p) + (0:4)p
;
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which we set equal to the backward conditional probability 0:97. Solving this equation, one obtains
p = 0:0443.

Example 6.2. At a certain university, the Statistics Department has tried three di�erent texts
in Stat 101. These texts are by Professors Mean, Median, and Mode, respectively. Of the 1000
students who took Stat 101, 500 of them used Professor Mean's book, 300 of them used Professor
Median's book, and 200 of them used Professor Mode's book. A survey showed that 200 students
were satis�ed with Mean's book, 150 were satis�ed with Median's book, and 160 were satis�ed with
Mode's book. Given that a randomly selected student was satis�ed with his/her textbook, let us
determine which of the three textbooks that the student was most likely to have used.

Solution. Consider the following 5 events:

E1 is the event that the student took Stat 101 using Mean's text
E2 is the event that the student took Stat 101 using Median's text
E3 is the event that the student took Stat 101 using Mode's text
S is the event that the student was satis�ed with his/her text

NS is the event that the student was not satis�ed with his/her text

Here is the forward cond prob matrix:

NS

0:20

0:50

0:80

0:50

0:600:40

S

E3

E2

E1

Multiplying the three rows, respectively, by

P (E1) = 0:50; P (E2) = 0:30; P (E3) = 0:20;

we obtain the following joint probability matrix:
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NS

0:04

0:15

0:16

0:15

0:300:20

S

E3

E2

E1

Finally, dividing each column by the column sum, we obtain the following matrix of backward
conditional probabilities:

NS

4=49

15=49

16=51

15=51

30=4920=51

S

E3

E2

E1

In the �rst column, the biggest entry is 20=51, that is,

P (E1jS) = 20=51:

We conclude that the student most likely used Mean's text.

Example 6.3. In testing a new drug, 1000 sick people were tested. 600 of the sick people were
given the drug and the remaining 400 people were given a placebo. In each case, some of them
were cured and some not cured, according to the following table:

 cured not cured

given drug 450 150
given placebo 200 200

!

Suppose one of the 1000 people is chosen at random, and we want to see what is the probability
that this person was in the placebo group given that they are not cured. We obtain the matrix of
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forward cond probs by dividing each row of the preceding table by the row sum:

 cured not cured

given drug 450=600 150=600
given placebo 200=400 200=400

!

To obtain the joint probability matrix, we multiply the �rst row of the preceding matrix by 0:60
and the second row by 0:40. (This is because the selected person belongs to the placebo group with
a probability of 400=1000.) This gives us the following matrix of joint probabilities:

 cured not cured

given drug 0:45 0:15
given placebo 0:20 0:20

!

Summing the two columns,

P (cured) = 0:65; P (not cured) = 0:35:

If we want the matrix of backward cond probs, we can normalize each column of the preceding
table by dividing the columns by 0:65, 0:35, respectively.

 cured not cured

given drug 45=65 15=35
given placebo 20=65 20=35

!

Thus, for example, we can say that

P (given placebojnot cured) = 20=35:

6.3 Two Conditional Probability Laws

Multiplication Law

The Multiplication Law says that for any �nite number of events E1; E2; � � � ; Ek, the probability of
the intersection can be broken down as a product as follows:

P (E1 \E2 \E3 \ � � � \Ek) = P (E1)P (E2jE1)P (E3jE1 \E2) � � �P (EkjE1 \E2 \ � � � \Ek�1):

In other words, after the �rst factor P (E1) of the �rst event E1 on the right side, the remaining
factors are the conditional probabilities of each remaining event given all the previous events in the
list E1; E2; � � � ; Ek. If you have just two events, the multiplication law says

P (E1 \E2) = P (E1)P (E2jE1);
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which is something we proved in Lecture 5 Notes. For three events, we have

P (E1 \E2 \E3) = P (E1)P (E2jE1)P (E3jE1 \E2):

The reader can easily write down what the Multiplication Law would mean for four events. It is
not hard to see that the Multiplication Law for k events follows from the Multiplication Law for
k � 1 events. For example, we could prove the Multiplication Law for three events as follows:

P (E1 \E2 \E3) = P (E1 \E2)P (E3jE1 \E2)

= P (E1)P (E2jE1)P (E3jE1 \E2)

Example 6.4. Suppose an experiment consists of multiple steps. You arrive after the experiment
starts and can observe the results of the last few steps. Your goal is to determine what was the
most likely result of the earlier steps which you could not observe. Solving a problem like this is a
nice application of the multiplication theorem. To illustrate, suppose we have an urn containing 6
red, 6 white, and 6 blue balls. Four balls are selected at random from the urn, one after the other,
w/o replacement. It is observed that the second, third, and fourth balls selected are white, white,
red, in that order. Given this information, was the �rst ball most likely to have been red, white,
or blue? We let the notation Ri (i = 1; 2; 3; 4) denote the event of getting a red ball on draw i.
Similarly, we let Wi and Bi denote the events of getting a white ball and a blue ball on draw i,
respectively. We want to determine which of the following 3 numbers is the greatest:

P (R1jW2 \W3 \R4); P (W1jW2 \W3 \R4); P (B1jW2 \W3 \R4) (6.5)

If we multiply these three numbers by P (W2 \W3 \R4), we obtain the 3 numbers

P (R1 \W2 \W3 \R4); P (W1 \W2 \W3 \R4); P (B1 \W2 \W3 \R4): (6.6)

Therefore, if we can determine which of the three numbers (6.6) is the greatest, the corresponding
number in (6.5) will be the greatest. By the multiplication theorem, we have

P (R1 \W2 \W3 \R4) = P (R1)P (W2jR1)P (W3jR1 \W2)P (R4jR1 \W2 \W3)

= (6=18)(6=17)(5=16)(5=15)

P (W1 \W2 \W3 \R4) = P (W1)P (W2jW1)P (W3jW1 \W2)P (R4jW1 \W2 \W3)

= (6=18)(5=17)(4=16)(6=15)

P (B1 \W2 \W3 \R4) = P (B1)P (W2jB1)P (W3jB1 \W2)P (R4jB1 \W2 \W3)

= (6=18)(6=17)(5=16)(6=15)

The third of these numbers is the biggest. Therefore, the �rst ball selected most likely was blue.
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Law of Total Probability

Let fAig be a partition of the sample space, and let B be any event. The Law of Total Probability
says that

P (B) =
X
i

P (Ai)P (BjAi): (6.7)

In other words, this law allows you to express the \total probability" P (B) as a weighted average
of the conditional probabilities with which B occurs when conditioned on each Ai. The Law on
Total Probability is easy to prove. First, we remark that

P (B) =
X
i

P (Ai \B):

This is because B is a disjoint union of the B \Ai's. In this preceding sum, just substitute

P (Ai \B) = P (Ai)P (BjAi)

and you have the result (6.7).

Example 6.5. A prisoner is given 100 black balls and 100 white balls and two identical urns.
He is told to distribute the balls in the urns any way he wants. The urns are then taken away and
returned to the prisoner at a later time so that the prisoner does not know which urn is which.
He is then asked to choose an urn at random and then to select a ball at random from the chosen
urn. If the ball is white, the prisoner is allowed to go free. The \prisoner's dilemma" (a classic
probability problem) is then to determine how the prisoner should distribute the 200 balls in the
two urns in order to maximize his chance of going free. Suppose he chooses x of the 100 black balls
and y of the 100 white balls to put in Urn 1 (x; y unknown). The remaining 200 � x� y balls go
in Urn 2. The event that he selects Urn 1 (U1) has prob 1/2 and the event that he selects Urn 2
(U2) has prob 1/2. Let W be the event that he selects a white ball. We have, by the Law of Total
Probability,

P (W ) = P (U1)P (W jU1) + P (U2)P (W jU2)

= (1=2)

�
y

x+ y

�
+ (1=2)

�
100 � y

200� x� y

�

You want this expression to be as big as possible. What should x; y be to achieve this? If you get
stuck, consult the Chapter 1 Solved Problems.

Remarks. There are other problems where the Law of Total Probability gives a nice solution.
Another such problem is the \Monte Hall Problem." See Recitation 2 Instructions for a description
of this problem. We will see a generalization of the Law of Total Problability later on in the
course called the \Law of Total Expectation". The Law of Total Expectation will ultimately be an
important tool for us when we consider optimal �lter design problems.


