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Lecture 7

Chapters 2-3 Part 1

In Lecture 7, I give terminology and examples regarding types of random variables, probability mass

functions, and probability density functions. I also point out which probability distributions from
Appendix A that we will be covering this semester.

7.1 Random Variable De�nition and Notation

De�nition

If you look back in Lecture 3 about derived probability models, you will see the beginnings of the
random variable concept. A random variable (RV) X is a real-valued function de�ned on the sample
space S. For each outcome ! 2 S, the RV X assigns a real value X(!).

Let us recall from Lecture 3 the de�nition of the derived probability model PX on the real line
induced by the random variable X and the original probability model P on S. Let E be a subset
of the real line. (Usually, we take E to be an interval.) Then the probability PX(E) of E is de�ned
by

PX(E)
�
= P (f! 2 S : X(!) 2 Eg):

1 In other words, to �nd PX(E), you compute the P probability of the event back in S consisting
of all outcomes for which the X value lies in E.

Notation

If E is a subset of the real line, then the notation

fX 2 Eg
1The � over the equal sign means that we are making a de�nition.

1
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denotes the event back in the sample space S consisting of all outcomes in S which are mapped by
X into a value in E. That is,

fX 2 Eg �
= f! 2 E : X(!) 2 Eg:

It follows that the notation
P (X 2 E)

is the same thing as PX(E), because

P (X 2 E) = P (f! 2 S : X(!) 2 Eg) = PX(E):

In words, P (X 2 E) is the \probability with which the value of X falls in E".
Usually, E is an interval of some sort. We use the following notations for intervals:

� [a; b] denotes the interval with left endpoint a and right endpoint b, including the two end-
points.

� (a; b) denotes the interval with endpoints a, b, respectively, where the two endpoints are
excluded.

� [a; b) denotes the interval with endpoints a, b, where endpoint a is included and endpoint b
is excluded.

� (a; b] denotes the interval with endpoints a, b, where endpoint a is excluded and endpoint b
is included.

Here are some examples of notations for probabilities involving a RV X:

P (2 � X � 3) = PX( [2; 3] )

P (3 < X � 4) = PX( (3; 4] )

P (X � 5) = P ( [5;1) )

P (X = 5) = PX(f5g) = PX( [5; 5] )

The last example was a probability of the type PX(x), where x is a single point on the real line.
Your book writes PX(x) instead of PX(x) (X as a subscript rather than a superscript). You can
write it either way. (Obviously, it makes no di�erence; some books use the superscript notation
and some use the subscript notation.)

We have obtained the induced probability model PX on the real line from the original probability
model P on the sample space S. Once the model PX has been obtained in this way, you would
only need the model PX and not the original model P if you are dealing with just a single random
variable.
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7.2 Types of Random Variables

Discrete Random Variables

Suppose the possible values of the RV X are just a discrete set of values, written sequentially as

x1; x2; x3; � � � :

This sequence of values could be �nite or in�nite. Most of our discrete RV's will take just �nitely
many values, but there are some (like Poisson or geometric discrete RV's covered later on) that
take in�nitely many values. We must haveX

i

PX(xi) = 1;

since the events of form fX = xig form a partition of the sample space S and therefore their
probabilities must add up to one.

De�nition. The function which maps each value xi into the probability PX(xi) is called the
probability mass function of the RV X. This is abbreviated as PMF.

Example 7.1. Let discrete RV X denote the total number of heads on 3 tosses of a fair coin.
We plotted the PMF of X back in Lecture 3 notes:
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Example 7.2. Let discrete RV X denote the sum of the numbers on the toss of two fair dies.
We plotted the PMF of X back in Lecture 3 notes:
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Example 7.3. Two equally matched sports teams play a best 3 of 5 championship series. Let X
be the discrete RV giving the number of games that are played in the series. Then the PMF works
out to be

PX(3) = 2=8

PX(4) = 6=16

PX(5) = 6=16

To see how I got this, look back at the tree for this experiment back in Example 3.1 of Lecture
3 notes. There are two paths in the tree corresponding to a 3 game series, with total probability
2=8 (the probability of each such path is 1=8); thus PX(3) = 2=8. There are six paths in the tree
corresponding to a 4 game series, with total probability 6=16 (each such path has probability 1=16);
thus, PX(4) = 6=16. The remaining PMF value can be found by the complementation rule:

PX(5) = 1� PX(4) � PX(3) = 6=16:

If you know the PMF of a discrete RV X, then you can compute the probability with which
the value of X falls in any subset of the real line as follows:

P (X 2 E) =
X
xi2E

PX(xi): (7.1)

Example 7.4. For the PMF in Example 7.2, let us compute P (5 � X � 8). We have

P (5 � X � 8) = PX(5) + PX(6) + PX(7) + PX(8)

= 4=36 + 5=36 + 6=36 + 5=36 = 20=36
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Continuous Random Variables

A continuous RV takes values \continuously distributed" over some subset of the real line; \con-
tinuously distributed" refers to the fact that there can be no accumulation of probability at any
particular real value of a continuous RV. Therefore, a continuous RV X will satisfy

PX(x) = 0; (7.2)

for every real number x! Because of the strange property (7.2), it will be impossible to compute
probabilities of events associated with continuous RV's by summation as in formula (7.1). Instead,
we will have to compute PX probabilities for a continuous RV X via integration. Let us make
this more precise. For a continuous RV X, you will have a so-called probability density function

fX(x), de�ned for all real numbers x. (This function is abbreviated PDF, or sometimes simply
called \density"). The PDF fX(x) satis�es the following properties:

(a): 0 � fX(x) <1 for all real x.

(b):
R1
�1 fX(x)dx = 1.

(c): For any event E, a subset of the real line,

PX(E) =

Z
E
fX(x)dx: (7.3)

Discussion. From property(a), if you plot the graph of a PDF fX(x), the graph will always lie
on or above the x-axis as x varies. So, we can interpret property(b) as saying that the area lying
under the entire density curve is equal to 1. In property(c), suppose we take E to be an interval
[a; b]. Then equation (7.3) becomes

P (a � X � b) = PX( [a; b] ) =

Z b

a
fX(x)dx: (7.4)

In other words, P (a � X � b) may be interpreted as the area under the density curve that is
caught in between the vertical lines x = a and x = b. Now in property(c), suppose we take E to
consist of a single point a. Then (7.3) becomes

P (X = a) = PX(a) =

Z a

a
fX(x)dx = 0;

and we now see why (7.2) is true. Since endpoints of intervals are assigned probability zero, we can
ignore endpoints of intervals in probability calculations involving continuous RV's, that is, all four
probabilities

P (a � X � b); P (a < X � b); P (a � X < b); P (a < X < b) (7.5)
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will be equal to the area given by the right side of (7.4). This will not be true for a discrete RV. In
fact, for a discrete RV X, it can turn out that all four probabilities (7.5) are di�erent! Finally, we
point out that property(b) is a special case of property(c): in property(c), take E to be the entire
real line, and then PX(E) must be 1 because f! 2 S : X(!) 2 Eg is all of S and S has probability
1.

Example 7.5. Look back at Example 3.7, where we gave an example of a PDF. Let us give a
RV X with the PDF of Example 3.7 a name. We say that a continuous RV X having PDF

fX(x) = 1; 0 � x � 1 (zero elsewhere);

has the standard uniform distribution, or we say that the RV is a standard uniform RV. In other
words, the PDF of a RV having a standard uniform distribution is simply an amplitude 1 rectangular
pulse over the interval [0; 1]. You simulate a value of a RV having the standard uniform distribution
by executing the Matlab command

rand(1,1)

For any subinterval [a; b] of the unit interval [0; 1], the probability PX([a; b]) for a standard uniform
RV X works out according to formula (7.3) to be just b � a, the length of the interval [a; b].
There are also \nonstandard" uniform distributions, which refers to the scenario in which we have
uniform RV's whose densities are rectangular pulses extending over �nite intervals other than the
unit interval [0; 1]. For �nite interval [c; d], one can obtain a uniform RV extending over [c; d] by
appropriately scaling and translating a standard uniform RV. Later, we will see how to do the
scaling/translation.

Example 7.6. A continuous RV X is said to have the standard Gaussian distribution if its
density is

fX(x) = C exp

 
� x2

2

!
; �1 < x <1; (7.6)

where C is a unique positive real number whose value we will determine. The plot of the standard
Gaussian density (7.6) is typically referred to as a \bell-shaped curve". (For a nice plot, see Figure
3.6 in your textbook.) We now compute C. Since the area under the density curve must be 1, it
follows that

C =
1R1

�1 e�x2=2dx
:

Suppose we square the integral in the denominator. This gives us a double integral in rectangular
coordinates that we can easily evaluate when we convert to polar coordinates r; �:�Z 1

�1
e�x

2=2dx

�2
=

�Z 1

�1
e�x

2=2dx

��Z 1

�1
e�y

2=2dy

�

=

Z 1

�1

Z 1

�1
e�(x

2+y2)=2dxdy
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=

Z 2�

0

Z 1

0
e�r

2=2rdrd� = 2�:

It follows that C = 1=
p
2�, and our standard Gaussian density is therefore

fX(x) =

�
1p
2�

�
exp

 
� x2

2

!

Remark. In Matlab, it is easy to simulate an observation of a standard Gaussian random
variable. You just execute the command

randn(1,1)

Statisticians call the Gaussian distribution the normal distribution. The n in randn stands for
\normal".

Mixed Random Variables

A mixed random variable is neither purely discrete nor purely continuous. That is, a mixed RV
takes a certain number of discrete values with positive probability, but the remaining possible values
of the RV are taken on continuously. Here is a simple example of a continuous RV.

Example 7.7. Bill is a shotputter. With probability 0:1, when Bill throws the shot he will foul
and throw the shot only 10 feet. Otherwise, with probability 0:9, Bill will not foul and will throw
the shot a distance which is uniformly distributed between 60 and 70 feet. Let X be the distance
that Bill throws the shot. This is clearly a mixed RV. (You have the discrete value X = 10, plus
uniformly distributed values in the range 60 � X � 70.)

We can describe a density function (PDF) for a mixed RV if we allow two additive components
in the density function:

� one of the components will be a linear combination of delta functions concentrated at the
discrete values; and

� the other component will be a �nite density function scaled by the probability with which
the RV takes its nondiscrete values.

With this idea in mind, let us see what the PDF fX(x) would be for the mixed RV X in Example
7.7. Here, we have one discrete value of X at X = 10 taken on with probability 0:1, and so we
should have a delta function (0:1)Æ(x � 10) as a component of the PDF. The rest of the values of
X are uniformly distrbuted between 60 and 70, so we should make the other component of fX(x)
be a suitably scaled rectangular pulse over the interval [60; 70]. In other words, the PDF fX(x) for
Example 7.7 should take the form

fX(x) = (0:1)Æ(x � 10) + (0:9)(1=10)[u(x � 60) � u(x� 70)]:
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The factor of 0:1 in front of the delta function Æ(x � 10) is correct because that will give us the
following correct probability calculation for P (X = 10):

P (X = 10) =

Z 10

10
fX(x)dx =

Z 10

10
(0:1)Æ(x � 10)dx = 0:1:

(Remember from EE 3015 that the integral of any delta function is 1!) The reader may be wondering
why we have a factor of 1=10 in front of the rectangular pulse

u(x� 60)� u(x� 70):

This is the factor which makes the following integral equal to 1:Z 1

�1
(1=10)[u(x � 60) � u(x� 70)]dx =

Z 70

60
(1=10)dx = 1:

Then we have Z 1

�1
fX(x)dx = 0:1 + (0:9)

Z 1

�1
(1=10)[u(x � 60) � u(x� 70)]dx

= 0:1 + (0:9)1 = 1;

which makes fX(x) a bona�de density function.

Example 7.8. In the preceding example, we saw how to represent a discrete value of a mixed
RV as a delta function component in the density function. It is interesting to note that we can use
this same approach in handling a discrete RV. In other words, we can regard a discrete RV X as
having a PDF fX(x) consisting entirely of delta function components concentrated at the di�erent
values of X. For example, we see that the discrete random variable X of Example 7.1 has a density
fX(x) which can be written as

fX(x) = (1=8)Æ(x) + (3=8)Æ(x � 1) + (3=8)Æ(x � 2) + (1=8)Æ(x � 3): (7.7)

Note the the constant appearing in front of each delta function term in (7.7) is equal to the
probability with which RV X takes on the value represented by that delta function. The PDF
fX(x) is correct because it will generate the correct PMF values upon integration:

PX(0) =

Z 0

0
fX(x)dx = (1=8)

Z 0

0
Æ(x)dx + 0 + 0 + 0 = 1=8

PX(1) =

Z 1

1
fX(x)dx = 0 + (3=8)

Z 1

1
Æ(x� 1)dx+ 0 + 0 = 3=8

PX(2) =

Z 2

2
fX(x)dx = 0 + 0 + (3=8)

Z 2

2
Æ(x � 2)dx + 0 = 3=8

PX(3) =

Z 3

3
fX(x)dx = 0 + 0 + 0 + (1=8)

Z 3

3
Æ(x� 3)dx = 1=8
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Remark. We now see that the probability behavior of any RV can be described in terms of
a PDF, whether the RV is discrete, continuous, or mixed. If we look back at assumptions(a)-(c)
placed on our PDF's for continuous RV's, we see that these are still valid for the PDF's of discrete
or mixed RV's, except we have to allow fX(x) to take in�nite values at discrete values of X (due
to the delta functions concentrated at these values). The fact that we can use PDF's for all three
types of RV's means later on that we can give a uni�ed presentation of certain formulas involving
RV concepts|this saves us from giving three separate derivations of such formulas!

7.3 Probability Distributions to be Covered

The textbook covers quite a number of commonly appearing discrete and continuous probability
distributions for RV's. I will not be covering all of these. The discrete probability distributions I
will be covering are:

� binomial

� Poisson

� geometric

� discrete uniform

� hypergeometric

All of these are in Appendix A of the textbook except for the hypergeometric distribution. The
continuous probability distributions I will be covering are:

� Gaussian

� uniform

� exponential
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8.1 Binomial Distribution Via Binomial Theorem

The binomial theorem says

(a+ b)n =
nX

k=0

 
n

k

!
akbn�k: (8.1)

The notation
�n
k

�
denotes the number of combinations of n things taken k at a time, as every good

college algebra student knows. (If you need to review combinations, see page 30 of your textbook.)
The number

�n
k

�
is calculated as follows:

 
n

k

!
=

n!

k!(n� k)!
=

n(n� 1)(n� 2) � � � (n� k + 1)

k!
:

For �xed n, the numbers
�n
k

�
as k ranges from 0 to n are also called binomial coeÆcients. They are

generated by Pascal's triangle:

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1

Pascal's triangle extends in�nitely down; we stopped with row 7. Each row of Pascal's triangle
begins and ends with 1, and each entry in a row is the sum of the entries in the row above to the
right and left. The entries in row n + 1 of Pascal's triangle are the binomial coeÆcients

�n
k

�
as k

10
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goes from 0 through n. For example, looking at row 5 of Pascal's triangle, we see the coeÆcients
1; 4; 6; 4; 1. This tells us that

(a+ b)4 = a4 + 4a3b+ 6a2b2 + 4ab3 + b4:

The coee�cient 6 in the middle is computed as 
4

2

!
=

4 � 3
2!

= 6:

In equation (8.1), substitute a = p and b = 1 � p, where p is a parameter between 0 and 1.
Then

1 = (p+ 1� p)n =
nX

k=0

 
n

k

!
pk(1� p)n�k:

Since the terms on the right add up to 1, we can interpret these terms as forming the PMF of a
random variable. Accordingly, suppose that n is any positive integer and p is any number between
0 and 1. We say that a RV X has the Binomial(n; p) distribution (or is a Binomial(n; p) RV) if

� X is a discrete RV taking the values 0; 1; 2; � � � ; n.
� The PMF of X is

PX(x) =

 
n

x

!
px(1� p)n�x; x = 0; 1; 2; � � � ; n:

Useful Fact. Suppose you have any random experiment and any event E associated with
that experiment that has probability P (E) = p. Suppose you perform n independent trials of the
experiment and you de�ne RV X to be the total number of trials in which E occurs. Then X is a
Binomial(n; p) RV.

Proof. Each time you perform the n trials, form a binary n-tuple

(j1; j2; � � � ; jn) (8.2)

where, for i = 1; 2; � � � ; n, you choose the i-th entry ji to be 1 if E occurs on trial i and ji = 0
otherwise. You can regard the set of all 2n possible binary n-tuples of the form (8.2) as forming a
sample space, and you can regard RV X as being de�ned on this sample space as follows:

X(j1; j2; � � � ; jn) = number of ones in n� tuple:

Because we have independent trials, the probability model P on the set of n-tuples (8.2) is obtain-
able as an independent discrete probability model as covered on page 15 of Lecture 2 Notes. This
means we have

P (j1; j2; � � � ; jn) = P1(j1)P2(j2) � � �Pn(jn); (8.3)
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where

Pi(1) = P (E occurs on ith trial) = p

Pi(0) = P (Ec occurs on ith trial) = 1� p:

The product (8.3) then simpli�es to

P (j1; j2; � � � ; jn) = pk(1� p)n�k;

where k is the number of ones in the n-tuple (8.2), or equivalently, k is the number of times E
occurs and therefore k is the value of X for this n-tuple. To obtain P (X = k), we must add up
all the P (j1; j2; � � � ; jn) terms in which the number of ones in (j1; j2; � � � ; jn) is equal to k. Each
such P (j1; j2; � � � ; jn) term has probability pk(1 � p)n�k and there are

�n
k

�
such terms (you choose

exactly k of the n positions of the n-tuple (8.1) in which to place the ones). We conclude that

P (X = k) =

 
n

k

!
pk(1� p)n�k; k = 0; 1; � � � ; n;

which is the Binomial(n; p) PMF.

Example 8.1. You 
ip a fair coin three times and let X be the number of heads. Then X is a
Binomial(n; p) random variable in which n = 3 and p = 1=2. We have the following PMF:

PX(0) =

 
3

0

!
(1=2)0(1=2)3 = 1=8

PX(1) =

 
3

1

!
(1=2)1(1=2)2 = 3=8

PX(2) =

 
3

2

!
(1=2)2(1=2)1 = 3=8

PX(3) =

 
3

3

!
(1=2)3(1=2)0 = 1=8

This con�rms what we obtained earlier for this same RV. (See Lecture 7 Notes, Example 7.1.)

Example 8.2. The product items manufactured by a certain company are 5% defective. Ten
items are selected at random from the product assembly line (with replacement) at the end of the
day, and are tested. Let X be the number of defective items among the ten items selected. Since
we did sampling with replacement, we have independent trials, and therefore X is Binomial(n; p)
with parameters n = 10 and p = :05. We compute the probabilities of some events associated with
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X:

P (X = 0) =

 
10

0

!
(0:05)0(0:95)10 = (0:95)10 = 0:5987

P (X � 2) =
2X

k=0

 
10

k

!
(0:05)k(0:95)10�k = 0:9885

P (0 < X < 3) =

 
10

1

!
(0:05)(0:95)9 +

 
10

2

!
(0:05)2(0:95)8 = 0:3898

P (X � 3) = 1� P (X � 2) = 1� 0:9885 = 0:0115

Exercise. For the RV X in Example 8.2, the reader should

� verify that our �gures at the end of Example 8.2 are correct by either using Matlab or a
calculator.

� compute each of the eleven PMF values PX(k) for k = 0; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10, and plot the
PMF.

Remark 1. In Example 8.2, we selected the items to be tested with replacement. If we select
them without replacement, then we do not have independent trials and the number of defective
items in the sample is not binomially distributed. The number of defectives in this case will have a
distribution called the hypergeometric distribution. I will talk about the hypergeometric distribution
during a future lecture.

Remark 2. In Recitation 1, we saw how to estimate the probability of an event by taking
independent trials. We can now get more insight into this procedure using the binomial distribution.
Suppose we want to estimate the probability P (E) = p of event E associated with some random
experiment. We perform n trials of the experiment, n large, and count the number of trials on which
E occurs. If we call this number X, then we now know that X is Binomial(n; p). The estimate of
probability p is then the random variable X=n, and we can �nd the PMF of this random variable
since we know the PMF of X. Later on in the course, we will examine how the values of X=n are
distributed about p. We will be able to quantify how the distribution of these values becomes more
and more closely concentrated about p as the number of trials n grows.

8.2 Poisson Distribution Via McClaurin Series Expansion of ex

In calculus, everybody learns that the McClaurin Series expansion of the function ex is:

ex =
1X
k=0

xk

k!
= 1 + x+

x2

2
+
x3

6
+
x4

24
+ � � �
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Suppose we take x = �, a positive parameter, and divide both sides by e�. This gives us the
summation formula

1 =
1X
k=0

e���k

k!
= e�� + �e�� + (�2e��=2) + (�3e��=6) + (�4e��=24) + � � � :

We can think of the terms on the right side as de�ning a discrete probability distribution. Accord-
ingly, we say that a RV has the Poisson(�) distribution (or is a Poisson(�) RV) if:

� The values of X are the nonnegative integers 0; 1; 2; 3; � � �.
� The PMF of X is

PX(x) =
�xe��

x!
; x = 0; 1; 2; � � �

We explain how the Poisson distribution arises. Consider a random event which can occur
anywhere on a time axis. (This random event could be a phone call, a hurricane, arrival of a
customer at his/her bank, etc.). Let I be any �nite time interval. De�ne X to be the random
variable which is equal to the number of times that the random event of interest occurs in the interval
I. It is fairly common to model such a random variable X as having a Poisson(�) distribution.
What is the parameter � taken to be? We shall understand this better when we cover the concept
of expected value. For the present, we say that � is typically taken to be the average of X over a
large number of trials. For example, suppose that X is the number of phone calls coming into the
ECE oÆce (625-3300) between 1:00 and 2:00 PM on a randomly chosen working day. Suppose that
we had observed phone calls over many previous days and had determined that the average number
of phone calls in this time slot was 4:2. Then, we could model X as having a Poisson distribution
with parameter � = 4:2.

Here are some examples of random variables illustrating situations in which one could model
the random variable as a Poisson variable:

� number of telephone calls arriving in a given time interval

� number of hurricanes hitting East coast in a given time period

� number of radioactive particles registered by a Geiger counter in a given time interval

� number of customers arriving at a bank's teller window in a given time period

� number of message packets arriving at an internet server in a given time interval

� number of imperfections in a certain length of magnetic tape (think of the \length of tape"
in the same way you would think of a \time interval")
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The reader can undoubtedly think of other examples.

Example 8.3. Let X be a Poisson random variable with parameter �. Then

P (X = 0) = e��

P (X = 1) = �e��

P (X = 2) = �2e��=2
P (X = 3) = �3e��=6
P (X � 2) = (1 + �+ �2=2)e��

P (X � 4) = 1� (1 + �+ �2=2 + �3=6)e��

Example 8.4. Let us model the number of phone calls X coming into 625-3300 between 1:00 and
2:00 PM on a randomly chosen working day as a Poisson random variable with parameter � = 4:2.
Then

P (X � 4) = 1� P (X � 3) = 1�
3X

k=0

(4:2)ke�4:2

k!
= :6046:

(There is some Matlab code in Experiment 5 of Recitation 3 that I used to do this computation.)
What does the probability P (X � 4) = 0:6046 mean physically? If the Poisson model is a good
model of the physical situation here, then, if we observe the number of phone calls coming into 625-
3300 over many working days, we will see that for approximately 60:5% of the days, the number
of phone calls between 1:00 and 2:00 is at least four. Let us illustrate here another property
of the Poisson model: suppose we now count the number of calls Y in the time interval from
1:00PM to 3:00PM. This new time interval is twice as big as before. As a consequence, we would
typically model Y as a Poisson RV with parameter twice as much as before, namely, we would take
� = 2 � 4:2 = 8:4. This is because we would expect to have, on average, twice as many phone calls
in a time interval twice as big. We would then have

P (Y � 8) = 1� P (Y � 7) = 1�
7X

k=0

(8:4)ke�8:4

k!
= 0:6013:

Exercise. Let Z be the number of phone calls from 1:00PM to 3:30 PM. Compute P [Z � 10].

8.3 Geometric Distribution Via Geometric Series Summation

By the time most students reach EE 3025, they have re-learned every year since the 9th grade the
following formula for summing a geometric series:

1X
k=1

ark�1 = a+ ar + ar2 + ar3 + ar4 + � � � = a

1� r
: (8.4)
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The parameter a is the �rst term of the geometric series, and the parameter r is the ratio between
each term of the series and the preceding term. We assume that the ratio r is strictly between 0
and 1 in order for the summation formula to be valid. Let us now divide both sides of (8.4) by
a

1�r and then replace r by 1 � p, where p is a parameter strictly between 0 and 1. We obtain the
formula

1X
k=1

(1� p)k�1p = p+ (1� p)p+ (1� p)2p+ (1� p)3p2 + (1� p)4p+ � � � = 1:

Since these terms sum to one, we can interpret these terms as the PMF of some discrete RV.
Accordingly, we say that RV X has the Geometric(p) distribution (or that X is a Geometric(p)
RV) if:

� The values of X are the positive integers 1; 2; 3; � � �
� The PMF is given by

PX(x) = (1� p)x�1p; x = 1; 2; 3; � � � :

Useful Fact. Here is the typical scenario in which a random variable with a geometric dis-
tribution arises. Suppose you have some random experiment and some event E associated with
this experiment for which P (E) = p. Suppose you perform independent trials of this experiment,
stopping after the �rst trial on which E occurs. Then the number of trials that are performed is a
Geometric(p) RV.

Proof. Take the sample space of the repeated trials experiment as

S = fE;Ec \E;Ec \Ec \E;Ec \Ec \Ec \E; � � �g:
By the product rule (applicable since we have independent trials), the respective probabilities of
these outcomes are

p; (1� p)p; (1� p)2p; (1� p)3p; � � � :
Letting X be the number of trials which are performed, we see that

P (X = k) = P (Ec \Ec \Ec \ � � � (k � 1 times) \E) = (1� p)k�1p; k = 1; 2; 3; � � � :
This is the geometric distribution.

Example 8.5. Suppose you have an unfair coin with P (H) = 1=3. Let X be the number of
tosses it takes for us to obtain a head for the �rst time. We compute the following.

P (X � 3) = 1� P (X � 2) = 1� (2=3)0(1=3) � (2=3)1(1=3) = 4=9

P (X � 4) = P (X � 3)� (2=3)2(1=3) = 8=27

P (X � 4jX � 3) =
P (X � 4)

P (X � 3)
= 2=3
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Exercise. In the preceding example, notice that

P (X � 4jX � 3) = P (X � 1) = 2=3:

Show that this is no coincidence by proving that

P (X � n+ 1jX � n) = P (X � 1) = 2=3; (8.5)

for every positive integer n. What is the intuitive meaning of the statement (8.5)?

8.4 Application to Coding

Suppose we want to represent every positive integer by a unique binary codeword. There is one
simple-minded way to assign codewords that you may have seen earlier (especially in a computer
science course): Just take the usual binary expansion of each integer as the codeword. For example,
with this approach, the codeword for 9 would be 1001 and the codeword for 19 would be 10011.
However, there is a drawback to assigning codewords in this way. Suppose you have coded a message
consisting of a sequence of positive integers by simply replacing each integer in the message with its
binary codeword, with no spaces between the codewords; that is, you just wind up with a seamless
stream of bits. Suppose your coded message starts with

10011 � � � :

Then you have no way of knowing whether the �rst integer in your message is 9 or 19. To get
around this drawback, we require that each binary codeword must not be a pre�x of any other
binary codeword. This requirement on our coding method is called the pre�x condition. We prove
the following fact in EE 5585:

Useful Fact. If
p(i); i = 1; 2; 3; � � �

is a probability distribution, then there is a way to assign binary codewords satisfying the pre�x
condition so that the binary codeword assigned to i is of length

d� log2 p(i)e:

Example 8.6. Consider the probability distribution

p(i) = 2�i; i = 1; 2; � � � :
(This is just the Geometric(p) distribution with p = 1=2.) The binary codeword assigned to i
according to this distribution will then be of length

� log2(2
�i) = i:
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Here is one possible coding method that satis�es this:

i codeword
1 1
2 01
3 001
4 0001
5 00001

One continues in this way. The codeword for i is simply i� 1 zeroes following by a one.

Example 8.7. Using EE 3015 tricks involving Fourier Series, one can prove that

1X
i=1

1

i2
=

�2

6
:

Dividing both sides by �2

6 , we have 1X
i=1

6

�2i2
= 1:

This gives us a probability distribution

p(i) =
6

�2i2
; i = 1; 2; 3; � � � :

There must therefore exist a coding method for the positive integers, satisfying the pre�x condition,
such that the codeword for i has length equal to�

� log2

�
6

�2i2

��
:

I cannot give this method here, which is a type of code called an Elias code. (Take EE 5585
to see how to build Elias codes!) However, we can make an interesting observation about this
particular code. For large i, it is easy to see that the length of the binary codeword assigned to i
is approximately equal to

2 log2 i:

The simple-minded method we mentioned at the beginning of this section (coding each integer into
its usual binary expansion) achieves codeword length for i approximately equal to

log2 i

for large i. So the Elias code is giving codewords of length roughly twice as long as the simple-
minded code. Remember the Elias code satis�es the pre�x condition and the simple-minded code
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does not! Since we cannot use the simple-minded code, one's goal is to �nd a code satisfying the
pre�x condition in which the codeword lengths are not too much longer than the codeword lengths
of the simple-minded code. The Elias code is one possible code to ful�ll this goal.

Exercise. Find the codeword lengths for the �rst few positive integers using the simple-minded
code. Find the codeword lengths for these same positive integers using the Elias code. Compare.



Lecture 9

Chapters 2-3 Part 3

In this lecture, I talk about

� concept of cumulative distribution function (CDF)

� introduction to the notions of mean and variance of a probability distribution

� de�ne the Nonstandard Gaussian, Nonstandard Uniform, and Exponential distributions

� estimation of a PDF from data

9.1 Cumulative Distribution Function

The cumulative distribution function (CDF) of RV X is the function FX(x) de�ned for all real x
by

FX(x)
�
= P (X � x):

In words, FX(x) is the probability that RV X will take a value less than or equal to x. Note that

FX(x) =

Z x

�1
fX(u)du:

That is, if you plot the density function fX(x), locate x on the real line and draw a vertical line
through x, then FX(x) will be the area under the density function that lies to the left of this vertical
line. For example, look at Figure 3.6(a) on page 121 of your textbook; the shaded area is a value
of the CDF.

It is sometimes useful to interpret the CDF from the following EE 3015 perspective, namely,
the CDF is what you get when you pass the PDF through an integrator:

fX(x)!
Z x

�1
! FX(x)

20
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Recall the following properties of an integrator:

Æ(x� a)!
Z x

�1
! u(x� a)

u(x� a)!
Z x

�1
! r(x� a)

In case you've forgotten EE 3015 notation, u(x�a) is the unit step function starting at x = a, and
r(x� a) is the ramp function starting at x = a:

u(x� a) =

(
1; x � a
0; elsewhere

r(x� a) =

(
x� a; x � a

0; elsewhere

In other words, the response of an integrator to a delta function input is a unit step function, and
the response of an integrator to a unit step function input is a ramp function.

CDF of a Discrete Random Variable

For a discrete RV X, the PDF fX(x) is a linear combination of delta functions, and therefore the
CDF is a linear combination of unit step functions, which is a staircase function. We can say the
following:

� The CDF FX(x) of a discrete RV X is a staircase function. The jumps in the CDF plot occur

at the values of X, and the magnitudes of the jumps are equal to the PMF values. As x goes

from �1 to 1, FX(x) increases from 0 to 1.

Example 9.1. Suppose we have a discrete RV X taking the values 1; 2; 3; 4, with the following
PMF:

pX(x) =

8>>><
>>>:

0:30; x = 1
0:20; x = 2
0:32; x = 3
0:18; x = 4

We have plotted the corresponding CDF FX(x) at the top of the next page:
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1

.30

.50

.82

x

X
F  (x)

3 421

Here is how we obtained the plot of FX(x) by inspection. The smallest value of X is x = 1 and so
the plot of FX(x) is zero for x < 1. The �rst jump in the CDF is at x = 1 and the magnitude of
the jump is PX(1) = 0:30. The CDF takes the value 0:30 until you come to the next value of X at
x = 2. At x = 2, the CDF jumps an amount equal to PX(2) = 0:20, increasing up to

0:20 + 0:30 = 0:50;

the \cumulative probability" at x = 2. Similarly, you have a jump of PX(3) = 0:32 at x = 3,
taking the CDF up to the value

0:20 + 0:30 + 0:32 = 0:82;

the \cumulative probability" at x = 3. Finally, you have a jump of PX(4) = 0:18 at x = 4, taking
the CDF up to the value

0:20 + 0:30 + 0:32 + 0:18 = 1:

To the right of this largest value x = 4 of X, the CDF will take the constant value 1 (there are no
more jumps, all the probability has been accumulated!).

Conversely, if I gave you the CDF plot above, you could go backwards and �nd the PMF on
the preceding page: just see where the jumps occur and what the magnitudes of the jumps are in
order to get the PMF values.
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You can compute probabilities involving a discrete RV X directly from the CDF FX(x) as
follows:

P (a < X � b) = FX(b
+)� FX(a

+) (9.1)

P (a < X < b) = FX(b
�)� FX(a

+) (9.2)

P (a � X < b) = FX(b
�)� FX(a

�) (9.3)

P (a � X � b) = FX(b
+)� FX(a

�) (9.4)

In the preceding formulas, FX(x
+) denotes the right hand limit of FX(x) as you approach x from

the right, and FX(x
�) denotes the left hand limit of FX(x) as you approach x from the left. If you

�nd it hard to remember these four formulas, you can instead just remember the formula

P (X 2 E) = sum of jumps in FX(x) occuring at values x 2 E: (9.5)

Example 9.2. We take the same discrete RV X as in Example 9.1, with the CDF plotted on
page 22. Using the CDF and the four formulas (9.1)-(9.4), we do the following calculations:

P (2 < X � 4) = FX(4) � FX(2) = 1� :50 = :50

P (2 < X < 4) = FX(4
�)� FX(2) = :82� :50 = :32

P (2 � X < 4) = FX(4
�)� FX(2

�) = :82� :30 = :52

P (2 � X � 4) = FX(4) � FX(2
�) = 1� :30 = :70

P (X � 3) = FX(1)� FX(3
�) = 1� :50 = :50

Or, using equation (9.5),

P (2 � X � 4) = (jump at x = 2) + (jump at x = 3) + (jump at x = 4)

= 0:20 + 0:32 + 0:18 = 0:70

CDF of a Continuous Random Variable

� The CDF FX(x) of a continuous RV X is continuous at all values of x (i.e., the CDF has no
jumps). As x goes from �1 to 1, FX(x) increases from 0 to 1. Furthermore, the derivative

of the CDF is the PDF:
dFX(x)

dx
= fX(x): (9.6)

Example 9.3. Suppose X is a standard uniform RV. Then its density fX(x) is the unit rect-
angular pulse from x = 0 to x = 1. Consider this fX(x) as the input to an integrator. Then the
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integrator response will be a ramp function from x = 0 to x = 1. It is pretty immediate, then, that
the CDF in this case takes the form

FX(x) =

8><
>:

0; x < 0
x; 1 � x � 1
1; x > 1

Example 9.4. This example illustrates how we can use equation (9.6) to obtain fX(x) from
FX(x) for a continuous RV. Suppose our continuous RV X has the following CDF:

FX(x) =

8><
>:

0; x < 0
x2; 1 � x � 1
1; x > 1

Notice that the CDF comes in three pieces. Di�erentiating each piece, we get

fX(x) =

8><
>:

0; x < 0
2x; 1 � x � 1
0; x > 1

We can do direct probability calculation using the CDF much easier in the case of a continuous
RV than in the case of a discrete RV. In the case of a discrete RV, we have to worry about the four
separate equations (9.1)-(9.4). In the case of a continuous RV, since FX(x) has no discontinuities,
the four equations (9.1)-(9.4) reduce to just a single calculation, as follows:

� For a continuous RV X, you don't have to worry about the endpoints of intervals in probability

computations. That is, all four of the probabilities

P (a < X � b); P (a < X < b); P (a � X < b); P (a � X � b)

are equal to

FX(b)� FX(a):

Example 9.5. Suppose we have a continuous RV X with CDF

FX(x) =

(
0; x < 0

1� exp(�x); x � 0

Then
P (1 < X < 2) = FX(2)� FX(1) = (1� exp(�2)) � (1� exp(�1)) = 0:2325:
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CDF of a Mixed Random Variable

We have seen that for a discrete RV, the changes in the CDF values occur only as jumps occuring at
the values of the RV. For a continuous RV, we have seen that the CDF values change continuously
over the whole real line (no jumps). The CDF of a mixed RV combines these two features:

� As x goes from �1 to 1, the CDF FX(x) of a mixed RV X increases from 0 to 1. Some

of this increase is due to jumps, where each jump occurs at a discrete values of X, with the

magnitude of each jump being equal to the probability of occurence of the correponding discrete

value of X. The rest of the increase in FX(x) is due to the continuous change in the values
of FX(x) over the parts of the real line not containing the discrete values of X.

Example 9.6. Let us go back to the mixed RV X of Example 7.7, whose density is

fX(x) = (0:1)Æ(x � 10) + (0:9)(1=10)[u(x � 60) � u(x� 70)]:

Note that fX(x) consists of a delta function at x = 10 combined with a rectangular pulse from
x = 60 to x = 70. The presence of the delta function will produce a unit step function component
of FX(x) going from x = 10 to x = 60. The presence of the rectangular pulse will add on a ramp
function component of FX(x) going from x = 60 to x = 70. At x = 70, FX(x) becomes 1 and
remains at 1 as we move x further to the right. We therefore obtain

FX(x) =

8>>><
>>>:

0; x < 10
0:1; 10 � x � 60

0:1 + (0:9)(1=10)(x � 60); 60 < x � 70
1; x � 70

x
10 60 70

0

0.1

1
X

(x)F
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9.2 Means and Variances

We denote the mean of a RV X using the notation �X or the notation E[X] (also called the expected
value of X). If it is clear from the context what the RV X is, then we can abbreviate �X as simply
�.

The mean �X is de�ned by

�X
�
=

Z 1

�1
xfX(x)dx:

For a discrete RV X, this reduces to the following summation:

�X =
X
x

xPX(x):

We denote the variance of a RV X using the notation �2X or the notation V ar(X). The positive
square root of the variance is denoted �X and is called the standard deviation of X. If it is clear
from the context what the RV X is, then we can abbreviate �2X as simply �2 and can abbreviate
�X as simply �.

The variance �2X is de�ned by

�2X
�
=

Z 1

�1
(x� �X)

2fX(x)dx:

9.2.1 Intuitive Meaning of �X, �
2
X

Meaning of �X : If the probability model is a good one, then you expect the arithmetic average
of a large number of observed values of X (from independent trials) to be close to �X a high
percentage of the time. If x is the vector formed by your observations, then this arithmetic
average is computed via Matlab as mean(x). Thus, we expect that mean(x) (which varies
randomly) will be close to �X most of the time.

Meaning of �2X : Large variance means you have a signi�cant chance of observing a value of X
far from the mean �X . On the other hand, variance close to zero means most of the time the
observed value of X will be close to �X . See Figure 3.5 on page 119 of the book to see the
plot of a density for which the variance is large as well as the plot of a density for which the
variance is close to zero.

I will do some �X computations in the following. I will defer variance computations to a later
lecture, because we need some specialized tools to help us compute variance.

Example 9.7. A discrete RV X takes values 1; 2; 3; 4 with PMF as follows:

PX(x) =

8>>><
>>>:

0:1; x = 1
0:2; x = 2
0:3; x = 3
0:4; x = 4
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We have
�X = 1(0:1) + 2(0:2) + 3(0:3) + 4(0:4) = 3:

We expect that when we perform the experiment a large number of times, the average of the
observed values of X on these trials will be close to 3.

Example 9.8. Let us compute the mean of a Poisson(�) RV X:

�X =
1X
x=0

xPX(x)

=
1X
x=0

x exp(��)�
x

x!

=
1X
x=1

x exp(��)�
x

x!

= �
1X
x=1

exp(��) �x�1

(x� 1)!

= �
1X
x=0

exp(��)�
x

x!
= �

We conclude that the mean of a Poisson(�) RV is �. (See Appendix A, page 503.) Now go back to
Example 8.4 of Lecture 8 Notes. There, we modeled the number of phone calls in a time interval as
a Poisson(�) RV with � = 4:2 by observing the average number of phone calls in this time interval
over several days to be 4:2. The reason why we did this should now be clear to the reader.

Example 9.9. We compute the mean of an Exponential(a) random variable X. This means X
has the density

fX(x) = ae�axu(x):

We can use Laplace transforms in a clever way to compute �X . We have

�X =

Z 1

0
xae�axdx: (9.7)

Recall the following Laplace transform formula from EE 3015:Z 1

0
te�stdt =

1

s2
: (9.8)

This formula says that the Laplace transform of the ramp function tu(t) is 1=s2. In equation (9.8),
the Laplace transform variable s can be any complex number in the ROC (region of convergence)
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of the Lapace transform. In particular, s can be any positive number. Let s = a, the parameter of
the Exponential(a) distribution. We conclude thatZ 1

0
te�atdt =

1

a2
:

Multiplying both sides by a, we obtain Z 1

0
tae�atdt =

1

a
:

Therefore, we have proved that for the Exponential(a) distribution,

�X =
1

a
:

(See Appendix A of your textbook, page 504; notice that I am referring to the parameter of the
exponential distribution as a instead of � which the book uses.) Another way to do the integral on
the right side of (9.7) is to integrate by parts.

9.2.2 Symmetry Rule for Computing �X

Useful Fact: If the density fX(x) of RV X is symmetric about some value x = C, then C must
be the mean �X !

Example 9.10. Flip a fair die, and let X be the number that comes up. The PMF is equiprobable
over the 6 values 1; 2; 3; 4; 5; 6. This probability distribution is symmetric about x = 3:5. Therefore
�X = 3:5. If we 
ip this die hundreds of times and average up the numbers we get, we expect that
this average will be close to 3:5. If you want to do this test yourself using Matlab, execute the
Matlab command

mean(ceil(6*rand(1,50000)))

and see what you get.

Example 9.11. Consider the Binomial(n; p) distribution with p = 1=2. The PMF is symmetric
about n=2. (You can sketch some of these PMF's for di�erent n values to convince yourself of this
fact.) Therefore the mean of the Binomial(n; p) distribution is n=2. For example, if you 
ip a fair
coin three times and count the number of heads, the expected number of heads is n=2 = 3=2 = 1:5.

Example 9.12. We say that X has the Uniform(a; b) distribution if the density fX(x) is a
rectangular pulse over the interval [a; b]. Since the area under this pulse must be 1, this forces the
amplitude of the pulse to be 1

b�a . That is,

fX(x) =

(
1

b�a ; a � x � b

0; elsewhere
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(If we take [a; b] to be the unit interval [0; 1], this is the standard uniform distribution. For all other
cases, we have a nonstandard uniform distribution.) Let us compute the mean of X. The density
of fX(x) is clearly symmetric about x = a+b

2 , the midpoint of the interval [a; b]. We immediately
conclude that

�X =
a+ b

2
:

(This coincides with the result in Appendix A, page 506.)

Example 9.13. We say X has the Gaussian(�; �) distribution if its density is

fX(x) =
1

�
p
2�

exp

 
� (x� �)2

�2

!
; �1 < x <1:

By symmetry, the mean of X is �. In a later lecture, we will show that the variance of X is �2.
(This coincides with the result in Appendix A, page 505.) The special case in which � = 0, � = 1
is called the standard Gaussian distribution. All the other cases are nonstandard Gaussian.

9.3 Estimating fX(x)

Suppose we want to see what density fX(x) we should use as the probability model for RV X.
Suppose we can take as many observations of the value of X (over independent trials) as we want.
How do we use these observations to estimate fX(x)? The �gure below suggests a way to proceed.

x

f   (x)
X

bin

(x,          )f   (x)X

Imagine n observations of X distributed along the x-axis. (We take n to be very large; in Recitation
3, we take n = 100000.) Suppose these observations go from a minimum value of a to a maximum
value of b. Then we can partition up the interval [a; b] into subintervals of [a; b] of equal length,
and we will call each such subinterval a \bin". (In Recitation 3, we take 100 bins.) Let the width
of each bin be �. We have sketched one typical bin in the above �gure. We chose point x to be the
point on the x-axis in the center of the bin, and the point (x; fX(x)) is the corresponding point on
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the fX(x) curve. If the bin width � is suÆciently small, then calculus tells us that �fX(x), the
area of the rectangle erected above the bin, is approximately equal toZ

bin
fX(x)dx = P (X 2 bin): (9.9)

Let kbin be the number of the n observations that fall in the bin. Let us take the ratio kbin=n as an
estimate of the probability on the right side of (9.9). Then for each bin we have the approximate
relationship

�fX(x) � kbin
n

:

Solving for fX(x), we obtain

fX(x) � kbin
n�

:

Here is our conclusion:

� To obtain the estimated density curve fX(x), measure up from the center x of each bin a

height equal to
kbin
n�

to obtain the point

(x;
kbin
n�

):

You will obtain one of these points for each bin; connect up these points with straight lines.

This is your estimated fX(x) curve.

We use this method in Experiment 1 of Recitation 3 to convince you that Matlab's pseudorandom
number generators rand and randn are doing a good job. (We generate 100000 data points according
to each of these, do the density estimate, and get an approximation of the standard uniform density
and the standard Gaussian density, respectively.)



Lecture 10

Chapters 2-3 Part 4

In these Lecture 10 Notes, I talk a little bit more about the CDF, show you how to compute
Gaussian probabilities, discuss the expectation operator and its properties, and do some variance
computations.

10.1 More on CDF

In Lecture 9 Notes, I explained that for a continuous RV X, a probability can easily be computed
from the CDF as

P (a � X � b) = FX(b)� FX(a):

For a discrete RV, this formula may not hold, and I gave four complicated formulas at the top of
page 23 for handling the discrete case. However, there is one special case of discrete RV where the
situation is a bit simpler, namely, the case in which the values of X are integers. In this case, we
can say

P (a � X � b) = FX(b)� FX(a� 1); a; b integers: (10.1)

If one or both of the inequalities on the left side of (10.1) is a strict inequality, you can just make
the interval shorter in order to obtain an interval in which the endpoints are included. For example,
you can write

P (3 < X < 7) = P (4 � X � 6) = FX(6) � FX(3):

Be sure to only use (10.1) for discrete RV's taking integer values!
Please refer to Problem 2.3 of the Chapter 2-3 Solved Problems for an example in which I use

equation (10.1).

31
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10.2 Apples and Oranges

At this point in the course, we typically �nd that some students have trouble keeping the six
common distributions of Chapters 2-3 straight. The following table might help you:

Geometric 1; 2; 3; � � �
Poisson 0; 1; 2; 3; � � �
Binomial 0; 1; 2; � � � ; n
Uniform a � x � b

Gaussian �1 < x <1
Exponential x � 0

In the left column, I list the 6 types of probability distributions we are covering. In the right
column, I give the values of the RV's having these distributions. You see that no two of these
distributions are over the same values. Thus, if I tell you that a particular RV X will have one of
these 6 distributions, all you have to do is examine what the possible values of X are in order to
identify what the distribution is. In other words, these distributions are as unlike as \apples and
oranges".

Example 10.1. Let RV X be the number of hurricanes that will hit Florida in 2010. The
possible values of X are 0; 1; 2; � � �. If we model the distribution of X using one of our 6 common
distributions, the Poisson distribution would be the only one that makes sense in this context.

Example 10.2. Suppose I take a large number of lightbulbs, let each of them burn until they
burn out, and let RV X be the average lifetime (in hours) that I've observed for these bulbs.
Suppose the expected lifetime of any of the bulbs is 1000 hours. Suppose I want to model the RV

Y = X � 1000

using one of the six common distributions. Which one would it make most sense to use? Notice
that sometimes X will take a value less than 1000 and sometimes greater than 1000, and the value
of Y therefore ranges over both positive and negative real numbers. Of the 6 distributions, only
the Gaussian distribution does this. Later in the course, we will model Y as a Gaussian random
variable.

10.2.1 Discrete Uniform Distribution

There is a 7th common distribution that is so trivial that I have not mentioned it yet, namely,
the discrete uniform distribution. This is the distribution in which the values of the RV are �nite
in number, equally spaced on the real number axis, and equiprobable. For example, the number
that comes up on one toss of a fair die has a discrete uniform distribution. Suppose you have a
discrete uniform distribution in which the values are 0; 1; 2; 3; 4; 5. I suppose there might exist a
student somewhere who would get confused between that and the Binomial(n; p) distribution with
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n = 5, since both of these distributions are over the integers 0; 1; 2; 3; 4; 5. However, the PMF
of the discrete uniform distribution is 
at and the PMF of the Binomial(n; p) distribution is �rst
increasing, then decreasing, reaching a peak somewhere around np (as we shall see later on). So,
even though there are some discrete uniform distributions in which the values are the same as for
a binomial distribution, one would not be likely to confuse the two.

10.3 Computing Gaussian Probabilities

In this section, I show you how to use the table on page 123 of your textbook to compute Gaussian
probabilities. There are also Matlab ways to do this, using either the Matlab function \erf" or the
Matlab symbolic integrator \int"; see Recitation 3 Instructions for these other methods.

Suppose X is a Gaussian(�,�) RV, and our goal is to compute a probability like P (a � X � b).
We can do this making use of the following useful fact that we shall prove in a later lecture:

Useful Fact: If X � Gaussian(�,�), then Z � Gaussian(0,1) (standard Gaussian), where Z is
obtained from X by the following linear change of variable:

Z =
X � �

�
:

Using the Useful Fact, we can do the following manipulations:

P (a � X � b) = P

�
a� �

�
� X � �

�
� b� �

�

�

= P

�
a� �

�
� Z � b� �

�

�

= FZ

�
b� �

�

�
� FZ

�
a� �

�

�

In the preceding, FZ(z) denotes the CDF of the standard Gaussian distribution. This is such a
common CDF that it has been given the notation �(z) in almost all statistics textbooks. That is,
the function �(z) is de�ned by:

�(z)
�
=

Z z

�1

�
1p
2�

�
exp(�u2=2)du; �1 < z <1:

Here then is the formula you can use for evaluating Gaussian probabilities:

P (a � X � b) = �

�
b� �X
�X

�
� �

�
a� �X
�X

�
: (10.2)
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On page 123, the function �(z) is tabulated between z = 0 to z = 2:99. For z � 3, �(z) is
approximately equal to one. The reason that �(z) is not tabulated for z < 0 is because one can
make use of symmetry:

�(z) = 1� �(�z): (10.3)

Here are a couple of worked examples in which I use the table on page 123.

Example 10.3. Let X � Gaussian(�; �). Let us compute the probability that X falls within one
standard deviation of the mean. That is, let us compute the probability

P (�� � � X � �+ �):

Using (10.2),
P (�� � � X � �+ �) = �(1)� �(�1):

The value �(1) is looked up on page 123 to be 0:8413. Using equation (10.3),

�(�1) = 1� �(1) = 0:1587:

Therefore
P (�� � � X � �+ �) = (0:8413) � (0:1587) = 0:6826:

Example 10.4. Frequently, one has to use the table on page 123 in reverse, in order to �nd the
particular z value for which P [Z � z] is equal to some �xed probability. Here is an example of this
type. Let X � Gaussian(�; �), where � = 2 and �2 = 9. Let us �nd the constant C such that

P [X � C] = 0:05:

We have Z = (X � 2)=3, and

P [X � C] = P

�
Z � C � 2

3

�
= 1� �

�
C � 2

3

�
:

Using the table on page 123 in reverse, we see that

�

�
C � 2

3

�
= 0:95

C � 2

3
= 1:645

C = 3(1:645) + 2 = 6:935

Exercise. For X � Gaussian(�; �), �nd the positive constant C such that

P (�� C� � X � �+ C�) = 0:90:

(This constant C shall be very important to us later on in the course.)

For another example involving computation of Gaussian probabilities, see Problem 3.2 of the
Chapter 2-3 Solved Problems.
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10.4 Expectation Operator

We have used the expectation operator \E" in just one context so far, namely, in the expression
E[X] for expected value (mean �X) of a random variable X. However, we can take the expected
value of any function of X according to the following de�nition:

E[�(X)]
�
=

Z 1

�1
�(x)fX(x)dx: (10.4)

If we put �(x) = x in the integrand on the right side of (10.4), then we get the formula for E[X]
as a special case. Another interesting thing to try is to put �(x) = (x � �X)

2 in the right side of
(10.4). Then you see that

E[(X � �X)
2] = V ar[X] = �2X :

So, the expectation operator \E" gives us a convenient way to express variance as well as mean.

Properties of the Expectation Operator

Here are three useful properties of the expectation operator.

Property 1: E[�1(X) + �2(X)] = E[�1(X)] +E[�2(X)]:

Property 2: If C is a constant,
E[C�(X)] = CE[�(X)]:

Property 3: If C is a constant,
E[C] = C:

These properties are trivial to prove. (For example, from calculus, the integral of a sum is the sum
of the integrals, which yields Property 1.)

Using the Properties, one can prove many interesting things, and we will see some of these
things in this course. For right now, I will prove for you the following Useful Fact.

Useful Fact. For any RV X and any constant C,

E[(X � C)2] = �2X + (C � �X)
2: (10.5)

Equation (10.5) tells us that E[(X�C)2] is minimized when the constant C is chosen as C = �X :
Thus, the mean of a random variable is the unique real number which the values of the random
variable are closest to on average.
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Proof of Useful Fact. Let � be the mean of X. The Properties are used repeatedly, in the
following steps:

E[(X �C)2] = E[f(X � �) + (�� C)g2]
= E[(X � �)2 + 2(X � �)(�� C) + (�� C)2]

= E[(X � �)2] + 2(�� C)E[(X � �)] +E[(�� C)2]

= �2X + 2(�� C)(�� �) + (�� C)2

= �2X + (C � �)2

10.5 Variance Computations

I have not yet done much with variance computations. This section will remedy this situation.

Example 10.5. Let's verify that the variance of a Gaussian(�; �) RV X is �2. We have

�2X =

Z 1

�1
(x� �)2

�
1

�
p
2�

�
exp

 
�(x� �)2

�2

!
dx:

Make the change of variable

y =
x� �

�
dy = dx=�

Then the preceding integral becomes

�2X = �2
Z 1

�1

�
1p
2�

�
x2 exp(�x2=2)dx:

The integral on the right is 1. (Use integration by parts or the method in Example 7.6.) Therefore,

�2X = �2:

Useful Result. Here is a nice way to evaluate variance:

�2X = E[X2]� �2X : (10.6)

E[X2] is called the second moment of RV X, and is calculated by

E[X2] =

Z 1

�1
x2fX(x)dx:

You obtain formula (10.6) from (10.5) by plugging in C = 0.
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Exercise. For an Exponential(a) RV X, prove that

�2X =
1

a2
;

as follows. First, look up the Laplace transform formulaZ 1

0
t2 exp(�st)dt = 2

s3
:

Then use this formula to conclude thatZ 1

0
x2(a exp(�ax))dx =

2

a2
:

We know from Lecture 9 Notes that the mean is 1=a. You are now ready to plug into formula
(10.6).

Example 10.6. Let X be the discrete RV in Example 9.7. The mean was computed to be
�X = 3. The second moment is

E[X2] = 12(0:1) + 22(0:2) + 32(0:3) + 42(0:4) = 10:

The variance is therefore one:

�2X = E[X2]� �2X = 10� 9 = 1:

Example 10.7. Let X be the continuous RV with density

fX(x) =

(
2x; 0 � x � 1
0; elsewhere

We have

�X =

Z 1

0
x(2x)dx = 2=3:

The second moment is computed as:

E[X2] =

Z 1

0
x2(2x)dx = 1=2:

We now have
�2X = E[X2]� �2X = 1=2� 4=9 = 1=18:



Lecture 11

Chapters 2-3 Part 5

11.1 Gaussian Table Lookup Example

Let X � Gaussian(�; �). Using page 123 of your textbook, we �nd the constant C such that

P (�� C� � X � �+ C�) = 0:95: (11.1)

In other words, C is the constant such that X will fall within C standard deviations of the mean
with probability 0:95.

Make the change of variable

Z =
X � �

�
;

obtaining standard Gaussian RV Z. Then (11.1) becomes

P (�C � Z � C) = 0:95:

At this point, it might help for you to sketch a plot of the standard Gaussian density fZ(z). The
area caught under this bell-shaped density curve between z = �C and z = C is 0:95. The areas in
each of the two tails (by symmetry) must be 0:05=2 = 0:025. Therefore, the area to the left of the
vertical line z = C must be 0:95 + 0:025 = 0:975. This area is a CDF value, namely, FZ(C), which
is also written �(C). We have shown that

�(C) = 0:975:

Using the table on page 123 in reverse, you see that C = 1:96. We conclude that

P (�� (1:96)� � X � �+ (1:96)�) = 0:95:

This relationship will be useful to us later on in the course.

38
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11.2 Linear Change of Variable

We have a given RV X. We make the following linear change of variable to obtain a new RV Y :

Y = aX + b: (11.2)

In this equation, a; b are real constants with a 6= 0. The RV X has a density fX(x), a mean �X ,
and a variance �2Y . The new RV Y has a density fY (y), a mean �Y , and a variance �2Y . We are
going to �nd out how to obtain fY (y), �Y , �

2
Y from fX(x), �X , �

2
X , respectively. I will prove the

following three formulas:

Formula 1: fY (y) =
1

jajfX
�
y � b

a

�
:

Formula 2: �Y = a�X + b.

Formula 3: �2Y = a2�2X , or equivalently �Y = jaj�X .

Proof of Formula 1. Let us assume that a > 0, and then you can modify the argument to handle
the case a < 0. Our approach is to obtain the CDF FY (y) in terms of the CDF FX(x) and then to
di�erentiate to obtain the density fY (y) in terms of the density fX(x).

FY (y) = P (Y � y)

= P (aX + b � y)

= P

�
X � y � b

a

�

= FX

�
y � b

a

�

We have shown that

FY (y) = FX

�
y � b

a

�
; if a > 0: (11.3)

Di�erentiate both sides of (11.3) with respect to y, where you di�erentiate the right side using the
chain rule from calculus:

dFX(x)

dy
=

dFX(x)

dx

dx

dy
= fX(x)

dx

dy
:

This gives us the following formula:

fY (y) =
1

a
fX

�
y � b

a

�
; if a > 0: (11.4)

If a < 0, then the preceding argument has to be modi�ed because then we have

P (aX + b � y) = P

�
X � y � b

a

�
= 1� FX

�
y � b

a

�
;



LECTURE 11. CHAPTERS 2-3 PART 5 40

if y�b
a is not a discrete value of X. The modi�ed argument would yield

fY (y) =

�
1

�a
�
fX

�
y � b

a

�
; if a < 0: (11.5)

You can then combine equations (11.4)-(11.5) into the following single equation valid for all a 6= 0:

fY (y) =
1

jajfX
�
y � b

a

�
:

This completes the proof of Formula 1.

Proof of Formula 2. Apply the expectation operator \E" to both sides of equation (11.2) and
then use the properties of the expectation operator given in the Lecture 10 Notes:

E[Y ] = E[aX + b]

= E[aX] +E[b]

= aE[X] + b

We have proven that
E[Y ] = aE[X] + b;

which is the same thing as Formula 2.

Proof of Formula 3. Again, we exploit properties of the expectation operator:

�2Y = E[(Y � �Y )
2]

= E[(faX + bg � fa�X + bg)2]
= E[(afX � �Xg)2]
= E[a2(X � �X)

2]

= a2E[(X � �X)
2] = a2�2X

Remarks. If a > 0, Formula 1 can be interpreted as saying that the plot of the new density is
obtained from the plot of the old density by translating the old density to the right by b units (this
is a translation to the left if b < 0!), and then scaling appropriately using the scaling factor a. (If
a = 1, the new density is a pure translation of the old density, if a > 1, the scaling makes the new
density more spread out than the old density, and if a < 1, the new density is more concentrated
about its mean than the old density.) If a < 0, then the new density is obtained from the old
density by a combination of translation, scaling, and re
ection. (This is the sort of thing you did
at the beginning of EE 3015.)
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Example 11.1. Suppose X has the standard uniform distribution (i.e., the Uniform(0,1) distri-
bution). Then its density function, mean, and variance are:

fX(x) = 1; 0 � x � 1 (zero elsewhere)

�X = 1=2

�2X = 1=12

De�ne new RV Y by the equation
Y = (b� a)X + a; (11.6)

where a; b are any real constants for which a < b. Applying Formulas 1-3, it can be seen that the
new density, new mean, and new variance are the following:

fY (y) =
1

b� a
; a � y � b (zero elsewhere)

�Y = (b� a)�X + a = (b� a)(1=2) + a =
a+ b

2

�2Y = (b� a)2�2X =
(b� a)2

12

If you look in Appendix A, you will see that the new density, new mean, and new variance just
obtained are what you get for a Uniform(a; b) distribution. Therefore, we have proved that the
change of variable (11.6) converts a Uniform(0,1) random variable into a Uniform(a; b) random
variable. This gives us a way to simulate n observations from a Uniform(a; b) distribution via the
following Matlab one-liner:

y=(b-a)*rand(1,n)+a;

Example 11.2. Let Z be standard Gaussian. Then its density function, mean, and variance are:

fZ(z) =
1p
2�

exp(�z2=2)
�Z = 0

�2Z = 1

De�ne new RV X by the equation
X = �Z + �; (11.7)

where � is any real parameter and � is a positive real parameter. Applying Formulas 1-3, it can
be seen that the new density, new mean, and new variance are the following:

fX(x) =
1

�
p
2�

exp

 
� (x� �)2

2�2

!

�X = ��Z + � = � � 0 + � = �

�2X = �2�2Z = �2 � 1 = �2
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If you look in Appendix A, you will see that the new density, new mean, and new variance just
obtained are what you get for a Gaussian(�; �) distribution. Therefore, we have proved that the
change of variable (11.7) converts a Gaussian(0; 1) random variable into a Gaussian(�; �) random
variable. This gives us a way to simulate n observations from a Gaussian(�; �) distribution via the
following Matlab one-liner:

x=sigma*randn(1,n)+mu;

Alternatively, suppose we solve equation (11.7) for Z in terms of X:

Z =
X � �

�
: (11.8)

Equation (11.8) gives us a way to convert a Gaussian(�; �) RV X into a standard Gaussian RV Z.
This justi�es our earlier technique for doing table lookups for nonstandard Gaussian distributions.
(See, for example, Section 10.3 and Section 11.1, in which we exploited the change of variable
(11.8).)

11.3 Moment Generating Functions

Here I skip ahead to cover Section 6.3, which gives us the useful notion of moment generating

function. The moment generating function �X(s) of a RV X is de�ned by

�X(s)
�
= E[esX ] =

Z 1

�1
esxfX(x)dx: (11.9)

In this de�nition, s plays the role of a parameter; s varies over all complex values for which the
integral on the right side of (11.9) converges. Notice that if in this integral you replace s by �s,
then what you have is simply the Laplace transform of fX(x). In other words,

�X(s) = L[fX(x)]s!�s: (11.10)

In formula (11.10), we simply mean that we can obtain the moment generating function of X by
applying the Laplace transform operator L to fX(x), followed by a replacement of s by �s in the
Laplace transform. Formula (11.10) gives us an immediate way to �nd the moment generating
function if the density fX(x) is a common type of signal considered in EE 3015 for which the
Laplace transform is tabulated. The following example illustrates this.

Example 11.3. The PDF for the Exponential(a) probability distribution is

a exp(�ax)u(x):
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Recall from EE 3015 that the Laplace transform of the decaying exponential function exp(�ax)u(x)
is 1

s+a . Usinf formula (11.10), we then obtain the moment generating function of the Exponential(a)
distribution by multiplying by a and replacing s by �s:

�X(s) =
a

a� s
: (11.11)

Discussion. The moments of a RV X are the quantities E[Xk], as the power k ranges through
the positive integers. For k = 1, we obtain the �rst moment E[X], which is the same thing as the
mean �X of RV X. For k = 2, we obtain the second moment E[X2]. For k = 3, we obtain the third
moment E[X3], etc. The reason �X(s) is called the moment generating function is that it gives us
an easy way to compute the moments of X. This is what the following result shows us.

Useful Result: The moments of a RV X are computable from the moment generating function
�X(s) as follows:

E[X] = �0X(0) (11.12)

E[X2] = �00X(0) (11.13)

E[X3] = �000X(0) (11.14)

In these equations, the prime (') denotes di�erentiation with respect to s. Thus, you obtain
the mean �X = E[X] by evaluating the �rst derivative of �X(s) at s = 0. You obtain the
second moment by evaluating the second derivative of �X(s) at s = 0, etc.

Proof. We have

d�X(s)

ds
=

d

ds

�Z 1

�1
esxfX(x)dx

�

=

Z 1

�1
d(esx)

ds
fX(x)dx

=

Z 1

�1
xesxfX(x)dx

Thus, we have proved that

�0X(s) =
Z 1

�1
xesxfX(x)dx: (11.15)

Plugging s = 0 into both sides, we have the formula

�0X(0) =
Z 1

�1
xfX(x) = E[X]:
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This proves equation (11.12). By di�erentiating both sides of (11.15), the reader can easily obtain
formula (11.13), and then formula (11.14) after another di�erentiation.

Example 11.4. Let X have the Exponential(a) probability distribution. In Example 11.3, we
obtained formula (11.11) for the moment generating function. Di�erentiating this formula twice:

�0X(s) =
a

(a� s)2

�00X(s) =
2a

(a� s)3

Plugging in s = 0,

�0X(0) =
1

a

�00X(0) =
2

a2

Applying the \Useful Result", we conclude that

�X = E[X] = �0X(0) =
1

a

E[X2] = �00X(0) =
2

a2

�2X = E[X2]� �2X = (2=a2)� (1=a2) =
1

a2

The reader can look in Appendix A to verify that we have obtained the correct expressions for the
mean and variance of the Exponential(a) distribution.

Example 11.5. Let X have the Binomial(n; p) distribution. If we try to directly evaluate the
�rst and second moments, we wind up with the following sums:

E[X] =
nX

k=0

k

 
n

k

!
pk(1� p)n�k

E[X2] =
nX

k=0

k2
 
n

k

!
pk(1� p)n�k

It is not clear how to evaluate these complicated sums. (It can be done, but it takes a lot of
\juggling", which we wish to avoid.) Instead, the moment generating function approach gives us
an easy way to �nd these two moments. First, we evaluate the moment generating function:

�X(s) =
nX

k=0

 
n

k

!
eskpk(1� p)n�k
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=
nX

k=0

 
n

k

!
(pes)k(1� p)n�k

= (pes + 1� p)n

(The last step used the well-known binomial theorem from college algebra, which says

(a+ b)n =
nX

k=0

 
n

k

!
akbn�k:)

We have shown that
�X(s) = (pes + 1� p)n:

If you check the table of MGF's on page 249 of your textbook, you will see that this is the correct
expression for the MGF of the binomial distribution. Let us now compute the �rst two derivatives
of the moment generating function:

�0X(s) = npes(pes + 1� p)n�1

�00X(s) = npes(pes + 1� p)n�1 + n(n� 1)(pes)2(pes + 1� p)n�2

Plugging in s = 0,

�0X(0) = np

�00X(0) = np+ n(n� 1)p2 = np(1� p) + (np)2

From the �rst equation, we see that E[X] = np. Subtracting the square of the mean (np)2 from
the second moment in the second equation, we obtain the variance to be np(1�p). We have proved
that for the Binomial(n; p) distribution, the mean and variance are given by the following formulas:

�X = np

�2X = np(1� p)

If you look in Appendix A, you will see that these expressions are correct.

Exercise. If you look in the table on page 249, you will see that the MGF of a Poisson(�) RV
is given by the formula

�X(s) = e�� exp(�es):

Try to use this formula to evaluate �0X(0) and �00X(0) and show that

�0X(0) = �

�00X(0) = �2 + �

Show from these derivatives that the mean and variance of the Poisson(�) distribution are both �!
(If you get stuck, look at Problem 6.4 in the Chapter 2-3 Solved Problems.)
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12.1 Some MGF Examples

Example 12.1. Let discrete RV X have the PMF

PX(x) =

(
1=2; x = �1
1=2; x = 1

Let's �nd the MGF �X(s). The density is

fX(x) = (1=2)Æ(x + 1) + (1=2)Æ(x � 1):

The Laplace transform of this is

(1=2)es + (1=2)e�s = cosh(s):

Replacing s by �s, you obtain �X(s), which is the same thing in this case. Thus,

�X(s) = cosh(s):

Taking the �rst two derivatives, we get

�0(s) = sinh(s)

�00(s) = cosh(s)

Therefore,

�X = �0(0) = sinh(0) = 0

E[X2] = �00(0) = cosh(0) = 1
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The variance is
�2X = E[X2]� �2X = 1:

As an exercise, compute �X and �2X directly from the PMF and see if you get the same thing.

Example 12.2. Continuous RV X has density

fX(x) = x exp(�x)u(x):

Let's �nd the MGF. By the shift theorem for Laplace transforms from EE 3015, it is easy to see
that the Laplace transform of fX(x) is

1

(s+ 1)2
:

Replacing s by �s, you get �X(s):

�X(s) =
1

(1� s)2
:

As an exercise, take two derivatives of �X(s) and use these derivatives to compute the mean and
variance of X.

12.2 Estimation of �; �2

Suppose you have a probability distribution with mean � and variance �2, but you don't know the
value of either of these parameters. To estimate these two parameters, you then gather a vector

x = (xi : i = 1; 2; 3; � � �) (12.1)

of actual or simulated observations xi from this probability distribution, where the number of
observations n is large. The sample mean of the observations (12.1) is de�ned by

sample mean
�
=

Pn
i=1 xi
n

;

the arithmetic average of the observations. In Matlab, the sample mean is computed as mean(x).
If you have a good probability model, then it would be highly likely that

sample mean � �;

that is, the sample mean would provide a good estimate of the theoretical mean � of the probability
distribution. (We prove this fact later in the course; it is called the law of large numbers.)

The sample variance of the observations (12.1) is de�ned by

sample variance
�
=

Pn
i=1(xi � samplemean)2

n� 1
; (12.2)
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which in Matlab is the same thing as var(x). If you have a good probability model, then it would
be highly likely that

sample variance � �2;

that is, the sample variance would provide a good estimate of the theoretical variance �2 of the
probability distribution.

At this point, we explain why people divide by n� 1 instead of n in the formula (12.2) for the
sample variance. Suppose you regard each observation xi as the value of a random variable Xi (the
observations are random, after all). Then the sample variance, which is actually a random variable,
may be expressed as Pn

i=1(Xi � �X)2

n� 1
;

where �X is the standard random variable notation for the sample mean. Later in the course, we
prove that

E

"Pn
i=1(Xi � �X)2

n� 1

#
= �2:

Therefore, if in (12.2) we divide by n instead of n� 1, we would tend to underestimate the actual
variance �2. However, if the number of samples n is large, it really does not matter very much
whether we divide by n or n � 1 in computing the sample variance, because in this case the two
�gures would be almost the same.

12.3 Hypergeometric Distribution

Given N items, of which N1 are of \Type 1" and the remaining N2 items are of \Type 2". (For
example, in quality control, the Type 1 items could be the \defectives" and the Type 2 items could
be the \nondefectives".) Choose n of the N items at random, without replacement. The n items
you obtain will be called a \sample of size n". De�ne RV X to be the number of items of Type 1
in the sample of size n. The probability distribution of X is called hypergeometric, and is given by

PX(x) = P (X = x) =

�N1

x

�� N2

n�x
�

�N
n

� ; x = 0; 1; � � � ; n; (12.3)

where we adopt the convention that the number of combinations of r things taken s at a time is
zero if s > r:  

r

s

!
= 0; s > r:

Here is an easy way to derive the PMF probabilities in (12.3): Take the sample space for the
experiment of selecting the sample of size n to be the set of all combinations of the N items taken
n at a time, instead of the set of all permutations of the N items taken n at a time (in other
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words, you do not care about the order in which the items in the sample are drawn). This is an
equiprobable sample space containing

�N
n

�
outcomes. The probability of any event is therefore the

number of outcomes in the event divided by
�N
n

�
. There are

�N1

x

�
ways to select x items of Type

1 from the total of N1 items of Type 1, and there are
� N2

n�x
�
ways to select n � x items of Type

2 from the total of N2 items of Type 2. Multiplying these two numbers together, you obtain the
total number of ways of forming a sample of size n for which X = x; this is the numerator in the
P (X = x) expression in (12.3).

Example 12.3. You have 100 
oppy discs, 5 of which have imperfections. 20 discs are chosen at
random without replacement. Let X be the number of discs with imperfections in the sample of
20. Then

P (X = x) =

�5
x

�� 95
20�x

�
�100
20

� ; x = 0; 1; 2; 3; 4; 5:

Example 12.4. Let us compute the probability of getting exactly two kings in a �ve card poker
hand (dealt from a standard 52 card deck). This is a hypergeometric probability, given by

�4
2

��48
3

�
�52
5

� = 0:0399:

Now suppose we are dealt the �ve cards so that each card is dealt to us from a di�erent 52 card deck.
Then, we may view the �ve cards to be coming to us through independent trials. The probability
of getting 2 kings in the 5 card hand is no longer a hypergeometric probability. Instead it is the
binomial probability  

5

2

!
(4=52)2(48=52)3 = 0:0465:

Binomial Approximation to Hypergeometric

Again, suppose we have hypergeometric RV X with probability distribution according to (12.3). If
the sample size n is small relative to the size N of the total pool of items, it can be shown that X has
approximately a Binomial(n; p) distribution with p = N1=N . Notice that this is exactly what the
distribution of X would be if the sampling takes place with replacement (because of independent
trials). Therefore, we are saying that if the total number of items N is large relative to the size of
the sample n, sampling without replacement gives approximately the same probability distribution
for X as sampling with replacement. This makes intuitive good sense, because even though the
draws (trials) are dependent, the composition of the total pool of items being selected from changes
very little in successive draws, and so the successive draws are almost like independent trials.

Example 12.5. Suppose a quality control engineer is faced with a pool of N items, 10% of
which are defective. Suppose he/she chooses 50 items at random. The probability that there are 5
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defectives in the sample of 50 is the exact hypergeometric probability

�(0:1)N
5

��(0:9)N
45

�
�N
50

� (12.4)

The binomial approximation to the hypergeometric probability (12.4) is

 
50

10

!
(0:1)5 � (0:9)45 = 0:1849: (12.5)

We can try di�erent values of N in (12.4) to see for how big an N we might be able to say that
(12.4) is close to the binomial probability (12.5). We compiled the following table using Matlab:

N hypergeometric prob (12:4)
100 0:2593
200 0:2132
300 0:2025
400 0:1976
500 0:1949
1000 0:1897
2000 0:1873

We see that for N = 2000, the actual hypergeometric probability is 0:187 to three decimal places,
as opposed to the binomial approximation of 0:185 (three decimal places). If we increase N still
further, we'd see these two �gures getting even closer.

12.4 Conditional Probability Distribution

Let X be a RV with density fX(x). Let B be a subset of the real line (usually, we will take B to
be an interval). Suppose we are given that the value of X falls in B. In other words, we learn that
the event fX 2 Bg has occured. How should we modify our density fX(x) to re
ect this partial
information about the value of X? If we want to do probability, mean, or variance computations,
it would no longer make sense to use the density fX(x), because in general fX(x) extends over the
whole real line and we should instead do these computations using a density that extends only over
B.

Given the event fX 2 Bg, we will use the so-called conditional density of X given fX 2 Bg
for our probability, mean, and variance computations. This conditional density is denoted fXjB(x)
and is de�ned by

fXjB(x)
�
=

(
fX(x)

P (X2B) ; x 2 B

0; x 62 B
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Here is how we can justify this de�nition for fXjB(x). For simplicity of visualization, suppose B is
an interval. Since we are given that the value of X falls in B, we should \chop o�" that part of
the plot of the density fX(x) that falls outside the interval B. The remaining part of the density
fX(x) will take positive values only within B. If we have two subintervals E1 and E2 of B, then
this remaining part of fX(x) could be used to judge the relative likelihoods with which X falls in
E1 or E2, given that X falls in B, if we compare the areas under the remaining fX(x) curve that
lie above E1 and E2, respectively. In other words, the following will be true:

P (X 2 E1jX 2 B)

P (X 2 E2jX 2 B)
=

R
E1

fX(x)dxR
E2

fX(x)dx
: (12.6)

Because of (12.6), it follows that we can obtain our conditional density by properly scaling fX(x)
for x 2 B. This scaling factor should be 1=P (X 2 B) because without that factor, that part of
fX(x) extending over B will not yield area 1 over B but will yield area P (X 2 B) instead; applying
the factor 1=P (X 2 B) makes this area over B equal to 1.

Discussion. The conditional density function fXjB(x) is a bon�de density function in its own
right, just as fX(x) is a density function. Therefore, whatever probability, mean, or variance
computation we do with the density fX(x) can equally well be done with the density fXjB(x).
Therefore, it stands to reason that we can compute conditional probabilities, conditional expected
value, and conditional variance using the conditional density fXjB(x) as follows:

P (X 2 EjX 2 B) =

Z
E
fXjB(x)dx (12.7)

E(XjX 2 B) =

Z 1

�1
xfXjB(x)dx (12.8)

V ar(XjX 2 B) =

Z 1

�1
(x�E(XjX 2 B))2fXjB(x)dx (12.9)

� P (X 2 EjX 2 B) is called the conditional probability that X falls in E given that X falls in
B.

� E(XjX 2 B) is called the conditional expected value for X (conditional mean for X) given
that X falls in B.

� V ar(XjX 2 B) is called the conditional variance for X given that X falls in B.

In the formulas (12.7)-(12.8), we have explained how to compute conditional probability and con-
ditional expected value using the conditional PDF fXjB(x). Alternatively, these quantitities can
be computed using the original density fX(x) as follows:

P (X 2 EjX 2 B) =
P (X 2 E \B)

P (X 2 B)
=

R
E\B fX(x)dxR
B fX(x)dx

(12.10)

E(XjX 2 B) =

R
B xfX(x)dx

P (X 2 B)
=

R
B xfX(x)dxR
B fX(x)dx

(12.11)
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Sometimes it can be easier to use the formulas (12.10)-(12.11) than the formulas (12.7)-(12.8).

Example 12.6. Let X be the discrete RV with PMF

PX(x) =

8>>><
>>>:

0:1; x = 1
0:2; x = 2
0:3; x = 3
0:4; x = 4

Let us �nd the conditional density fXjB(x), where B is the event

B = f2 � X � 3g:
The density fX(x) is:

fX(x) = (0:1)Æ(x � 1) + (0:2)Æ(x � 2) + (0:3)Æ(x � 3) + (0:4)Æ(x � 4):

Given X 2 B, we know either X = 2 or X = 3. Therefore, the �rst and last terms of the density
drop out and we have to re-normalize the remaining terms. Dropping out the 1st and last terms,
we obtain

(0:2)Æ(x � 2) + (0:3)Æ(x � 3):

This expression integrates to 0:5. Therefore, we have to divide by 0:5 in order to obtain the
conditional density:

fXjB(x) = (0:4)Æ(x � 2) + (0:6)Æ(x � 3):

From this, we can read o� the following two conditional probabilities:

P (X = 2jB) = P (X = 2j2 � X � 3) = 0:4

P (X = 3jB) = P (X = 3j2 � X � 3) = 0:6

These two probabilities give us the so-called conditional PMF for X given X falls in B. Notice
that these two probabilities add up to 1. (A conditional PMF is a PMF.) Using the conditional
PMF, we can compute the conditional mean and the conditional variance:

E(XjX 2 B) = (0:4)(2) + (0:6)3 = 2:6

E(X2jX 2 B) = (0:4)(22) + (0:6)(32) = 7

V ar(XjX 2 B) = 7� (2:6)2 = 0:24

Remark. In the calculation just completed, we used the fact that

V ar(XjX 2 B) = E(X2jX 2 B)�E(XjX 2 B)2:

We already have this identity for unconditional probability distributions. It is true for conditional
probability distributions, too. (Because a conditional probability distirbution is a probability dis-
tribution.)
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13.1 Conditional Mean,Variance Notations

� �XjB and E(XjB) are alternate notations for the conditional mean (conditional expected
value) E(XjX 2 B).

� �2XjB and V ar(XjB) are alternate notations for the conditional variance V ar(XjX 2 B).

� �XjB is our notation for the conditional standard deviation, given by

�XjB =
q
�2XjB :

13.2 More Conditional Distribution Examples

Example 13.1. Suppose X has the Exponential(a) distribution. This means the density is

fX(x) = a exp(�ax)u(x):
Let C be a �xed positive real number, and let us condition on the event

B = fX � Cg
that X takes a value � C. Notice that

P (X � C) =

Z 1

C
a exp(�ax)dx = exp(�aC):

To obtain the conditional density fXjB(x), we scale that portion of the curve fX(x) to the right of
x = C by the scaling factor 1=P (X � C). This gives us

fXjB(x) =
a exp(�ax)
exp(�aC) = a exp(�a(x� C)); for x � C;

53
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and zero elsewhere. In other words, we can write the conditional density fXjB(x) compactly as the
one line expression

fXjB(x) = fX(x� C):

This is just the translation of the original density C units to the right!

Example 13.2. Let X be a mixed RV with the density fX(x) plotted below:

1/4

1/20

1/4

30201510

X
f   (x)

x

From this plot, we see that X takes the discrete values 10; 15 and also takes continuous values
between 20 and 30. If we condition appropriately, we can get conditional densities that encapsulate
either the discrete behavior of X or the continuous behavior of X. To do this, consider the two
events

B1 = fX < 17:5g; B2 = fX � 17:5g:
If we condition on B1, the conditional density will just involve the two discrete values and by
inspection it therefore must be:

fXjB1
(x) = (1=2)Æ(x � 10) + (1=2)Æ(x � 15):

(The heights of the two delta functions must be the same because they have the same height in
fX(x); because a conditional density is a density, these two heights must each be 1=2.) If we
condition on B2, the conditional density must be uniform from 20 to 30 and we already know what
the uniform density from 20 to 30 is. So by inspection we get:

fXjB2
(x) = (1=10)[u(x � 20) � u(x� 30)]:
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13.3 Renewal Property of Exponential Distribution

Let RV X have the Exponential(a) distribution. Let us compute a conditional probability of the
form

P (X � u+ vjX � u);

where u � 0 and v � 0. We can compute this conditional probability using the conditional density
of X given X � u, which from Example 13.1 is the same thing as fX(x� u):

P (X � u+ vjX � u) =

Z 1

u+v
fXjfX�ug(x)dx

=

Z 1

u+v
fX(x� u)dx

=

Z 1

v
fX(x)dx = P (X � v):

We have proved that

P (X � u+ vjX � u) = P (X � v); for any u � 0; v � 0: (13.1)

Equation (13.1) is called the renewal property for the Exponential distribution.

Example 13.3. Suppose we model the lifetime X (in years) of a randomly chosen male US
citizen as having the Exponential(a) distribution with a = 1=70. (This means we are assuming the
mean lifetime is 70 years.) Then, by the renewal property

P (X � 75jX � 70) = P (X � 5) = exp(�5=70) = 0:9311: (13.2)

This tells us the following: Given that a male citizen survives to his 70th birthday, the probability
he will survive at least another 5 years is the same as the probability that a newborn male baby will
make it to his 5th birthday. This shows you some limitations in using the exponential distribution
to model lifetimes. Instead, one might want to model the lifetime using a modi�cation of the
exponential distribution so that the probability on the left side of (13.2) is less than the probability
on the right, which would �t physical reality better.

13.4 Density Decomposition Theorem

Let X be any random variable. Let fBig be �nitely many subsets of the real line which partition up
the real line. (Typically, each Bi would be a �nite or in�nite interval.) The density decomposition

theorem allows us to express the overall density fX(x) as a weighted average of the individual
conditional densities fXjBi(x). Speci�cally, the decomposition theorem says that

fX(x) =
X
i

P (X 2 Bi)fXjBi(x): (13.3)
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Discussion. The decomposition theorem is almost obvious, if you look at it from a geometric
point of view. Suppose you just have two Bi's, namely B1 and B2. To easier visualize things,
suppose B1 consists of all real numbers to the left of some �xed point C on the real line, and B2

consists of all real numbers to the right of C. Then the two functions

P (X 2 B1)fXjB1
(x); P (X 2 B2)fXjB2

(x)

are respectively the part of the fX(x) curve to the left of C and to the right of C. Clearly, if you
add up these two functions, you must get fX(x).

Consequences of the Density Decomposition Theorem

We make the same assumptions that we made above for the decomposition theorem. Then you
easily obtain the following facts from the density decomposition formula (13.3):

(a) For any subset E of the real line,

P (X 2 E) =
X
i

P (X 2 Bi)P (X 2 EjX 2 Bi): (13.4)

(b) The mean �X can be broken down as a combination of conditional means as follows:

�X = E[X] =
X
i

P (X 2 Bi)E[XjBi]: (13.5)

(c) More generally, any expected value E[�(X)] can be broken down as

E[�(X)] =
X
i

P (X 2 Bi)E[�(X)jBi]: (13.6)

Remarks.

� You obtain formula (13.4) by integrating both sides of (13.3) over the set E. You obtain
formula (13.6) by multiplying both sides of (13.3) by �(x), followed by an integration of both
sides. Formula (13.5) is a special case of formula (13.6).

� Formula (13.4) is a special case of the law on total probability proved in Chapter 1.

� Formulas (13.5)-(13.6) are usually collectively referred to as the law on total expectation. We
will have occasion to use this law many times in this course. (I will use it later in this lecture
in the design of the one-bit quantizer.)

� In the above formulas, I found it more convenient to write expected values with bracket nota-
tion such as E[�(X)] or E[�(X)jBi] instead of parenthesis notation E(�(X)) or E(�(X)jBi).
It makes no di�erence whether you use parentheses or brackets.



LECTURE 13. CHAPTERS 2-3 PART 7 57

� Warning: There is no decomposition formula for variances! That is, except in special (trivial)
cases, you will have

V ar(X) 6=
X
i

P (X 2 Bi)V ar(XjBi): (13.7)

The easiest way to see this is to take fX(x) to consist of two delta function spikes, and
then to choose B1; B2 so that the two conditional densities are delta functions. Then each
V ar(XjBi) = 0 and V ar(X) > 0, whereupon the two sides of (13.7) will de�nitely not be
equal to one another.

Example 13.4. Let X be a continuous RV with the following density function:

x

f   (x)
X

420

1/6

1/3

Let's compute �X and �2X . One way to �nd these is a brute force approach which uses the above
density to do a �rst and second moment calculation. Instead of doing that, I will exploit the
decomposition theorem. Choose B1; B2 to be the events

B1 = fX < 2g; B2 = fX � 2g:

Then from the above plot, it is obvious that the conditional density fXjB1
(x) will be the Uniform(0; 2)

density and that the conditional density fXjB2
(x) will be the Uniform(2; 4) density. You can now go

to Appendix A and look up the mean and variance �gures for uniform densities. You immediately
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obtain

E(XjB1) = midpoint of [0; 2] = 1

V ar(XjB1) = (2� 0)2=12 = 1=3

E(XjB2) = midpoint of [2; 4] = 3

V ar(XjB2) = 1=3

The conditional second moments are now easily computable:

E(X2jB1) = V ar(XjB1) +E(XjB1)
2 = 4=3

E(X2jB2) = V ar(XjB2) +E(XjB2)
2 = 28=3

Using formulas (13.5)-(13.6), we can now compute �X and E(X2):

�X = P (X 2 B1)E(XjB1) + P (X 2 B2)E(XjB2)

= (1=3)(1) + (2=3)(3) = 2:3333

E(X2) = (1=3)E(X2 jB1) + (2=3)E(X2 jB2)

= (1=3)(4=3) + (2=3)(28=3) = 6:6667

We can now compute �2X because we know the �rst and second moments of X:

�2X = E(X2)� �2X = 1:2222:

Example 13.5. In Example 13.2, by inspection we have

E(XjX < 17:5) = 12:5

E(XjX � 17:5) = 25

Therefore

E(X) = P (X < 17:5)E(XjX < 17:5) + P (X � 17:5)E(XjX � 17:5)

= (1=2)(12:5) + (1=2)(25) = 18:75:

As an exercise, see if you can also compute E(X2) by the decomposition approach.

13.5 Design of the One-bit Quantizer

Suppose we have a RV X, and for simplicity we assume that its density function fX(x) is an even
function. A so-called \one-bit quantizer" Q(x) for X would take the form

Q(x) =

(
B; x > 0

�B; x � 0

where B is a positive constant that is to be chosen appropriately. The plot of Q(x) looks like
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x

Q(x)

B

−B

The quantizer Q(x) is called a one-bit quantizer because depending upon whether Q(x) is equal
to B or �B, you can send a bit (a zero or a one) to the user to indicate which of these two cases
occurs. In other words, we have a kind of primitive communication system:

data
source

! X ! quantizer ! Q(X) = �B ! bit
converter

! send zero or one ! user

Depending upon whether the user's received bit is 0 or 1, the user will estimate X as either B or
�B. (If you are allowed to send more bits to the user, you can make a �ner quantization for greater
accuracy. Using just one bit, I am considering the simplest such communication system.)

Our design goal is to choose B so that the so-called mean square quantization error

E[(X �Q(X))2]

is minimized. (This is the choice of B which will give us the best �t of Q(X) to X under the restric-
tion that we are only allowed to use one bit to represent the value of X.) Using the decomposition
theorem, we can write

E[(X �Q(X))2] = P (X � 0)E[(X �Q(X))2jX � 0] + P (X > 0)E[(X �Q(X))2jX > 0]

= (1=2)E[(X +B)2jX � 0] + (1=2)E[(X �B)2jX > 0]
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The two conditional expected values on the right side of the preceding equation are equal, because
of the fact that fX(x) is even. Therefore,

E[(X �Q(X))2] = E[(X �B)2jX > 0]:

In an earlier lecture, we developed a \moment of inertia" formula:

E[(X �B)2] = E[(X � �X)
2] + (B � �X)

2:

The same formula is true for conditional distributions; that is,

E[(X �B)2jX > 0] = E[(X � ��)2jX > 0] + (B � ��)2; (13.8)

where �� must be the conditional mean:

�� = E[XjX > 0]:

From equation (13.8), it is clear that the left side is minimized when B = ��. Here is what we have
proved.

One-Bit Quantizer Design Rule: The best one-bit quantizer Q(x) for the given RV X is

the one for which B is taken to be the conditional mean E[XjX > 0]. This conditional mean can
be computed as:

B = E[XjX > 0] =

Z 1

0
xfXjfX>0g(x)dx = 2

Z 1

0
xfX(x)dx: (13.9)

As an exercise, see if you understand where the factor of two comes from on the right side of (13.9).

Example 13.6. Let us take X to be Gaussian(0; 1). The the best choice of B for the one-bit
quantizer is

B = 2

Z 1

0
x

�
1p
2�

�
exp(�x2=2)dx =

2p
2�

= 0:7979:



Lecture 14

Chapters 2-3 Part 8

14.1 Types of Change of Variable Problems

Suppose you are given a RV X with given density fX(x). You then de�ne a new RV Y via a change
of variable

Y = �(X):

We need to understand how to �nd the density fY (y) of the new RV Y via some kind of procedure
that uses fX(x) and the transformation function �. The procedure that we would use would depend
upon the various possible cases that could arise. Here are the possible cases to consider:

X discrete Y discrete
X mixed Y mixed or discrete
X continuous Y continuous, mixed, or discrete

Notice that there are 6 di�erent cases that can occur. It is not hard to �nd useful examples of each
of these 6 types. (By \useful" examples, I mean an example that is not a \toy" example, but rather
an example illustrative of a type of transformation people would use in engineering systems.)

Example 14.1. In this example, I illustrate the case in which X is continuous and Y is mixed.
Let X be a Gaussian(0,1) RV. De�ne RV Y as follows:

Y =

8><
>:
�1; X � �1
1; X � 1
X; �1 < X < 1

In a communication system, we'd say that Y is obtained from X by passing X through a hard

limiter. (The purpose of the hard limiter is to produce an output that is limited to a �nite range;
in this case, the hard limiter produces output values ranging through the interval [�1; 1].) Notice
that Y is a mixed RV: it takes the discrete values �1 but it also takes continuously distributed

61
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values between -1 and 1. You can use intuition to guess what the shape of the density fY (y) would
be: it would consist of two delta functions at y = �1 of equal height, together with a continuous
part from y = �1 to y = 1 that should look like a bell-shaped Gaussian density curve centered
at y = 0 but \chopped o�" to the right of y = 1 and to the left of y = �1. To �nd the precise
mathematical representation of fY (y), you'd use a method I am going to cover in this set of notes
called the \CDF method"; if you go to Example 3.25 of the textbook, you will see this particular
example worked out according to the CDF method.

Exercise. Think of examples of the other 5 types. (If you get stuck, by the end of this set of
notes you will see many of these types of examples.)

14.2 Case when Y is discrete

Three of the six cases of change of variable are cases in which the RV Y that you obtain from the
change of variable is discrete. These cases are very easy to handle. In fact, the section on \Derived
Models" of Chapter 1 notes tells us what to do. It has been a while since we've talked about
Derived Models; in the next paragraph, I review how you can use the Derived Model concept to
handle the case when Y is discrete.

For each discrete value y of the discrete RV Y , you �nd the subset S(y) of the real line de�ned
by

S(y)
�
= freal x : �(x) = yg:

In other words, S(y) is precisely that set of real numbers which are transformed into y by the
transformation function �. Then the following two events are identical:

fY = yg = fX 2 S(y)g: (14.1)

(That is, if we have an outcome for which Y takes the value y, then X must take a value in S(y)
and vice-versa.) Since the two events in (14.1) are identical, they must have the same probability.
Therefore,

P (Y = y) = P (X 2 S(y)) =

Z
S(y)

fX(x)dx: (14.2)

Notice that we have computed the probability P (X 2 S(y)) as an integral involving the density
fX(x); it is possible to do this calculation because we are assuming that we know what fX(x) is.

Example 14.2. Let X be the discrete RV which is equiprobable over the following set of 7 values:

�3; �2; �1; 0; 1; 2; 3:

Our change of variable is Y = X2. Let us �nd the PMF and PDF of Y . First, note that the values
of Y are 0; 1; 4; 9. The value 0 has to be handled separately because it has only one square root:

P (Y = 0) = P (X2 = 0) = P (X = 0) = 1=7:
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The values y = 1; 4; 9 can be handled in the same way because each such y value has two distinct
square roots:

P (Y = y) = P (X2 = y) = P (X = �py) = PX(
p
y) + PX(�py) = 2=7:

We have shown that the PMF of Y is:

P Y (y) =

(
1=7; y = 0
2=7; y = 1; 4; 9

Notice that these four probabilities add up to one, so we do have a bona�de PMF. (This doesn't
prove that our answer is correct, but if the four probabilities didn't add up to one, then we'd have
known that there must have been a mistake.) The density of Y is therefore

fY (y) = (1=7)Æ(y) + (2=7)Æ(y � 1) + (2=7)Æ(y � 4) + (2=7)Æ(y � 9):

Example 14.3. Let RV X be Uniform(a; b). Let's make the change of variable

Y = Q(X)

where Q(x) is the \four-level quantizer" whose plot is the following:

a

y4

y3

y2

y1

x2 bx3x1
x

Q(x)
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Y is a discrete RV taking the four values y1; y2; y3; y4. Suppose you want to compute P Y (y1).
Looking at the plot, you'd compute the probability that X falls in the interval between a and x1.
In this way, we can determine the entire PMF of Y to be the following:

P Y (y1) =
x1 � a

b� a

P Y (y2) =
x2 � x1
b� a

P Y (y3) =
x3 � x2
b� a

P Y (y4) =
b� x3
b� a

14.3 CDF Method

Suppose we make the change of variable Y = �(X) to get new RV Y from old RV X. The \CDF
Method" is a general method for �nding the density fY (y). It consists of two steps:

Step 1: For each value y of Y , compute the CDF value

FY (y) = P (Y � y)

as an integral Z
B(y)

fX(x)dx;

where B(y) is the subset of the real line for which the following two events are the same:

fY � yg = fX 2 B(y)g:

Step 2: Compute the density fY (y) as the derivative of the CDF of Y :

fY (y) =
d

dy
FY (y):

Example 14.4. Let X be Uniform(0; 1). Let Y be the RV

Y = � logX; (14.3)

where the logarithm is natural. Let us �nd fY (y) by the CDF method. The values of Y are the
positive real numbers y > 0. By Step 1, for each �xed y > 0, we must compute P (Y � y). This
gives us

P (Y � y) = P (� logX � y) = P (X � e�y):



LECTURE 14. CHAPTERS 2-3 PART 8 65

The value e�y falls in the interval [0; 1], and so the probability that X takes a value � e�y must
be 1� e�y. As the result of Step 1, we have shown that

FY (y) = P (Y � y) = (1� e�y)u(y):

Step 2 is to di�erentiate this expression in order to obtain the density fY (y). This gives us

fY (y) = e�yu(y):

That is, Y has the Exponential(1) distribution!

In Example 14.4, it is not hard to see that if we modify the transformation (14.3) by multiplying
the right side by any positive constant, then Y will still have an Exponential distribution. This
gives us the following result.

Useful Result. If X is Uniform(0; 1) and a > 0 is a constant, then the RV

Y = �(logeX)=a

is Exponential(a).

Example 14.5. Suppose we model a randomly selected US male person as having an exponen-
tially distributed lifetime with mean lifetime 70 years. To simulate the lifetimes of 50000 such
people, we could execute the Matlab command

-70*log(rand(1,50000))

The parameter of the exponential distribution we should be using is a = 1=70. Flipping this over
(see Useful Result), that is how I got the 70 in front of my Matlab line. We did this sort of thing
in Recitation 2. Now we know why this works.

Example 14.6. Let X be Gaussian(0; 1), and let Y be the RV

Y = jXj:

The values of Y are all real numbers y � 0. For each �xed y � 0, notice that

fY < yg = f�y < X < yg:

To help you see that this is true, examine the following plot of the function y = jxj:
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{Y < y}

{−y  <  X < y} 

−y y

y

y=|x|

y

x

I've denoted the events fY < yg and f�y < X < yg by arrows along the y-axis and x-axis,
respectively. This gives us:

P (Y � y) = P (Y < y) = P (�y < X < y) =

Z y

�y
fX(x)dx: (14.4)

We now have to di�erentiate this equation with respect to y. In calculus, you presumably learned
that

d

dy

"Z b(y)

a(y)
f(x)dx

#
= b0(y)f(b(y)) � a0(y)f(a(y));

where a0(y); b0(y) are the derivatives of a(y); b(y) with respect to y. Applying this formula to (14.4),
we see that

fY (y) =
d

dy
FY (y) = fX(y)� (�1)fX(�y) = 2fX(y): (14.5)

(In the last part of the preceding equation, I used the fact that the standard Gaussian density
fX(x) is an even function, which allows us to say that fY (�y) = fY (y).) Plugging in for fX(y) in
the right side of (14.5), we have shown that

fY (y) =
2p
2�

exp(�y2=2)u(y): (14.6)

If you plot this, you will see that your plot looks like the right half of a Gaussian bell-shaped
density curve. What happened is that the original Gaussian density curve, under the transformation
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Y = jXj, got folded in half along the vertical axis, with the left half coming over on top of the right
half, giving the \2" in front of the density in (14.6).

14.4 Simulating A Continuous Random Variable

The following useful (and amazing!) result will allow us to use Matlab to simulate the values of
any continuous RV whatsoever.

Useful Result. Let X be a continuous RV. Then the random variable

U = FX(X)

is uniformly distributed between 0 and 1.

I will prove the \Useful Result" at the end of this section. But �rst, let me give you a couple
of examples showing how to use this result for simulation.

Example 14.7. Suppose I want to use Matlab to simulate values of a continuous RV X having
the density

fX(x) =

(
x2; 0 � x � 1
0; elsewhere

The CDF FX(x) is easily seen to satisfy

FX(x) = x2; 0 � x � 1:

Plug X into this CDF. We obtain the equation

U = X2;

where, by the Useful Result, U is Uniform(0; 1). Solving for X in terms of U , we obtain

X =
p
U:

Suppose now that we want to simulate 100000 values of RV X. Here is a Matlab one-liner that will
do it:

x=sqrt(rand(1,100000));

Example 14.8. Let X be the continuous RV with density

fX(x) =

(
1

�
p
1�x2 ; �1 < x < 1

0; elsewhere
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The CDF satis�es

FX(x) = (1=2) +

�
1

�

�
Sin�1(x); �1 � x � 1:

Setting

U = (1=2) +

�
1

�

�
Sin�1(X);

the RV U is Uniform(0; 1). Solving for X in terms of U , we obtain

X = sin(�[U � 0:5]):

The following Matlab one-liner could then be used to simulate 100000 values of X:

x=sin(pi*(-0.5+rand(1,100000)));

Proof of Useful Result

Letting
U = FX(X);

we see that the values of U range from 0 to 1 because we know that the CDF of a continuous RV
takes on all real values strictly between 0 and 1 (due to the fact that there can be no jumps in the
CDF). Pick any �xed u satisfying 0 < u < 1. Let x be the unique real number satisfying

u = FX(x): (14.7)

We have

FU (u) = P (U � u)

= P (FX(X) � FX(x))

= P (X � x) = FX(x)

By equation (14.7), this last term FX(x) is equal to u. We have proved that

FU (u) = u; 0 < u < 1:

It follows from this that U must be uniformly distirbuted between 0 and 1.

14.5 Fun Examples

I work through a couple of examples showing situations in which you can use Chapter 2-3 tools as
a means to �gure out how to do something. These may be things you didn't know how to do before
taking this course. I hope you �nd these examples fun; anyway, I had fun making them up!
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14.5.1 Example: Which Coin is the Heavy Coin?

Suppose I have 5 coins which look identical. 4 of the coins weigh exactly the same but the 5th coin
is heavier than each of the others. The coins are numbered 1,2,3,4,5 and any of these can be the
heavy coin. We de�ne a random variable X to be the number of the heavy coin; we assume that X
is equiprobable. We are going to determine the heavy coin with a �nite number of weighings. On
each weighing, a balance beam scale is used: You can put a subset of the coins in the left pan of
the scale, and an equal number of the remaining coins in the right pan. If the two sides balance the
heavy coin belongs to the set of coins not in the pans; if one of the two pans is heavier, then the
set of coins in that pan contains the heavy coin. The following tree denotes one possible weighing
strategy:

12

34

5

1 2 3 4

The top level of the tree denotes the �rst weighing: Left pan of scale containing coins 1,2 is
compared to right pan of scale containing coins 3,4 (coin 5 is held aside). If the total of coins 1,2
proves heavier than the total of coins 3,4, the left branch of the tree is followed; if the total of coins
3,4 is heavier, the middle branch is followed; if the two pans balance, the right branch is followed
and we wind up at the leaf labeled 5, meaning that the heavy coin is automatically coin 5. If
the left or middle branches were followed as a result of the �rst weighing, then a second weighing
is necessary. If the left branch was followed as the result of the �rst weighing, coin 1 is weighed
against coin 2 in the second weighing, and you follow the branch of the heavier of these two coins,
winding up at a leaf labeled by the heavy coin. If the middle branch was followed as the result of
the �rst weighing, coin 3 is weighed against coin 4, and then you follow the branch of the heavier
of these two coins, winding up at a leaf for the heavy coin. The expected number of weighings is

1 � P (X = 5) + 2 � (1� P (X = 5)) = 1:8:

The weighing strategy given by the following tree is better:
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1 2

345

3 4 5

This is because the expected number of weighings is only 1.6 (show this).

14.5.2 Example: Questionaires

Ever play the game \20 questions"? What I show you in this example can be extended to give one
a strategy for playing the 20 questions game in the best way possible.

Suppose I'm thinking of a number X belonging to the set f1; 2; 3; 4; 5g. We can take X as an
equiprobable RV over this set. The following tree gives one possible questioning strategy (\ques-
tionaire") via which one can learn what X is through the asking of �nitely many Yes-No questions:

1

2

3

4 5

Y N

Y N

Y N

Y N

Is X=1?

Is X=2?

Is X=3?

Is X=4?
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Let the RV Y denote the number of questions that have to be asked. Then Y takes the values
1,2,3,4. Its PMF is given by

P Y (1) = P (X = 1) = 1=5

P Y (2) = P (X = 2) = 1=5

P Y (3) = P (X = 3) = 1=5

P Y (4) = 1� 3=5 = 2=5

The expected number of questions asked is

E(Y ) = 1 � (1=5) + 2 � (1=5) + 3 � (1=5) + 4 � (2=5) = 2:8:

Here is another questionaire:

1 2 3

4 5

Is X < 2.5?

Is X < 1.5? Is X < 3.5?

Is X < 4.5?

Y N

Y N Y N

Y N

The number of questions that have to be asked is either 2 or 3. The expected number of questions
is

2 � (P (X = 1) + P (X = 2) + P (X = 3)) + 3 � (P (X = 4) + P (X = 5)) = 2:4:

The second questionaire is better than the �rst one because fewer questions are required, on average,
to determine the value of X.


