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Lecture 31

Random Processes Part 1

We are now entering the \random process" part of EE 3025, which consists of our last 12 lectures.
During these lectures, we will examine material from Chapters 10 and 11 as well as a further
development of some of the Chapter 9 material on mean square estimation.

31.1 Further Examples of Random Processes

In Lecture 30, we gave the Bernoulli (coin ipping) process as our �rst example of random process.
Here are some further examples of RP's that we will refer back to now and again in order to examine
certain properties of RP's that we will be learning.

Example 31.1. A discrete time process

Xn; n = 1; 2; � � �

is an IID process if the \component RV's"Xn are independent and they all have the same probability
distribution. For example, the Bernoulli process is IID: every RV in the Bernoulli process has the
same density

(1=2)Æ(x + 1) + Æ(x � 1):

Another special case of IID process is when all the Xn's are Gaussian(0,1). This is called Gaussian

white noise.

Example 31.2. Let Xn; n = 1; 2; � � � be the Bernouill process and then let Yn; n = 0; 1; 2; 3; � � �
be the random process such that

Y0 = 0

Y1 = X1

Y2 = X1 +X2

1



LECTURE 31. RANDOM PROCESSES PART 1 2

Y3 = X1 +X2 +X3

... =
...

Yn = X1 +X2 + � � � +Xn

... =
...

The process Yn is called random walk. One can conceptualize random walk as the process arising
from passing the Bernoulli process through a discrete-time integrator which starts at time zero:

Bernouilli process ! discrete-time
integrator

! random walk

The ensemble of realizations of random walk consists of all discrete-time integer-valued signals
yn; n = 0; 1; 2; : : : whose plots start at the origin and evolve over time so that if the point (n;m) is
part of the plot, then the next point in the plot is either (n;m+ 1) or (n;m� 1). The realizations
have some other properties which are rather subtle. For example, it can be shown in an advanced
course that every realization of random walk (with probability one) crosses or touches the horizontal
axis in�nitely many times. Here is the beginning of one particular realization of the random walk
process:
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You can amusingly think of this plot as representing the staggering path of a man who has had to
much to drink: he moves a step forward, a step backward, a step forward, a step backward, three
steps forward, four steps backward, a step forward, etc. You can see from this why some people
call random walk drunkard's walk! (Note: From the preceding plot, you can see that the convention
has been adopted of connecting up the realization's plot ordinates at discrete times with straight
lines, in order to see better what is going on. This is customarily done in plotting random walk
realizations.)

Example 31.3. Let A be a random variable uniformly distributed in an interval [�A�; A�], and
let � be a random variable independent of A which is uniformly distributed in the interval [0; 2�].
The following de�nes a continuous-time random process called a random sinusoid:

X(t) = A cos(!0t+�); �1 < t <1

The ensemble of realizations of the random sinusoid is easily seen to consist of all sinusoids with
period 2�=!0 and amplitude at most A�.

Example 31.4. The Poisson process is a very useful CT process X(t); t � 0. It is sometimes
called the Poisson arrival process, because it is intimately connected to the arrivals (of telephone
calls, message packets, customers, or whatever the entity may be that is arriving) that occur in a
queueing system. These arrivals occur at random times

0 < t1 < t2 < t3 < t4 < � � � ;

where we let ti denote the i-th arrival time, i = 1; 2; � � � : On each performance of the random
experiment, one observes the in�nite sequence of arrival times and then one determines a Poisson
process realization x(t), which is the following step function:

0
t
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At any time t � 0, the value x(t) is the number of arrivals that have occured in the time interval
[0; t]. It follows that the realization x(t) is a step function with unit steps: it is zero from time t = 0
up to the time t1 of the �rst arrival; it takes the value 1 from time t = t1 up to the time t2 of the
second arrival, increasing to value 2 at time t2 over to the time t3 of the third arrival, etc. There is
an important parameter � > 0 of a Poisson process which completely determines the probabilistic
behavior of the process in a manner that we will investigate further in a future lecture; � measures
the average arrival rate (number of arrivals per unit time). For example, if � = 2, we would expect
about 20 arrivals in the �rst 10 seconds, averaged over di�erent realizations of the Poisson process.

31.2 Cross-Sections of a Process

� Let X(t); �1 < t < 1, be a random process and let t� be a particular time. If we
sample the process at time t = t�, then we get a 1-D random variable X(t�). This is called a
one-dimensional cross-section of the process. You can visualize the randomness in the cross-
section X(t�) as arising in the following way. Every time you perform the experiment, you get
a di�erent realization, and therefore a di�erent value of X(t�) by sampling that realization at
time t�. This interpretation is why the word \cross-section" is used. You can think of plots
of all of the realizations, and then you take a \cross section" across these realizations at time
t = t� (view this as taking a vertical line through t = t� on the t-axis, this vertical line cutting
through all the realizations). Each one-dimensional cross-section X(t�) can be characterized
in terms of its probability density function fX(t�)(x).

� Now let t1 and t2 be any two �xed times. Sample the process X(t); �1 < t < 1, at
times t = t1 and t = t2. This gives us a 2-D random variable (X(t1);X(t2)) called a two-

dimensional cross-section of the process. Each two-dimensional cross-section (X(t1);X(t2))
can be characterized in terms of its joint density fX(t1);X(t2)(x1; x2).

� There are also higher dimensional cross-sections of a process. For example, �x three times
t1; t2; t3. The samples (X(t1);X(t2);X(t3)) form a three-dimensional cross-section of the pro-
cess. Each three-dimensional cross-section would be characterized by a joint density function
which is a function of three variables. We do not consider three and higher dimensional cross-
sections in this course, because only one- and two-dimensional cross-sections are needed in
order to design optimal linear �lters. (We see more about this application towards the end
of the course.)

Example 31.5. Consider the random process X(t); �1 < t <1 in which

X(t) = At+B;

where A;B are independent random variables which are each equidistributed over the set f�1; 1g.
There are four realizations of this process:

x(1)(t) = t+ 1
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x(2)(t) = t� 1

x(3)(t) = �t+ 1

x(4)(t) = �t� 1

Each of the realizations occurs with probability 1=4. Let us examine the 1-D cross-section X(0) at
time t = 0. Sampling the realizations at t = 0, we get

x(1)(0) = 1

x(2)(0) = �1
x(3)(0) = 1

x(4)(0) = �1
Two of the realizations (with total probability = 2=4 = 1=2) yield the value 1 when sampled at
t = 0, and the other two realizations yield the value �1 when sampled at t = 0. Therefore, the
PMF of the 1-D cross-section X(0) is

pX(0)(x) =

(
1=2; x = 1
1=2; x = �1

Now let us look at the 1-D cross-section X(1) at time t = 1:

x(1)(1) = 2

x(2)(1) = 0

x(3)(1) = 0

x(4)(1) = �2
This gives us

pX(1)(x) =

8><
>:

1=4; x = 2
1=2; x = 0
1=4; x = �2

Notice that the cross-sections X(0) and X(1) do not have the same probability distribution. The
process in this example is a simple example of a time-varying or nonstationary process, since its
one-dimensional cross-sections have distributions that vary with time.

Exercise. Show that the following is the joint PMF of the 2-D cross section (X(0);X(1)) for
the process X(t) of Example 31.5:

 X(1) = �2 X(1) = 0 X(1) = 2

X(0) = �1 1=4 1=4 0
X(0) = 1 0 1=4 1=4

!

The row and column sums should yield the PMF's of the 1-D cross-sections found in Example 31.5.
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31.3 Another Look at Mean-Square Estimation

Consider the following block diagram:

- -

-

-
X system

MS

receiver X̂

Y1

Y2

We are attempting to form an estimate X̂ of X based now on two inputs Y1; Y2 to the receiver,
instead of just one input as we did earlier in the course. This means the estimate now takes the
form

X̂ = AY1 +BY2;

where A;B are constants to be determined so that the MS estimation error

E[(X � X̂)2] = E[(X �AY1 �BY2)
2]

is a minimum. To �nd A;B, you take the partial derivations of E[(X � X̂)2] with respect to A
and B, and set each of them equal to zero. It is not hard to see that these lead to the system of
equations:

E[(X � X̂)Y1] = 0 (31.1)

E[(X � X̂)Y2] = 0 (31.2)

For example,

@

@A
E[(X � X̂)2] = E

�
@

@A
(X � X̂)2

�
= E[2(X � X̂)

@

@A
(X � X̂)] = E[2(X � X̂)(�Y1)]:

Equations (31.1)-(31.2) are called orthogonality relations. They state that the estimation error
X � X̂ is orthogonal to each of the observations Yi that are linearly combined to form the estimate
X̂. In our case here, we have just two Yi's, and equations (31.1)-(31.2) reduce to the two equations

AE[Y 2
1 ] +BE[Y1Y2] = E[XY1]

AE[Y1Y2] +BE[Y 2
2 ] = E[XY2]

in the two unknowns A;B that one can solve simultaneously to see what the values of A;B should
be.

We shall say more about this during our next lecture.



Lecture 32

Random Processes Part 2

32.1 Orthogonality Principle

We can easily extend what we were doing in Section 31.3. Consider the following block diagram:

system X̂receiver

MS

...

Yn

Y1

Y3

Y2

X -

-

-

-

-

-

In this scenario, we are going to make use of receiver inputs Y1; Y2; � � � ; Yn to form a linear mean
square estimate of X of form

X̂ = A1Y1 +A2Y2 +A3Y3 + � � �+AnYn; (32.1)

where A1; A2; � � � ; An are constants that are chosen so that the mean square estimation error E[(X�
X̂)2] is a minimum. (Previously, in Section 31.3, we took n = 2. Now, n can be any positive integer.)
If you take the partial derivative of the mean square estimation error with respect to each Ai and
set this derivative equal to zero, then you will obtain n linear equations in the n Ai's that can be
solved simultaneously to obtain the unique solution for the Ai's. An easy way to remember these
equations is to use the orthongonality principle, which says the following:

Orthogonality Principle: The estimation error X � X̂ is orthogonal to each of the Yi's used to

form the linear estimate (32.1). That is,

E[(X � X̂)Yi] = 0; i = 1; 2; � � � ; n: (32.2)

7
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(Note: When you say that RV's U; V are orthogonal, you simply mean that E[UV ] = 0, that
is, their correlation is zero. The concept of orthogonal RV's is a convenient generalization of the
concept of perpendicular geometric vectors.)

It is easy to work out in this case what the speci�c system of n equations in n unknowns is that
arises from the orthogonality relations (32.2). The reader can verify that the relations (32.2) are
reducible to:

RY

2
6666664

A1

A2

A3
...
An

3
7777775
=

2
6666664

E[XY1]
E[XY2]
E[XY3]

...
E[XYn]

3
7777775
; (32.3)

where RY is the n � n correlation matrix of Y1; Y2; � � � ; Yn, de�ned in an earlier lecture to be the
matrix

RY = [E[YiYj ] ]i;j=1;2;3;���;n

(That is, the element in row i and column j of RY is the correlation E[YiYj] between RV Yi and
RV Yj.) The correlations E[XYi] appearing on the right side of (32.3) are called cross-correlations,
because X is an input to the system and the Yi's are outputs from this system (you are going
across from input to outputs). The correlations E[YiYj] appearing on the left side of (32.3) are called
autocorrelations, because these are correlations computed internally among the Yi's. In our coverage
of random processes, you will ultimately see treatment of the concepts of autocorrelation and cross-
correlation with regard to a random signal imposed as input to a system and the corresponding
random signal received as output to the system. Such autocorrelations and cross-correlations are
all you need to know when you design an optimal mean square �lter at the receiving end of the
system, where the purpose of the �lter is to estimate the system input random signal.

Example 32.1. Again, let X be the random variable which is the input to our system. Suppose
we have exactly three outputs from our system that are to be used to form our mean square estimate
of X: Y1; Y2; Y3. That is, our estimate takes the form

X̂ = A1Y2 +A2Y2 +A3Y3:

Then the system of equations (32.2) reduce in this case to

2
64 E[Y 2

1 ] E[Y1Y2] E[Y1Y3]
E[Y1Y2] E[Y 2

2 ] E[Y2Y3]
E[Y1Y3] E[Y2Y3] E[Y 2

3 ]

3
75
2
64 A1

A2

A3

3
75 =

2
64 E[XY1]
E[XY2]
E[XY3]

3
75 :

Given the three di�erent cross-correlations on the right side and the six di�erent autocorrelations
on the left side, you can solve to �nd the unique values of A1; A2; A3.
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Example 32.2. This example points out that the straight line receiver is a special case of the
MS estimation theory that we have presented in this section. In this scenario, we have one system
input X and one system output Y . The straight line receiver generates the estimate

X̂ = AY +B; (32.4)

where the constants A;B are chosen so that the mean square estimation error E[(X � X̂)2] is
minimized. We can regard this estimate as the special case of the estimate

Ŷ = AY1 +BY2 (32.5)

when random variable Y1 is taken to be Y and random variable Y is taken to be 1. The A;B
needed to form the estimate (32.5) are found by solving"

E[Y 2
1 ] E[Y1Y2]

E[Y1Y2] E[Y 2
2 ]

# "
A
B

#
=

"
E[XY1]
E[XY2]

#
:

Substituting Y1 = Y and Y2 = 1, you obtain the system"
E[Y 2] E[Y ]
E[Y ] 1

# "
A
B

#
=

"
E[XY ]
E[X]

#
(32.6)

that is to be solved to �nd the A;B for the straight line estimate (32.4). It is not hard to solve the
equation (32.6). You get:

A =
�X;Y �X
�Y

(32.7)

B = �X � �X;Y �X
�Y

(32.8)

32.1.1 Curious Fact

If RV's X;Y are bivariate Gaussian, then we know from Chapter 4 that

E[XjY = y] = �X +
�X;Y �X
�Y

(y � �Y ) : (32.9)

If we re-write the right side of (32.9) in the \slope intercept form" Ay + B, then we see that the
slope and intercept A;B are given by the equations (32.7)-(32.8). In other words, if we have any
pair of RV's X;Y and we want to see what the straight line estimate of X will be when Y = y,
then we just substitute the value y into the right side of (32.9).

Is what we have just pointed out simply a \curious fact"? Or is there some deep reason why
this is so? Your answer should be: DEEP REASON. Here is why. Suppose we start with any
random pair (X;Y ). We want to �nd the straight line estimate AY + B for X based on Y . We
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know that A;B can be found by solving equation (32.6). We will prove by clever indirect reasoning
that the solutions A;B to (32.6) are indeed given by equations (32.7)-(32.8). Pick another random
pair (X�; Y �) which is bivariate Gaussian and which satis�es

�X� = �X (32.10)

�Y � = �Y (32.11)

�X� = �X (32.12)

�Y � = �Y (32.13)

�X�;Y � = �X;Y (32.14)

We argue that E[X�jY �] is the straight line estimate of X� based on Y �. First, recall from an
earlier lecture that E[X�jY �] is the estimate of X� based on Y � which gives the smallest possible
mean square estimation error among all possible estimates. Secondly, since (X�; Y �) is bivariate
Gaussian, we know from Chapter 4 that E[X�jY �] is of straight line form A�Y +B� with

A� =
�X�;Y ��X�

�Y �

(32.15)

B� = �X� � �X�;Y ��X�

�Y �

(32.16)

By de�nition, the straight line estimate of X� based on Y � is that estimate of straight line form
which yields the smallest mean square estimation error among all estimates of straight line form.
Since E[X�jY �] is of straight line form and yields the smallest possible mean square estimation
error among all possible estimates, it must automatically yield the smallest possible mean square
estimation error among all straight line estimates. Therefore, E[X�jY �] = A�Y +B� is the straight
line estimate of X� based on Y �, where A� and B� satisfy the equations (32.15)-(32.16). The
coeÆcients A�; B� must therefore also satisfy the equation"

E[(Y �)2] E[Y �]
E[Y �] 1

# "
A�

B�

#
=

"
E[X�Y �]
E[X�]

#
(32.17)

Because of equations (32.10)-(32.14), we have

E[Y �] = E[Y ]

E[X�] = E[X]

E[(Y �)2] = E[Y 2]

E[X�Y �] = E[XY ]

and therefore the equation (32.17) has the same solutions as the equation (32.6), that is, A� = A
and B� = B. Now the solutions A;B to equation (32.6) give the straight line estimate AY +B of X
based on Y . Since A = A� and B = B�, we can conclude that A;B must be given by the right sides
of the equations (32.15)-(32.16). But, because of (32.10)-(32.14), the right sides of (32.15)-(32.16)
are the same as the right sides of (32.7)-(32.8). Therefore, we conclude that equations (32.7)-(32.8)
do indeed give the constants A;B in the straight line estimate AY +B of X based on Y .
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32.2 More 1-D Cross-Section Examples

Example 32.3. Let random variable U be Uniform(0,1). De�ne the following continuous time
random process:

X(t) = t� U; t � 0:

Fix t, and let us determine the PDF of the 1-D cross-section random variable X(t). Since U is
Uniform over the interval [0; 1], the random variable �U must be Uniform over the interval [�1; 0].
(For any RV U , the PDF of �U will always be the reection of the PDF of U . If we reect the
interval [0; 1], we obtain the interval [�1; 0].) Writing

t� U = t+ (�U);

we see that the PDF of the RV t�U is obtained by translating the PDF of �U t units to the right.
If we translate the interval [�1; 0] t units to the right, we obtain the interval [t�1; t]. Therefore, the
RV X(t) = t� U must be Uniform over the interval [t� 1; t]. Its density function is a rectangular
pulse over this interval, of amplitude 1. Therefore, this density function is given by

fX(t)(x) = u(x� [t� 1]) � u(x� t); �1 < x <1:

Example 32.4. We determine the probability distributions of the 1-D cross-sections of the
Poisson processX(t) whose arrival rate is the parameter �. Let T1; T2; T3; � � � be an in�nite sequence
of independent RV's which are each exponentially distributed with mean 1=�. Then we can model
the random arrival times of the Poisson process X(t) as:

first arrival time = T1

second arrival time = T1 + T2

third arrival time = T1 + T2 + T3
... =

...

k � th arrival time = T1 + T2 + � � �+ Tk
... =

...

(The RV's Ti are typically referred to as the interarrival times of the Poisson process, because Ti
gives the length of time between the (i � 1)-st arrival and the i-th arrival.) If we think of X(t) as
a random signal in terms of its variation in time (that is, think of X(t) as a random realization of
the process), then we can express X(t) in terms of the Ti's as

X(t) =
1X
i=1

u(t� [T1 + T2 + � � �+ Ti]); 0 � t <1:
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Fix a time t > 0, and take the 1-D cross-section RV X(t). The random variable X(t) is a discrete
RV which takes as possible value any nonnegative integer

0; 1; 2; � � � :

Let k be any one of these values and let us compute P [X(t) = k]. Note that the event fX(t) = kg
occurs if and only if the k-th arrival has occured at time � t but the (k+1)-st arrival will occur at
time > t. The time at which the k-th arrival occurs is

Y = T1 + T2 + � � �+ Tk;

and the time at which the (k + 1)-st arrival occurs is

Y + Tk+1 = (T1 + T2 + � � �+ Tk) + Tk+1:

We conclude that
fX(t) = kg = fY � t; Y + Tk+1 > tg;

and therefore
P [X(t) = k] = P [Y � t; Y + T > t];

where T is the random variable Tk+1. Note that the RV's Y and T are independent. Apply the
following linear transformation to the pair (Y; T ) to obtain a new pair of RV's (U; V ):

U = Y

V = Y + T

By Section 28.3,

fU;V (u; v) = fY (u)fT (v � u) = fY (u)� exp(��(v � u)); 0 � u < v <1 (zero elsewhere):

Therefore,

P [X(t) = k] = P [U � t; V > t]

=

Z t

0

Z 1

t
fU;V (u; v)dvdu

=

Z t

0

Z 1

t
fY (u)� exp(��(v � u))dvdu

=

Z t

0
fY (u) exp(��(t� u))du

= fY (t) � [exp(��t)u(t)]
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To evaluate the convolution of the signal fY (t) with the signal exp(��t)u(t), we can take the
inverse Laplace transform of the product of the Laplace transforms of these two signals. The
Laplace transform of fY (t) is

L[fY (t)] =
�

�

s+ �

�k
: (32.18)

To see this, note that Y is the sum of k independent RV's all gaving the same density � exp(��t).
Therefore, fY (t) is the convolution of k signals all of which have Laplace transform �=(s+ �), and
so equation (32.18) follows. Therefore, the Laplace transform of fY (t) � [exp(��t)u(t)] is:�

�

s+ �

�k � 1

s+ �

�
=

�k

(s+ �)k+1
:

We can now say that

P [X(t) = k] = L�1
"

�k

(s+ �)k+1

#

= �k exp(��t)L�1
�

1

sk+1

�

= �k exp(��t) t
k

k!

= =
exp(��t)(�t)k

k!
:

We conclude that the PMF of X(t) is

P [X(t) = k] =
exp(��t)(�t)k

k!
; k = 0; 1; 2; 3; � � � :

In other words, for each �xed t > 0, X(t) is a Poisson RV with parameter �t. It is now understand-
able why the process X(t) is called a Poisson process: this is because all the 1-D cross-sections have
a Poisson distribution. (At this point, the reader who has forgotten the expression for the PMF of
a Poisson RV should refer to Appendix A in order to refresh the memory, because we will need to
talk about the Poisson process now and again.)

Exercise. Let � be a RV uniformly distributed over the interval [0; 2�]. Let process X(t) be
the following random sinusoid:

X(t) = sin(t+�); �1 < t <1:

Show using the \CDF Method" of Section 3.7 of the textbook that the PDF of the 1-D cross-section
X(0) is

fX(0)(x) =
1

�
p
1� x2

; �1 < x < �1 (zero elsewhere):
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32.3 De�nition of Mean Function

Let X(t) be any process. The mean function �X(t) of the process is de�ned by

�X(t)
�
= E[X(t)]; for all times t:

Thus, for each �xed time t, the value �X(t) of the mean function at time t is simply the expected
value of the 1-D cross-section RV X(t). If the density fX(t)(x) of the cross-section X(t) is known,
then the mean function can be computed as follows:

�X(t) =

Z 1

�1
xfX(t)(x)dx:

Fortunately, there are many examples of random processes for which we can compute the mean
function �X(t) without needing to know what the density fX(t)(x) is.

Example 32.5. We determine the mean function of the \random straight line" process considered
earlier in Example 31.5. This is the process

X(t) = At+B; t � 0;

where A;B are independent RV's each taking the values �1 equiprobably. We have

�X(t) = E[X(t)] = E[At+B]:

In computing E[At+B], t is a �xed time, so when you apply the expected value operator E, treat
t exactly the same way you would a constant:

�X(t) = E[At+B] = tE[A] +E[B] = t � 0 + 0 = 0:

We conclude that the mean function of our random straight line process is equal to 0 for all times
t. There is a way to visualize this result physically: there are four realizations of this process and
let us denote them by

x(1)(t); x(2)(t); x(3)(t); x(4)(t):

Since these realizations each occur with probability 1=4, we can express the mean function in terms
of these realizations by the formula:

�X(t) = (1=4)[x(1)(t) + x(2)(t) + x(3)(t) + x(4)(t)]:

When you plot the four realizations, you will see that two of them lie above the t axis and the other
two of them lie below the t axis. The two realizations below the t axis are the negatives of the
two realizations above the t axis. Therefore, when you average up all four realizations, cancellation
occurs and you wind up with a mean function whose plot stays along the t axis for all t, that is,
the mean function is a signal that is always equal to zero.
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Remark. Suppose one performs the experiment giving rise to a random process a large number
of times, thereby obtaining a large number of realizations. If you average up these realization signals,
you will obtain a good approximation of the mean function �X(t). This procedure is called \space
averaging".

Example 32.6. Let X(t) be the Poisson process with arrival rate �. Then the mean function is
given by

�X(t) = �t; t � 0: (32.19)

We showed in Example 32.4 that the 1-D cross-section X(t) has a Poisson distribution with pa-
rameter �t. The mean of a Poisson distribution is its parameter. Thus, the expected value of X(t)
is �t, and so equation (32.19) is true. The fact that the mean of X(t) is �t makes sense because
we expect � arrivals per second, so that in t seconds, we expect �t arrivals.

32.4 De�nition of Autocorrelation Function

Let X(t) be any process. Its autocorrelation function RX(t1; t2) is the function of two variables
de�ned by

RX(t1; t2)
�
= E[X(t1)X(t2)]; for all times t1; t2:

In other words, at any two �xed times t1; t2, you compute the correlation between the 1-D cross-
section X(t1) and the 1-D cross-section X(t2). If the joint PDF fX(t1);X(t2)(x1; x2) of the 2-D
cross-section (X(t1);X(t2)) is known, then one can compute the autocorrelation RX(t1; t2) as the
double integral

RX(t1; t2) =

Z 1

�1

Z 1

�1
x1x2fX(t1);X(t2)(x1:x2)dx1dx2:

Fortunately, there are many examples of random processes where one can compute RX(t1; t2)
without having to �nd the joint density fX(t1);X(t2)(x1; x2). The following example illustrates this.

Example 32.7. Again, we look at the random straight line, that is, the process

X(t) = At+B; t � 0;

where A;B are independent RV's each taking the values �1 equiprobably. We can compute the
autocorrelation function RX(t1; t2) using the expected value operator as follows:

RX(t1; t2) = E[X(t1)X(t2)]

= E[(At1 +B)(At2 +B)]

= E[t1t2A
2 +BAt2 +ABt1 +B2]

= t1t2E[A
2] + (t1 + t2)E[AB] +E[B2]
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At this point, observe that
E[A2] = E[B2] = 1;

because the values of A;B are �1 and (�1)2 = 1. Also, because A;B are independent, we may
write

E[AB] = E[A]E[B] = 0 � 0 = 0:

Our formula for the autocorrelation function therefore reduces to

RX(t1; t2) = t1t2 + 1: (32.20)

Exercise. For each realization x(t) of the random straight line process, sample at times t = t1
and t = t2 to obtain the values x(t1) and x(t2), and then multiply, thereby obtaining the product
x(t1)x(t2). Average up these products over the four realizations. See if some cancellation occurs,
resulting in the simple formula (32.20).

Remark. Suppose one performs the experiment giving rise to a random process a large number
of times, thereby obtaining a large number of realizations. For each of these realizations x(t),
suppose you sample at times t = t1 and t = t2 and then form the product x(t1)x(t2). Averaging
up these products over all these realizations, you get a good approximation to the autocorrelation
RX(t1; t2). This procedure is called \space averaging".



Lecture 33

Random Processes Part 3

33.1 De�nition of WSS Process

A process X(t) is wide sense stationary (WSS) if two things hold:

(a) The mean function �X(t) is constant for all t.

(b) Each autocorrelation RX(t1; t2) depends only on t1 � t2.

Example 33.1. We show that the random sinusoid is a WSS process. We have

X(t) = A cos(!0t+�); �1 < t <1

Let us suppose that the amplitude A is random with no assumption about the PDF of A. We also
suppose that the phase � is uniformly distributed in the interval [0; 2�]. Finally, we ssume that A
and � are independent. We have to verify both condition (a) and condition (b) in the WSS process
de�nition.

Veri�cation of (a): For each �xed t, we have

�X(t) = E[X(t)]

= E[A cos(!0t+�)]

= E[A]E[cos(!0t+�)]

= E[A]

Z 2�

0
cos(!0t+ �)f�(�)d�

= E[A]

Z 2�

0
cos(!0t+ �)(1=2�)d�

17
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The reader can easily do the integral from 0 to 2� and show that it is zero. (When you
�nd the antiderivative, and plug in the upper and lower limits, you will �nd that the limits
cancel.) We conclude that

�X(t) = 0; for all t:

The mean function takes the constant value 0. This completes the veri�cation of (a).

Veri�cation of (b): For each �xed t1; t2, we have

E[X(t1)X(t2)] = E[A2 cos(!0t1 +�) cos(!0t2 +�)]

= E[A2]E[cos(!0t1 +�) cos(!0t2 +�)]

= E[A2]E[(1=2) cos(!0ft1 � t2g) + (1=2) cos(!0ft1 + t2g+ 2�)]

= (E[A2]=2)

�
cos(!0ft1 � t2g) +

Z 2�

0
cos(!0ft1 + t2g+ 2�)(1=2�)d�

�
= (E[A2]=2) [cos(!0ft1 � t2g) + 0] = (E[A2]=2) cos(!0ft1 � t2g)

In the preceding, we used the trig identity

cos a cos b = (1=2) cos(a� b) + (1=2) cos(a+ b):

We've shown
RX(t1; t2) = (E[A2]=2) cos(!0ft1 � t2g)

which depends only on t1� t2. This completes the veri�cation of (b). Since both (a) and (b)
hold, the random sinusoid is WSS.

Example 33.2. The random straight line process X(t) of Example 32.7 satis�es

�X(t) = 0; for all t:

That is, the mean function is constant. However, this is only condition (a) in the de�nition of WSS
process. You would also have to check condition (b). We established in Example 32.7 that

RX(t1; t2) = t1t2 + 1:

This is not a function of t1 � t2. Since condition (b) fails, the process is not WSS.

Exercise. Let Xn be the random walk process of Example 31.2. First, show that the mean
function is constant by showing that

E[Xn] = 0; for all n:

Then show that the process fails to be WSS by showing that condition (b) fails.
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Example 33.3. Let Xn be an IID process. We show that Xn is WSS. All the Xn's have the
same mean � and the same variance �2. Therefore,

�X(n) = E[Xn] = �;

and the mean function takes the constant value �. This veri�es condition (a) for WSS process.
Now we verify condition (b). If n1 6= n2, then Xn1 and Xn2 are independent, and we have

RX(n1; n2) = E[Xn1Xn2 ] = E[Xn1 ]E[Xn2 ] = �2:

On the other hand, if n1 = n2, we have

RX(n1; n2) = E[X2
n1 ] = �2 + �2:

We can combine these two di�erent cases into one by writing

RX(n1; n2) = �2 + �2Æ[n1 � n2]; for all n1; n2: (33.1)

Here, Æ[n] denotes the discrete time delta function, de�ned by

Æ[n] =

(
1; n = 0
0; n 6= 0

The one-line expression (33.1) tells us that RX(n1; n2) depends only on n1� n2. Condition (b) for
WSS process is therefore satis�ed. We conclude that an IID process is WSS.

33.1.1 Notation �X and RX(�)

If you have a WSS process X(t), then �X is the notation for the constant value of the mean function
of the process, and RX(�) is the notation for the autocorrelation function of the process. The �
in RX(�) is called the lag variable. If we sample process X(t) at times t1; t2, then we take � to be
jt2 � t1j, and we have

RX(t1; t2) = RX(jt1 � t2j) = RX(�):

Alternatively, you can de�ne the single variable autocorrelation function RX(�) in terms of the two
variable autocorrelation function RX(t1; t2) as

RX(�)
�
= RX(0; �):

Example 33.4. For the random sinusoid process X(t) of Example 33.1, we have

�X = 0

RX(�) = (E[A2]=2) cos(!0�)
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Example 33.5. For the IID process Xn of Example 33.3, we have

�X = �

RX(�) = �2 + �2Æ[� ]

Example 33.6. The discrete-time white noise process Xn is the WSS process satisfying

�X = 0

RX(�) = �2Æ[� ];

where �2 is the common variance of all the Xn's. In other words, for DT white noise, all the
component RV's of the process have 0 mean, the same variance, and they are uncorrelated.

Example 33.7. The continuous-time white noise process X(t) is the WSS process satisfying

�X = 0

RX(�) = AÆ(�);

where Æ(�) is the continuous-time delta function, and A is a positive constant. (Unlike with discrete-
time white noise, the constant A in front of the delta function in the autocorrelation function is
not the variance of each X(t), because

E[X(t)2] = variance(X(t)) = +1; for all t (33.2)

for CT white noise. Instead, A has some other interpretation, which we will encounter later. The
fact that (33.2) holds for continuous-time white noise is a consequence of the fact that Æ(t) blows
up at t = 0.)

33.2 A Filtering Example

Let Zn be the discrete time white noise process with unit variance. This process satis�es

E[Zn] = 0; for all n

E[Z2
n] = 1; for all n

E[ZiZj ] = 0; i 6= j

Let us think of Zn as a random signal. Let us pass Zn through a FIR linear �lter which does the
following:

Zn !
FIR
linear
�lter

! Xn = aZn + bZn�1 + cZn�2
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This �lter is determined by its three \tap weights" a; b; c. The output random signal Xn turns out
to be WSS. Let us prove this and �nd �X and RX(�).

First, we must check condition (a) for WSS process:

�X(n) = E[Xn] = E[aZn + bZn�1 + cZn�2]

= aE[Zn] + bE[Zn�1] + cE[Zn�2]

= a � 0 + b � 0 + c � 0 = 0

Therefore, the mean function of the X process takes the constant value 0. Now we must concern
ourselves with condition (b). First, note that

RX(n; n) = E[X2
n] = E[(aZn + bZn�1 + cZn�2)

2]

= a2E[Z2
n] + b2E[Z2

n�1] + c2E[Z2
n�2]

= a2 + b2 + c2

Let's explain how to go from line 1 to line 2 above. Write the two factors in (aZn+bZn�1+cZn�2)
2

above and below one another as
aZn + bZn�1 + cZn�2

aZn + bZn�1 + cZn�2

When we multiply these two factors, we �rst obtain the following factors by multiplying \straight
up and down":

a2Z2
n + b2Z2

n�1 + c2Z2
n�2: (33.3)

There are additional cross-product terms, which are each of the form a constant times E[ZiZj],
where i 6= j. Since E[ZiZj] = 0 for i 6= j, we can ignore these additional terms; it is only
the expected value of the terms in (33.3) which we need to be concerned about, which will give
a2 + b2 + c2.

Now let us compute RX(n; n� 1):

RX(n; n� 1) = E[XnXn�1]

= E[(aZn + bZn�1 + cZn�2)(aZn�1 + bZn�2 + cZn�3)]

= abE[Z2
n�1] + bcE[Z2

n�2]

= ab+ bc

To see this, write the two factors as

aZn + bZn�1 + cZn�2

aZn�1 + bZn�2 + cZn�3
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and then take the product of just the \straight up and down" terms:

abZ2
n�1 + bcZ2

n�2; (33.4)

ignoring the cross-product terms. The expected value of these terms, which yields ab+ bc, is all we
need.

Now let us compute RX(n; n� 2):

RX(n; n� 2) = E[XnXn�2]

= E[(aZn + bZn�1 + cZn�2)(aZn�2 + bZn�3 + cZn�4)]

= acE[Z2
n�2] = ac

It is apparent that this is all we get if we write

aZn + bZn�1 + cZn�2

aZn�2 + bZn�3 + cZn�4

and then just pick out the product of the \straight up and down terms" (i.e., the terms that have
the same time index).

It should be apparent from the precding that

RX(n; n� �) = 0; � � 3:

We have shown that

RX(n1; n2) =

8>>><
>>>:

a2 + b2 + c2; n1 = n2
ab+ bc; jn1 � n2j = 1

ac; jn1 � n2j = 2
0; jn1 � n2j � 3

The autocorrelations RX(n1; n2) clearly only depend on n1 � n2. Thus, condition (b) is satis�ed
and the X process is therefore WSS.

The parameter �X of the WSS process Xn is

�X = 0:

The autocorrelation function RX(�) of the WSS process Xn is

RX(�) =

8>>><
>>>:

a2 + b2 + c2; � = 0
ab+ bc; � = �1

ac; � = �2
0; � = �3;�4;�5; � � �

(33.5)

This expression is valid no matter what the three tap weights are. For example, if a = 1, b = �2,
and c = 3, the plot of RX(�) would be:
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�

RX(�) plot
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Notice that RX(�) is of only �nite extent (that is, it takes the value 0 outside a �nite range of
� values). We will see later (as a consequence of Chapter 11) that this kind of autocorrelation
function will always arise when you �lter white noise using a time-invariant linear FIR �lter|the
output autocorrelation function will always be of �nite extent.



Lecture 34

Random Processes Part 4

34.1 Poisson Process Properties

Let X(t); t � 0 be a Poisson process with arrival rate �. In Example 32.4, we proved that for each
�xed t, X(t) is a Poisson RV with mean �t. This is the same thing as saying that the number of
arrivals in the time interval [0; t] is a Poisson RV with mean �t, because X(t) is the number of such
arrivals. In this section, we state two further properties of the Poisson process (without proof).

Property 1: Let t1 and t2 be any two times for which 0 < t1 < t2. Then the number of Poisson
process arrivals in the time interval from t1 to t2 is a Poisson RV with mean �(t2 � t1). This
result will be true whether we include one or both or neither of the \endpoint" times t1; t2 in
this time interval, because the probability of an arrival at precisely time t1 or precisely time
t2 is zero. In terms of the Poisson process X(t), the number of arrivals at times t satisfying
t1 < t � t2 is X(t2) � X(t1); note that in this time interval, we exclude endpoint t1 and
include endpoint t2. We conclude that X(t2)�X(t1) is a Poisson RV with mean �(t2 � t1).

Property 2: Choose times t1; t2; t3; t4 so that

0 � t1 < t2 � t3 < t4:

Then the RV's X(t2) �X(t1) and X(t4) �X(t3) are independent. In other words, we have
statistical independence of the number of arrivals in the time interval from t1 to t2 and the
number of arrivals in the time interval from t3 to t4. This property is called the independent
increments property of the Poisson process. We have stated the independent increments
property for two nonoverlapping time intervals. It extends more generally to any �nite number
of nonoverlapping time intervals.

Example 34.1. For the Poisson random process X(t) with arrival rate �, let's compute the
probability that there are two occurences between t = 0 and t = 1 and three occurences between

24
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t = 1 and t = 2. This is the probability that X(1) � X(0) = 2 and that X(2) � X(1) = 3. By
Properties 1-2, the random variables X(1)�X(0) and X(2)�X(1) are independent Poisson RV's,
each having mean �. Therefore,

P [X(1) �X(0) = 2; X(2) �X(1) = 3] = P [X(1) �X(0) = 2]P [X(2) �X(1) = 3]

= fexp(��)�2=2gfexp(��)�3=6g
= exp(�2�)�5=12

34.2 A Filter Design Example

In this example, we use what we learned in Section 33.2 to design a linear �lter. We consider the
class of all discrete-time 3-tap causal linear FIR �lters. These are the �lters whose impulse response
function h[n] takes the form

h[n] = aÆ[n] + bÆ[n� 1] + cÆ[n� 2];

where parameters a; b; c are the so-called \�lter tap weights" and can be any real numbers what-
soever. In Section 33.2, we learned that if we use a general �lter of this type to �lter white noise
with unit variance, then the �lter output process Xn is WSS with autocorrelation function RX(�)
given by equations (33.5).

In this example, we are going to require that the �lter output autocorrelation function be

RX(�) =

8>>><
>>>:

10; � = 0
3; � = �1

�1; � = �2
0; � = �3;�4;�5; � � �

(34.1)

Our job is to design the �lter that will do this by �guring out what the �lter tap weights a; b; c
should be. Looking back at (33.5), we see that we must solve the equations

a2 + b2 + c2 = 10

ab+ bc = 3 (34.2)

ac = �1
simultaneously for a; b; c. Unfortunately, these are simultaneous quadratic equations and not simul-
taneous linear equations. College algebra taught you how to solve simultaneous linear equations
but not simultaneous quadratic equations. There is a general method for solving equations (34.2)
called spectral factorization, but this method is beyond the scope of EE 3025. (We teach the spectral
factorization method in our �rst year graduate level course in probability and random processes.)
However, the equations (34.2) are suÆciently simple that we can use Matlab to �nd the solutions
for us. Here is a simple Matlab script that you can run that will obtain a solution for a; b; c:
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[a,b,c] = solve('a^2+b^2+c^2=10','a*b+b*c=3','a*c=-1');

a=eval(a(1)); b=eval(b(1)); c=eval(c(1));

a,b,c

Running this script, we obtained the solution:

a = �0:34242364057618
b = 1:16372191220048

c = 2:92035911514989

There may be other solutions for a; b; c in which a; b; c are real numbers. Any alternate solution
would also yield a �lter delivering the required output autocorrelation function in response to white
noise. (In addition, there may be solutions to (34.2) given by Matlab in which one or more of the
a; b; c values is a complex number and not a real number. Such a solution would not be allowed in
this particular application.)

34.3 Form of WSS Process Correlation Matrix

Suppose you have a discrete-time WSS process Xn. If you sample this process at N consecutive
times, the resulting N RV's have correlation matrix which is the N �N matrix

[RX(i� j)]i;j=1;2;���;N :

In other words, the entry in row i and column j of this correlation matrix is RX(i�j). To illustrate,
suppose we take N = 4. The correlation matrix of 4 consecutive samples of process Xn then takes
the form 2

6664
RX(0) RX(1) RX(2) RX(3)
RX(1) RX(0) RX(1) RX(2)
RX(2) RX(1) RX(0) RX(1)
RX(3) RX(2) RX(1) RX(0)

3
7775 (34.3)

Examine the matrix (34.3) carefully. Notice that the entries on the main diagonal (going from
upper left hand corner to lower right hand corner) are all equal to RX(0). Also, the entries on the
two \subdiagonals" right below and right above the main diagonal are all equal to RX(1). There are
two more subdiagonals right below and right above the subdiagonals containing the RX(1)'s; all the
entries in these two subdiagonals are equal to RX(2). There are just two remaining subdiagonals,
consisting of just one entry each in the lower left corner and upper right corner|these two entries
are taken to be RX(3). In general, an N �N correlation matrix for the WSS process samples at N
consecutive times would have a similar \constant along subdiagonals" structure. You'd �ll in the
main diagonal �rst with RX(0) entries. Then you'd visit in order each pair of subdiagonals moving
outward from the main diagonal; the constant entries along each of these pairs of subdiagonals
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would be RX(1), RX(2), RX(3), etc., in that order. A matrix with this kind of \constant along
subdiagonals" structure is called a Toeplitz matrix. There is a Matlab command toeplitz which
can easily generate any Toeplitz matrix. We illustrate this Matlab command in the following
example.

Example 34.2. Let the autocorrelation function of WSS process Xn be

RX(�) = 2�j� j; for all integers �:

(You will eventually see how such an autocorrelation function might arise.) Suppose we sample
this process at times n = 1; 2; 3; 4, thereby obtaining the RV's X1;X2;X3;X4. You can run the
following Matlab script, which generated the 4� 4 correlation matrix of these four RV's:

format rat

tau=0:3;

corr_matrix = toeplitz(2.^(-tau))

corr_matrix =

1 1/2 1/4 1/8

1/2 1 1/2 1/4

1/4 1/2 1 1/2

1/8 1/4 1/2 1

34.4 Properties of RX(�)

Not any function of � can be an autocorrelation function, because autocorrelation functions have
very special properties. We state some facts about the structure of autocorrelation functions of
WSS processes.

Fact 1: For any autocorrelation function RX(�), the value RX(0) is nonnegative and

jRX(�)j � RX(0); for all �:

Fact 1 tells us that the peak value of an autocorrelation function RX(�) is always RX(0).

Fact 2: Any autocorrelation function RX(�) is an even function of � , that is,

RX(��) = RX(�); for all �:

Fact 3: We point out a property of any autocorrelation function RX(�) called the positive semidef-

initeness property. For a continuous-time WSS process X(t), the positive semide�niteness
property says that for any positive real number T ,Z T

0

Z T

0
�(t1)�(t2)RX(t1 � t2)dt1dt2 � 0



LECTURE 34. RANDOM PROCESSES PART 4 28

for any real-valued function � for which the integral on the left side exists. For a discrete-time
WSS process Xn, the positive semide�niteness property says that for any positive integer N ,

aRN
Xa

T � 0; (34.4)

for any N -dimensional row vector a with real entries, where RN
X is the N � N correlation

matrix of process samples at N consecutive times. (This is the same thing as saying that
all eigenvalues of the symmetric matrix RN

X are � 0; in matrix theory, such a symmetric
matrix is said to be a positive semide�nite matrix, which explains why we call our property
the positive semide�niteness property.)

Fact 4: If the realizations of a WSS process X are all periodic with the same period T , then RX(�)
is also periodic with period T .

Fact 5: This fact allows us to construct autocorrelation functions for either CT or DT WSS pro-
cesses. If �(�) is any continuous-time signal for which the convolution

�(�) � �(��) (34.5)

exists, then the function (34.5) is an autocorrelation function RX(�) for some continuous-time
WSS process X(t). Similarly, if �[� ] is any discrete-time signal for which the convolution

�[� ] � �[�� ] (34.6)

exists, then the function (34.6) is an autocorrelation function RX(�) for some discrete-time
WSS process Xn.

Remarks. Facts 1 and 5 will be proved later. Fact 2 is trivial. Fact 4 is easy to prove. I prove
Fact 3 below.

Proof of Fact 3. I prove the discrete-time version of Fact 3. (The proof of the continuous-
time version of Fact 3 is similar.) Let X1;X2; � � � ;XN be samples of WSS process Xn at times
n = 1; 2; � � � ; N . Let a be an N -dimensional row vector

a = [a1; a2; � � � ; aN ]:

Obviously,
E[(a1X1 + a2X2 + � � � + aNXN )

2] � 0:

From Theorem 5.13 of Chapter 5 of your textbook,

E[(a1X1 + a2X2 + � � �+ aNXN )
2] = aRN

Xa
T :

Therefore, (34.4) is true.
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Example 34.3. Consider again the random sinusoid

X(t) = A cos(!0t+�)

with autocorrelation function
RX(�) = (E[A2]=2) cos(!0�): (34.7)

Notice that all of the realizations of the random sinusoid are periodic with period 2�=!0. Fact 4
then tells us that the autocorrelation function should also be periodic with this same period 2�=!0.
Checking equation (34.7), we see that this is true.

Example 34.4. Bill is working with a discrete-time WSS process Xn. He tells you that he has
computed the autocorrelation function RX(�) to be

RX(�) =

(
1; � = 0;�1;�2
0; elsewhere

Is Bill possibly correct, or did he make a mistake in computing the autocorrelation function? Let's
check the positive semide�niteness property. The correlation matrix of four consecutive samples of
the process would be

1 1 1 0

1 1 1 1

1 1 1 1

0 1 1 1

Executing the Matlab command

eig(toeplitz([1 1 1 0]))

we see that one of the four eigenvalues is �0:5616, which is negative. The positive semide�niteness
property is therefore violated. Consequently, the RX(�) function given above cannot possibly be
an autocorrelation function. We conclude that Bill must have made a mistake in computing the
autocorrelation function for his process.

Exercise. Using Fact 5, argue that the triangular pulse plotted below must be an autocorrelation
function. (Hint: In EE 3015, recall what the convolution of a rectangular pulse with its reection
is.)

@
@
@
@
@@

�
�

�
�

�� -

6

0-1 1
�

A

RX(�)
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34.5 WSS Process Power and Variance

For a WSS process X(t), power PX and variance �2X are two important parameters of the process.
These are de�ned by

PX
�
= E[X(t)2] = RX(0)

�2X
�
= Var[X(t)] = PX � �2X

Discussion. The parameter �2X is clear: it is the common variance of all the 1-D cross-sections
of the process. The power �gure PX is a little more problematic for us at this point in time, if we
try to correlate with the power concept you had in EE 3015. In EE 3015, you learned that the
power generated by a power signal x(t) could be computed as a time average

< x(t)2 >= lim
T!1

1

T

Z T

0
x(t)2dt:

(We will customarily use brackets < x(t)2 > when we want to take a time average of whatever is
inside the brackets; in this case, we are time-averaging x(t)2, the square of the power signal x(t).)
It is true that the realizations of a WSS process are power signals, and it is tempting to try to
de�ne the power generated by the process as the power generated by a realization. Unfortunately,
di�erent realizations can generate di�erent power �gures, and if we want a power �gure for the
process as a whole, it must not be dependent on the realization. Taking the power �gure PX to be
de�ned as RX(0) turns out to be the right thing to do, in the sense that if we take a large number
of realizations and average up their power �gures, then we will obtain RX(0), approximately. We
will continue this discussion later on, after we have discussed time and space averaging and ergodic
processes. At that point in time, we can make a full justi�cation for using RX(0) as our power
�gure. For the time being, we can at least have you do power calculations using the RX(0) �gure
for the power, even if you do not completely understand as yet why this number should be related
to power.

Example 34.5. For the random sinusoid

X(t) = A cos(!0t+�)

we worked out earlier that the process mean is �X = 0. Therefore, �2X and PX are the same for
this process. The autocorrelation function is

RX(�) = (E[A2]=2) cos(!0�);

and so
�2X = PX = RX(0) = E[A2]=2:
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Let's see if the power �gure E[A2]=2 makes sense for this process. A realization of this process
would be the sinusoid

A cos(!0t+�)

in which A is �xed. You know from your basic sophomore circuits course that the power generated
by a sinusoid is one half the square of the amplitude, which is A2=2 in this case. Note that this
�gure is random, because the amplitude A changes from realization to realization. If we average
this power �gure over all the realizations, we obtain

E[A2=2] = E[A2]=2 = PX :

So, at least for the random sinusoid, it does make sense to think of PX = RX(0) as the average of
the power �gures across realizations of the process.

34.6 First Order Linear Predictor Design

Let X(t) be a continuous-time or discrete-time WSS process with autocorrelation function RX(�).
Let t be some �xed future time, and suppose that you have examined a realization of the process
up to time t� � , which is � seconds previous to time t. Based upon what the realization is doing
at time t � � , your goal is to build a predictor to predict (estimate) what the realization will be
doing at time t, as indicated in the following block diagram:

X(t� �)! predictor ! X̂(t)

The input to the predictor is the random variable X(t � �), the process sampled at time t � � .
The predictor output is your prediction X̂(t) of X(t), the process sampled at time t. This is called
a �rst order predictor, because we are using just the one sample X(t � �) to form the prediction
X̂(t). We will also require that the predictor be linear, meaning that the prediction X̂(t) must be
some �xed constant multiple of X(t� �):

X̂(t) = AX(t� �): (34.8)

To design the �rst order linear predictor, we must choose the constant A appropriately. We will
choose A in order that the prediction X̂(t) of X(t) provide the best possible mean square �t to
X(t). That is, we will choose A so that

E[(X(t) � X̂(t))2]; (34.9)

the so-called mean square prediction error, will be minimized. Note that predictor design falls
within the framework of mean square estimation theory. That is, X̂(t) is a mean square estimate
of X(t) based on X(t � �), and in this framework the prediction error (34.9) is just mean square
estimation error. The orthogonality principle of linear mean square estimation theory (covered
in Section 32.1) can now be used to �nd the optimum choice of A. In our problem here, the
orthogonality principle says that
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� The prediction error X(t)� X̂(t) is orthogonal to X(t� �), the only sample that will be used

to form the linear prediction X̂(t) according to (34.8).

We obtain one single orthogonality relation from the orthogonality principle, namely, the equa-
tion

E[(X(t) � X̂(t))X(t� �)] = 0:

Substituting in for X̂(t), this equation becomes

E[(X(t) �AX(t� �))X(t � �)] = 0;

which simpli�es to
E[X(t)X(t � �)]�AE[X(t� �)2] = 0:

Note that

E[X(t)X(t � �)] = RX(�)

E[X(t� �)2] = RX(0)

Therefore, we have the following formula for our optimized prediction coeÆcient A, purely in terms
of the autocorrelation function of the X process:

A =
RX(�)

RX(0)
:

In our next lecture, we will examine the mean square prediction error that results from the �rst
order linear predictor, which will lead us to some interesting conclusions.



Lecture 35

Random Processes Part 5

35.1 MS Prediction Error for First Order Predictor

As in Section 34.6, we have a WSS process X(t). In Section 34.6, we showed that

X̂(t) = AX(t� �);

where

A =
RX(�)

RX(0)
;

is the �rst order (linear) predictor for X(t) based on X(t� �). We are now going to work out the
MS prediction error

E[(X(t) � X̂(t))2]

for the �rst order predictor. First, we write

E[(X(t) � ^X(t))2] = E[((X(t) � X̂(t))X(t)] �E[((X(t) � X̂(t))X̂(t)]:

The second term on the right hand side is zero, by the orthogonality principle. Therefore,

E[(X(t) � ^X(t))2] = E[((X(t) � X̂(t))X(t)]

= E[(X(t) �AX(t� �))X(t)]

= E[X(t)2]�AE[X(t � �)X(t)]

= RX(0)�ARX(�)

Plugging inA = RX(�)=RX(0) and simplifying, we obtain the following expression for the prediction
error of the �rst order predictor:

first order MS prediction error =
RX(0)

2 �RX(�)
2

RX(0)
: (35.1)

We can draw two conclusions from the expression (35.1) for the �rst order MS prediction error:

33
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Conclusion 1: Fact 1 about RX(�) given in Section 34.4 is now clearly seen to be true. (This
is the fact that says that RX(0) is the peak value of RX(�).) Since MS prediction error is
obviously a nonnegative quantity, we see from formula (35.1) that

RX(0)
2 � RX(�)

2;

which reduces to
RX(0) � RX(�)

if you take the positive square root of both sides.

Conclusion 2: Suppose you want to predict X(t) and you have available to you all observations
X(t � �) for � � 1. (In other words, you have all observations of the process 1 second or
more in the past.) If you are designing a �rst order predictor, you can only use one of these
past observations. Which one should you use? Looking at formula (35.1), you should clearly
pick the observation X(t � ��), where �� is the value of � � 1 for which jRX(�)j is as close
as possible to RX(0), for it is in this case that the MS prediction error will be as small as it
can possibly be.
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plot of an autocorrelation function

Example 35.1. Suppose the autocorrelation function RX(�) of WSS process X(t) looks like the
above. (We suppose that RX(�) vanishes outside the interval �2 � � � 2.) Suppose our �rst order
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predictor must use one of the observations X(t � �) to predict X(t), where � must be � 1. From
the plot, we see that � = 1:5 would be the best choice (this is the � value where the secondary peak
in RX(�) occurs). That is, if we take our predictor of the form

X̂(t) = AX(t� 1:5);

we will obtain the smallest possible MS prediction error if you are restricted to choosing an obser-
vation 1 second or more in the past on which to base your prediction. We also see from the plot
that � = 1 would be a poor choice (don't use X(t � 1) to predict X(t)!). Choosing � = 2 would
also be a poor choice. The choices � = 1 and � = 2 would give the worst possible MS prediction
error.

35.2 k-th order Linear Predictor

In this section, we go beyond the �rst order predictor to \higher order" predictors. For simplicity,
we now assume the process is discrete-time rather than continuous-time. We are given a DT WSS
process Xn. For some �xed positive integer k, we want to build a predictor to form a prediction
X̂n of Xn based on

Xn�1;Xn�2;Xn�3; � � � ;Xn�k;

the observations of the process at the k discrete times immediately previous to time n. This
predictor is called the k-order linear predictor. We can conceptualize our k-th order predictor via
the block diagram

Xn�k; � � � ;Xn�3;Xn�2;Xn�1 !
k-th order
linear

predictor
! X̂n,

where the prediction X̂n takes the form

X̂n = A1Xn�1 +A2Xn�2 +A3Xn�3 + � � �+AkXn�k: (35.2)

In (35.2), we must choose the predictor coeÆcients A1; A2; � � � ; Ak to minimize the MS prediction
error E[(Xn � X̂n)

2]. The orthogonality principle says that

E[(Xn � X̂n)Xi] = 0; i = n� 1; n� 2; n� 3; � � � ; n� k:

This reduces to the following system of k linear equations in the k unknowns A1; A2; � � � ; Ak:

RX

2
6666664

A1

A2

A3
...
Ak

3
7777775
=

2
6666664

RX(1)
RX(2)
RX(3)

...
RX(k)

3
7777775
;
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where RX is the k � k correlation matrix of k consecutive Xn process samples. For example, for
k = 2 (the second order predictor), this system is"

RX(0) RX(1)
RX(1) RX(0)

# "
A1

A2

#
=

"
RX(1)
RX(2)

#

For k = 2 (the third order predictor), the system becomes2
64 RX(0) RX(1) RX(2)
RX(1) RX(0) RX(1)
RX(2) RX(1) RX(0)

3
75
2
64 A�1
A�2
A�3

3
75 =

2
64 RX(1)
RX(2)
RX(3)

3
75 ;

where I have labelled the three predictor coeÆcients as A�1, A
�
2, A

�
3, to emphasize the fact that the

�rst two predictor coeÆcients A�1 and A�2 for the third order predictor will not coincide with the
respective predictor coeÆcients A1; A2 of the second order predictor.

See Recitation 12, Experiment 5, where some examples of second and third order linear predic-
tors are worked out.

35.3 An Example

The autocorrelation function of a WSS process can be used to directly compute the correlation
between two samples of the process at di�erent times. However, the autocorrelation function can
be used to determine other things as well. I illustrate this in the following example.

Let Xn be a WSS process and let its mean �X and autocorrelation function RX(�) be given by

�X = 1

RX(�) = 5(2�j� j) + 1

Let's compute each of the following things:

(a): PX

(b): �2X

(c): E[(X5 �X8)
2]

(d): �X5;X8

Solution to (a).
PX = RX(0) = 6:

Solution to (b).
�2X = PX � �2X = 6� 12 = 5:
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Solution to (c).

E[(X5 �X8)
2] = E[X2

5 � 2X5X8 +X2
8 ]

= E[X2
5 ]� 2E[X5X8] +E[X2

8 ]

= RX(0) � 2RX(3) +RX(0) = 8:75

Solution to (d).
Cov(X5;X8) = E[X5X8]� �2X = RX(3) � 1 = 5=8:

You divide this by

�X5
�X8

=
q
�2X

q
�2X = 5:

The correlation coeÆcient is therefore 1=8.

Exercise. In the preceding example, suppose that you are told that the correlation coeÆcient
between two process samples is 1=128. How far apart are the two samples in time? (Assume that
the samples Xn are taken one second apart.)

35.4 Introduction to Ergodic Processes

A discrete-time WSS process Xn is said to be ergodic if

lim
N!1

PN
n=1Xn

N
= �X (35.3)

holds, and if

lim
N!1

PN
n=1XnXn��

N
= RX(�) (35.4)

holds for every integer � . The limits in (35.3)-(35.4) are in the stochastic convergence sense which
we de�ned back in the Statistics section of the course.

Intuitively, here is what the stochastic convergence statements (35.3)-(35.4) say: If the process
Xn is ergodic, it is highly likely that the observed realization signal xn will satisfy

PN
n=1 xn
N

� �X (35.5)

and PN
n=1 xnxn��

N
� RX(�) (35.6)

if the number of samples N is large enough. In other words, for an ergodic process you can time
average along just one realization to get �X and RX(�) estimates given by the left sides of (35.5)
and (35.6), respectively.
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It is easy to modify (35.5) and (35.6) to get the time averaging estimates for a continuous time
ergodic WSS process X(t). In this case, you are highly likely to get an observed realization signal
x(t) for which R T

0 x(t)dt

T
� �X

and R T
0 x(t)x(t� �)dt

T
� RX(�);

if T is large enough.

We need a criterion which will tell us when we have an ergodic process. Here is a criterion
which will work for many Gaussian WSS processes (we cover Gaussian processes in Lecture 36).
This result can be found in many textbooks.1

Useful Result: Suppose you have a WSS discrete-time or continuous-time Gaussian process X.
Then the process is ergodic if

lim
�!1

RX(�) = �2X : (35.7)

Remark. The reader may wonder why we required that the process be Gaussian. Unfortu-
nately, if you have a nonGaussian WSS process, you cannot tell whether the process is ergodic by
looking at RX(�) alone. You would need to look at more extensive statistical properties of the
process to determine whether the process is ergodic|these properties would be too complicated to
present in a �rst course on random processes such as EE 3025.

Example 35.2. Suppose you have a continuous-time Gaussian WSS process X(t) with the
following mean and autocorrelation properties:

�X = 0

RX(�) = exp(�j� j)

We have
lim
�!1

RX(�) = lim
�!1

exp(�j� j) = 0 = �2X :

The condition (35.7) is satis�ed. Therefore, this process is ergodic.

Exercise. Is an IID process ergodic? Why or why not?

I will talk further about Ergodic Processes during Lecture 36.

1See, for example, page 111 of Introduction to Ergodic Theory, by Ya. G. Sinai (Princeton University Press, 1976).
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Random Processes Part 6

36.1 More About Ergodic Processes

Example 36.1. An IID process Xn is ergodic. To see this, notice that

lim
n!1

X1 +X2 + � � � +Xn

n
= �X ;

stochastically, by the law of large numbers, since the Xi's are all independent samples from the
same probability distribution with mean �X . Then, notice that

lim
n!1

X2
1 +X2

2 + � � �+X2
n

n
= E[X2

1 ] = RX(0) = PX ;

stochastically, by the law of large numbers, since the X2
i 's are all independent and have the same

probability distribution with mean RX(0). We conclude that we can do time-averaging along one
�xed realization to estimate the process mean �X or the process power PX . To complete the proof
that the process Xn is ergodic, we also must show stochastic convergence of the average

lim
n!1

Pn
i=1XiXi+�

n

to RX(�) for any positive integer � . Let's prove this for � = 1. (The proof for � > 1 will be similar.)
We will show that the average

1

2n
[X1X2 +X2X3 +X4X5 + � � �+X2n�1X2n +X2nX2n+1] (36.1)

converges stochastically to RX(1). We cannot directly use the law of large numbers to conclude
this, because the terms being summed up in (36.1) are dependent. But, we can express the average
(36.1) as an average of two other averages as follows:

(1=2)

�
1

n
(X1X2 +X3X4 + � � �+X2n�1X2n) +

1

n
(X2X3 +X4X5 + � � �+X2nX2n+1)

�
:

39
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Each of the two separate averages in the preceding expression involves independent terms, so that
you can use the law of large numbers to conclude that each separate average converges stochasti-
cally to RX(1). The average of these two separate averages, which is (36.1), therefore converges
stochastically to

(1=2)fRX (1) +RX(1)g = RX(1);

too.

Example 36.2. A Gaussian white noise process (abbreviated GWN process) is ergodic, both
in continuous and discrete time. Here is how you can see this. Suppose you have a discrete-time
GWN process Xn. Then, it is an IID process and must therefore be ergodic by Example 36.1. Or,
use the \Useful Result" given in Section 35.4. Both the discrete-time and continuous-time GWN
processes satisfy

lim
�!1

RX(�) = 0;

because
RX(�) = 0; � 6= 0;

for such processes. (This is because RX(�) in this case is either a constant multiple of the discrete
time delta function Æ[� ] or the continuous time delta function Æ(�).) But, by de�nition, white noise
has zero mean and so we can say that

lim
�!1

RX(�) = �2X :

This is condition (35.7) of the \Useful Result" in Section 35.4, and so that Useful Result tells us
that GWN is ergodic. (The Useful Result applies to Gaussian processes and GWN is a special case
of a Gaussian process. Gaussian processes are covered in the next section.)

Remark. Not every WSS process is ergodic. We give a couple of examples of WSS processes
which are nonergodic (i.e., not ergodic).

Example 36.3. Consider the random sinusoid process

X(t) = A cos(!0t+�); �1 < t <1; (36.2)

where A2 is random and � is uniformly distributed in [0; 2�] and independent of A. We know that
this process is WSS. We argue that this process is nonergodic. For a particular realization of (36.2),
you get a sinusoid in which the amplitude A and the phase angle � take �xed values. Sophomore
level EE students learn that the power generated by a sinusoid is 1=2 the square of the amplitude
(it does not depend on the phase angle!). Therefore, the power generated by the random signal
on the right side of equation (36.2) is A2=2, a random variable. If the process were ergodic, all
realizations (with probability one) would generate power equal to the same number. Therefore, the
random sinusoid process X(t) is nonergodic.
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Example 36.4. This is perhaps the classic example of a nonergodic process. You have a box
containing two coins, one unbiased, and the other biased with probability of heads equal to 2=3.
Perform the following random experiment: First, select a coin from the box at random. Then, ip
that coin an in�nite number of times. On each ip (n = 1; 2; 3; � � �), declare Xn = 1 if heads occurs
and Xn = 0 if tails occurs. The resulting process Xn is WSS but not ergodic. (Hint: Show that
the time-average behavior depends heavily on whether the realization is being generated according
to the biased coin or the unbiased coin. If you get stuck, see Problem 3.4 of the Solved Problems
on Random Processes.)

36.1.1 More Useful Facts about Ergodic Processes

In Section 35.4, we gave a \Useful Fact" that gave you some circumstances under which a WSS
Gaussian process will be ergodic. Here are two more useful facts:

Fact(i): If a CT or DT wide-sense stationary process X is ergodic, and if the limit of RX(�) exists
as � !1, then it will automatically be true that

lim
�!1

RX(�) = �2X :

Fact(ii): Let X(t); �1 < t < 1 be a continuous or discrete time WSS ergodic process and
suppose we �lter this random signal for all time �1 < t < 1 with a stable, linear-time,
time-invariant �lter. Then the �lter output process Y (t); �1 < t < 1 will also be WSS
and ergodic. The following block diagram summarizes this result:

WSS ergodic X(t)!
LTI
stable
�lter

! WSS ergodic Y (t)

Example 36.5. As a consequence of Fact(i) above, we can say the following: Suppose we have
a WSS process for which the limit of RX(�) exists as � !1, but

lim
�!1

RX(�) 6= �2X :

Then we can say that the process must be nonergodic. To illustrate, re-examine the Xn process
de�ned in Example 36.4. In Problem 3.4 of the Solved Problems on Random Processes, it is shown
for this process that

�X = 7=12

RX(�) = (17=72)Æ[� ] + 25=72
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Therefore,
lim
�!1

RX(�) = 25=72;

which is not the same as �2X = 49=144. We conclude that this process must be nonergodic.

Example 36.6. Notice that in Fact(i), we assumed that we had an ergodic process for which the
limit of RX(�) exists as � ! 1. The purpose of this example is to point out that there do exist
some ergodic processes for which this limit does not exist. We present the following example of this
type: The discrete-time process Xn; n = 1; 2; 3; � � � has the three possible realizations indicated as
follows, selected equiprobably:

0
B@
n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 � � �

realization 1 1 2 3 1 2 3 1 � � �
realization 2 2 3 1 2 3 1 2 � � �
realization 3 3 1 2 3 1 2 3 � � �

1
CA

Notice that each realization is periodic with period 3. This process is both WSS and ergodic.
The process parameters �X and PX can be obtained by time-averaging along one period of any
realization xn chosen from among the above three:

�X =
x1 + x2 + x3

3

PX = RX(0) =
x21 + x22 + x23

3

RX(1) can also be obtained by time-averaging along this arbitrary realization xn:

RX(1) =
x1x2 + x2x3 + x3x4

3
:

The reader can check that all the above values remain invariant no matter which of the three
realizations is chosen. RX(�) can now be computed for any � because RX(�) will be periodic with
period 3 in this case: the values RX(�1) = RX(1); RX (0); RX (1) constitute autocorrelation values
over one period|translating to left and right, you then obtain RX(�) for any integer � . For more
about this example, see Problem 3.3 of the Solved Problems on Random Processes. Notice that
lim�!1RX(�) does not exist because for large � , RX(�) keeps oscillating back and forth over the
two values RX(1) or RX(0), never converging to one particular value. (The reader who is not yet
convinced that this limit does not exist should sketch a plot of RX(�) versus � .)

Example 36.7. In Section 33.2, we linearly �ltered a Gaussian white noise process Zn to obtain
at the �lter output a process Xn according to the following block diagram:

Zn !
FIR
linear
�lter

! Xn = aZn + bZn�1 + cZn�2
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The �ltering operation is stable and time-invariant (no matter what the three �lter tap weights
a; b; c are), and the GWN process Zn is WSS and ergodic. Therefore, by Fact(ii) of this section,
the process Xn is WSS and ergodic. This fact allows you to time average along realizations of the
process Xn in order to estimate �X , PX , and RX(�).

Example 36.8. A WS ergodic process X(t) has the following autocorrelation function:

-
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20

10

Suppose we know that the process mean �X is less than 0. Then we can determine �X from
Property(i). Observe from the plot that

lim
�!1

RX(�) = 10:

By Property(i), the value 10 must be �2X . Since we are assuming that �X < 0, we conclude that

�X = �
p
10:

36.2 Space/Time Averaging Concepts

Recitation 12 covered thoroughly the two ways in which we can do averaging to estimate the
parameters of a process: space averaging and time averaging. For completeness of these class notes,
I include here the background material presented in the Recitation 12 instructions on space and
time averaging.
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36.2.1 Computing �X ; PX ; RX(�) via Space Averaging

Let X(t) be a WSS continuous time or discrete time process. Suppose you have a large number of
realizations of X(t), and let these be

x1(t); x2(t); x3(t); : : : ; xN (t) (36.3)

Fix any time t�. Then, we can estimate �X , PX and RX(�) as follows:

�X � N�1
NX
i=1

xi(t
�)

PX � N�1
NX
i=1

xi(t
�)2

RX(�) � N�1
NX
i=1

xi(t
�)xi(t

� + �)

This type of averaging is called SPACE AVERAGING. You can visualize space averaging in this
way. Plot the N realizations that you get by performing the experiment N times. At time t = t� (an
arbitrary time held �xed by you), erect a vertical slice, which cuts through the N realizations and
yields one signal sample for each realization. Average these N samples to obtain an approximation
to �X . Average the squares of these samples to obtain an approximation to PX .

36.2.2 Computing �X ; PX ; RX(�) via Time Averaging

The time average of a CT signal �(t) is written h�(t)i and is de�ned by

h�(t)i �
= lim

T!1
T�1

Z T

0
�(t)dt

The time average h�(t)i is sometimes called the DC value of the signal �(t). The average power
generated by the signal �(t) shall be written



�(t)2

�
and is de�ned by

D
�(t)2

E
�
= lim

T!1
T�1

Z T

0
�(t)2dt

Example 36.9. If the signal �(t) is periodic with period T , then

h�(t)i = T�1
Z T

0
�(t)dt

D
�(t)2

E
= T�1

Z T

0
�(t)2dt
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For a DT signal �[n], the DC value and the power would be computed by

h�[n]i �
= lim

N!1
N�1

NX
n=1

x[n]

D
�[n]2

E
�
= lim

N!1
N�1

NX
n=1

x[n]2

Let X(t) be a CT or DT WSS process and suppose you have a large number of realizations
(36.3). Then, �X ; PX ; RX(�) can be approximated as

�X � N�1
NX
i=1

hxi(t)i

PX � N�1
NX
i=1

D
xi(t)

2
E

RX(�) � N�1
NX
i=1

hxi(t)xi(t+ �)i

This type of averaging is called TIME AVERAGING. Here is what the preceding three relations
say: given a large number of realizations, (1) you can compute the DC value for each realization as a
time average, and then average these �gures over the di�erent realizations to get an approximation
to �X ; (2) you can compute power for each realization as a time average, and then average these
power �gures over the di�erent realizations to get an approximation to PX ; and (3), to estimate
RX(�) for a �xed � , you can do a time average

hx(t)x(t+ �)i = lim
T!1

1

T

Z T

0
x(t)x(t+ �)dt (36.4)

for each realization x(t) and then average the �gures (36.4) over the realizations. (In the case of
an ergodic process, just one of these realizations is needed, as discussed previously.)

36.3 Why Formula PX = RX(0) Makes Sense

In this section, we will attempt to explain better why the formula

PX = RX(0)

for computing the power generated by a WSS process X(t) makes sense. In terms of the physical
nature of what power means, this is the reasonable way to de�ne the power �gure PX :

PX
�
= E[< X(t)2 >]: (36.5)
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Here is how we interpret the equation (32.11): In the right side of (32.11), let X(t) represent a
randomly selected realization signal of the process. We �rst perform a time average along this signal,
obtaining the time average denoted by < X(t)2 >. The quantity < X(t)2 > physically denotes
the power generated by the randomly selected power signal X(t). In general (in case we have a
nonergodic process), the expression < X(t)2 > will be random, i.e., it will vary from realization
to realization. Thus, we may think of < X(t)2 > as de�ning a random variable. When we have a
random variable, we can talk about its expected value. The expected value E[< X(t)2 >] of the RV
< X(t)2 > is then taken as the power PX generated by the random process X(t). E[< X(t)2 >]
represents the average of the powers generated by di�erent realizations, as we consider more and
more realizations. If we select the di�erent realizations in independent trials of our experiment, the
average power across these realizations will converge (by the law of large numbers) to the number
E[< X(t)2 >] as the number of realizations that we select goes to in�nity. We hope this discussion
has convinced the reader that the de�nition (36.5) is the proper and sensible way to de�ne the
power �grue PX .

Modulo our discussion just given, why then is it reasonable to say that PX should turn out
to be the same thing as RX(0)? Notice that in equation (36.5) there are two di�erent averaging
operations: the time average coming �rst, denoted by the bracket symbols < >, and then the
averaging operation across realizations denoted by the expectation operator E. Let us suppose
that we can interchange these two averaging operations; that is, let us declare that

E[< X(t)2 >] =< E[X(t)2] > : (36.6)

In the right side of (36.6), the quantity E[X(t)2], measured at each time t, is easy to compute: by
the fact that the process is WSS, E[X(t)2] does not depend on time t and takes the value RX(0)
for all t. Therefore, the right side of (36.6) may be re-expressed as the time-average

< RX(0) > : (36.7)

We may interpret the quantity in (36.7) as the time average of a DC signal which takes the value
RX(0) for all time t. Obviously, the time average of a DC signal is the DC value of the signal (the
constant value that the signal takes on). Therefore,

< RX(0) >= RX(0)

and we are led to the conclusion that PX must be the same thing as RX(0).
One can re-do the general argument just given, valid for any WSS process X(t), in the case of

any particular random process, in order to see that the argument makes sense for that particular
process. This we do in the following example.

Example 36.10. Consider again the random sinusoid

X(t) = A cos(!0t+�):
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Let us see what power �gure PX is given to us by the formula (36.5). We have

PX = E[< X(t) >2] = E[A2=2] = E[A2]=2:

Earlier, we derived the autocorrelation function to be

RX(�) = (E[A2]=2) cos(!0�):

Plugging in � = 0, we see that
RX(0) = E[A2]=2:

We see that PX and RX(0) do indeed coincide in this case.

36.4 Gaussian Processes

Gaussian processes are possibly the most useful class of random processes. A continuous or discrete
time process (X(t)) is said to be a Gaussian process if for each �nite set of sampling times

t1 < t2 < : : : < : : : < tn;

the vector of process samples (X(t1);X(t2); � � � ;X(tn)) has an n-dimensional joint Gaussian distri-
bution. This means that the joint density of (X(t1);X(t2); � � � ;X(tn)) takes the form

f(x1; x2; : : : ; xn) = C exp

2
4�(1=2) nX

i;j=1

Ai;j(xi � �i)(xj � �j)

3
5 (36.8)

where C is a constant, �i is the mean of X(ti) (i = 1; 2; � � � ; n) and [Ai;j ] is a symmetric n � n
matrix whose inverse is the covariance matrix [Cov(X(ti);X(tj)]. In particular, every component
RV X(t) of a Gaussian process (X(t)) is Gaussian, and for any two times t1 < t2, (X(t1);X(t2))
has the bivariate Gaussian distribution described in Chapter 4 of your textbook.

The following are two important properties of Gaussian processes:

Property 1: Suppose that the mean function �X(t) of a Gaussian process (X(t)) has been speci�ed
and that every correlation E[X(t1)X(t2)] has been speci�ed. Then, all of the joint densities
(36.8) are uniquely determined from these. In particular, for a WSS Gaussian process, the
densities (36.8) are all uniquely derivable from the process mean �X and the autocorrelation
function RX(�).

Property 2: If a Gaussian process is passed through a linear �lter, then the output process is also
a Gaussian process.
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Example 36.11. Let X(t) be a WSS Gaussian process for which

�X = �1
RX(�) = 1 + 2�j� j

(a) Find the density f(x) of X(1).

(b) Find the joint density f(x1; x2) of (X(1);X(2))

(c) Find the covariance matrix of (X(1);X(2);X(3)) that one inverts to compute the exponent of
the multivariate density of (X(1);X(2);X(3)) as indicated in (36.8).

Solution to (a). The density of X(1), being a Gaussian density, must take the form

f(x) =
1p
2��

exp

"
�(1=2)

�
x� �

�

�2#

where

� = �X = �1
�2 = �2X = RX(0)� �2X = 1

Solution to (b). The covariance between X(1) and X(2) is given by

Cov(X(1);X(2)) = RX(2� 1)� �2X = 1:5� 1 = 0:5

The covariance matrix of (X(1);X(2)) is therefore

"
Var(X(1)) Cov(X(1);X(2))

Cov(X(1);X(2)) Var(X(2))

#
=

"
1 0:5
0:5 1

#

Inverting this matrix using Matlab, one obtains the matrix"
4=3 �2=3

�2=3 4=3

#

This inverse matrix determines the quadratic form

Q(x1; x2) = (4=3)(x1 + 1)2 � (4=3)(x1 + 1)(x2 + 1) + (4=3)(x2 + 1)2

(the variables are centered at the means and the two means are �1;�1). The joint density f(x1; x2)
takes the form

f(x1; x2) = C exp(�0:5Q(x1; x2))
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Solution to (c). We have

Cov(X(i);X(j)) = E[X(i)X(j)] � �2X = RX(ji� jj)� 1 = 2�ji�jj:

The desired covariance matrix is therefore2
64 1 1=2 1=4
1=2 1 1=2
1=4 1=2 1

3
75 :

Example 36.12. Let (Zn : n = 1; 2; 3; � � �) be the discrete-time process consisting of independent
Gaussian(0,1) RV's (this process is called discrete-time Gaussian white noise). Let (Xn : n =
1; 2; 3; � � �) be the process obtained by recursive �ltering of the (Zn) process as follows:

X1 = Z1

Xn = Zn + aXn�1; n = 2; 3; 4; � � �

where a is a parameter. By Property 2, the process (Xn) is Gaussian. Let us �nd the joint density
of (X1;X2; � � � ;Xn). The joint density of (Z1; Z2; � � � ; Zn) is the product of the marginal densities
of the Zi's (by independence of the Zi's), and is therefore given by

(1=
p
2�)n exp[�0:5fz21 + z22 + � � �+ z2ng]

Making the substitutions

z1 = x1

z2 = x2 � ax1

z3 = x3 � ax2

� � �
zn = xn � axn�1

the following joint density for (X1;X2; � � � ;Xn) is obtained:

f(x1; x2; � � � ; xn) = (1=
p
2�)n exp[�0:5fx21 + (x2 � ax1)

2 + (x3 � ax2)
2 + � � � + (xn � axn�1)

2g]

The process (Xn) is called a Gauss-Markov process. Gauss-Markov processes have many applica-
tions.
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36.5 Power Spectral Density De�nition (Cont Time)

Let SX(f) denote the power spectral density (PSD) of a continuous time WSS process X(t). The
PSD is the CT Fourier transform of the autocorrelation function, which gives us the de�nition

SX(f)
�
=

Z 1

�1
RX(�)e

�j(2�f)�d�

Taking the inverse Fourier transform, we have

RX(�) =

Z 1

�1
SX(f)e

j(2�f)�df:

Plugging � = 0 into the preceding equation, we reach the conclusion that

PX = RX(0) =

Z 1

�1
SX(f)df: (36.9)

So, if we integrate the PSD over all frequencies, we can obtain the total power generated by the
process. Later, we shall see that if we integrate the PSD in a narrow frequency band about some
�xed frequency, we will obtain the approximate contribution to the total power due to sinusoidal
components of the realizations with frequencies near the �xed frequency. Therefore, looking at the
values of SX(!) for di�erent frequencies ! tells us which sinusoidal components contribute most to
the power (just see for what frequencies f the function SX(f) takes its biggest values).

We will give properties of PSD's and numerous examples of PSD's during Lecture 37. We
conclude the present lecture with this �rst example on PSD's.

Example 36.13. For CT white noise X(t), we have

RX(�) = AÆ(�);

for some positive constant A. Taking the Fourier transform, we see that

SX(f) = A; �1 < f <1:

In other words, white noise is characterized by a at power spectrum. All sinusoidal components of
white noise have an equal inuence on the overall power. Doing the integral (36.9), we see that CT
white noise has in�nite power, and therefore cannot be a physically realizable process. However,
one can easily obtain a process that is physically realizable and behaves approximately like white
noise: just take a process X(t) whose power spectrum is of the form

SX(f) =

(
A; �B � f � B
0; elsewhere

where B is very large. The white noise model is very useful in practice. Two such uses are: (1) white
noise is typically used to model the ambient noise in electronic devices (the backgound noise); and
(2) Gaussian white noise is typically used to model the additive noise occuring in the transmission
of a signal through a communication system.
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Random Processes Part 7

37.1 Processes Through Systems

When we send a WSS random signal through a system, what can we say about the autocorrelation
structure of the output signal? In this section, we consider three di�erent types of systems for
which we can answer this question.

37.1.1 Additive System

We are given two WSS processes X(t) and Y (t) which are independent, which means that any RV
U computed from the X process realization is independent of any RV computed from the Y process
realization. In particular, independence implies that for all times s; t:

E[X(s)Y (t)] = E[X(s)]E[Y (t)]:

We consider the additive system whose output is

Z(t) = X(t) + Y (t):

The output process Z(t) will be WSS and its process mean �Z and autocorrelation function RZ(�)
are computable via the formulas:

�Z = �X + �Y (37.1)

RZ(�) = RX(�) +RY (�) + 2�X�Y (37.2)

The proof of formula (37.1) is left to the reader. We give the proof of (37.2) below.

Proof of (37.2). We have

RZ(�) = E[Z(t)Z(t+ �)]

51
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= E[(X(t) + Y (t))(X(t + �) + Y (t+ �))]

= E[X(t)X(t + �)] +E[Y (t)Y (t+ �)] +E[Y (t)X(t+ �)] +E[X(t)Y (t+ �)]

= RX(�) +RY (�) +E[Y (t)]E[X(t + �)] +E[X(t)]E[Y (t+ �)]

= RX(�) +RY (�) + 2�X�Y

Remark. The Gaussian additive noise channel, one of the most common communication system
models, can be viewed as an additive system. The input X(t) to this channel is the information-
bearing signal you are trying to communicate, and the process Y (t) is the channel noise which
is modeled as a Gaussian process (usually a GWN process, but it may be correlated noise). The
channel output is Z(t) = X(t) + Y (t), the information-bearing signal corrupted by additive noise.

37.1.2 Multiplicative System

As in Section 37.1.1, we start with two independent WSS processes X(t) and Y (t). We now consider
the multiplicative system whose output is

Z(t) = X(t)Y (t):

The output process Z(t) will be WSS and its process mean �Z and autocorrelation function RZ(�)
are computable via the formulas:

�Z = �X�Y (37.3)

RZ(�) = RX(�)RY (�) (37.4)

The proof of formula (37.3) is left to the reader. We give the proof of (37.4) below.

Proof of (37.4). We have

RZ(�) = E[Z(t)Z(t+ �)]

= E[X(t)X(t + �)Y (t)Y (t+ �)]

= E[X(t)X(t + �)]E[Y (t)Y (t+ �)]

= RX(�)RY (�)

Remark. One common instance in which a multiplicative system is used is amplitude mod-

ulation. In this case, X(t) is the information-bearing signal you are trying to communicate, and
Y (t) is a random sinusoid (the \carrier wave"). The output of the amplitude modulator is then
X(t)Y (t).
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37.1.3 Linear Filtering

Suppose we have a stable linear time-variant �lter with impulse response function h(t). We apply
as input to the �lter a WSS random signal X(t):

X(t)! h(t) ! Y (t)

As indicated in the block diagram, the �lter output is random signal Y (t). The process Y (t) will
be WSS (to ensure this, run the �lter for all time �1 < t < 1 to make sure that no transient
component is present in Y (t)). We need to know how to compute �Y , RY (�), and SY (f) from �X ,
RX(�), and SX(f). Here are the formulas for doing this:

�Y = �X

�Z 1

�1
h(t)dt

�
(37.5)

RY (�) = RX(�) � h(�) � h(��) (37.6)

SY (f) = SX(f)jH(f)j2 (37.7)

Equation (37.5) tells you how to compute the output mean from the input mean. Equation (37.6)
tells you how to compute the output autocorrelation function from the input autocorrelation func-
tion. (Unfortunately, this is a triple convolution.) Equation (37.7) tells you how to compute the
output power spectral density from the input power spectral density; in (37.7), H(f) represents
the frequency response function of the �lter, which is the Fourier transform of h(t):

H(f) =

Z 1

�1
h(t) exp(�jt2�f)dt:

We point out that you can obtain (37.7) by taking the Fourier transform of both sides of (37.6).
To see this, let F denote the Fourier transform operator and perform the following steps:

SY (f) = F [RY (�)]

= F [RX(�) � h(�) � h(��)]
= F [RX(�)]F [h(�)]F [h(��)]
= SX(f)H(f)H(�f)
= SX(f)H(f)H(f)�

= SX(f)jH(f)j2

(In the preceding H(f)� denotes the complex conjugate of H(f).)
You can �nd formulas (37.5)-(37.7) in Chapter 11 of your textbook. They also hold for discrete-

time �ltering of discrete-time random signals, with the obvious modi�cations. (For example, in
formula (37.5), you'd do a summation instead of an integral. In formula (37.6), you'd be doing
discrete-time convolution.) In future lectures, I will attempt to give some reasoning behind why
these formulas are true. Until that time, however, we can still feel free to use these formulas in our
work.
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37.2 Higher Moments of Gaussian RV's

Let X be any RV. Recall that its moment generating function MX(s) is de�ned by:

MX(s)
�
= E[esX ]:

I want to extend what we know about MX(s) a little further. The McClaurin Series expansion of
et is:

et = 1 + t+ (t2=2) + (t3=3!) + (t4=4!) + (t5=5!) + (t6=6!) + � � � : (37.8)

Substituting t = sX, this becomes

esX = 1 +Xs+X2(s2=2) +X3(s3=3!) +X4(s4=4!) +X5(s5=5!) +X6(s6=6!) + � � � :
Now take the expected value of both sides, doing the expected value of the right side term by term:

MX(s) = 1+E[X]s+E[X2 ](s2=2)+E[X3](s3=3!)+E[X4](s4=4!)+E[X5](s5=5!)+E[X6](s6=6!)+� � � :
(37.9)

Now let X be a Gaussian(0,1) RV. We know that the �rst two moments of X are:

E[X] = 0; E[X2] = 1:

We can use the expansion (37.9) to learn about the higher moments of X, that is, the moments
of the form E[Xk], for k an integer power bigger than two. Let's use the following formula from
Chapter 6 of your textbook for the MGF of the standard Gaussian RV X:

MX(s) = es
2=2:

Go to equation (37.8) and substitute in t = s2=2. You get the expansion:

es
2=2 = 1 + (s2=2) + (s4=8) + (s6=48) + � � � : (37.10)

If we compare each power on the right side of (37.10) with the corresponding power on the right
side of (37.9), we can easily obtain any moment of X that we wish.

Example 37.1. Let's compute E[X4] and E[X6] for a Gaussian(0,1) RV X. Picking o� the
coeÆcient of s4 in (37.9) and then in (37.10), we obtain the equation

E[X4]=4! = 1=8:

Solving for E[X4], we obtain
E[X4] = 3:

Picking o� the coeÆcient of s6 in (37.9) and then in (37.10), we obtain the equation

E[x6]=6! = 1=48;
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from which one sees that
E[X6] = 15:

The long way of doing this computation would be

E[X6] =

Z 1

�1
x6fX(x)dx =

Z 1

�1
x6
�

1p
2�

�
exp(�x2=2)dx;

an integral which some people might attempt to evaluate via repeated integration by parts. Impress
your friends outside of EE 3025 by showing them how fast you can do the integralZ 1

�1
x8 exp(�x2=2)dx:

37.3 Brownian Motion Process (Wiener Process)

The Brownian motion process (W (t); t � 0) is a special type of Gaussian process that is important
in many science and engineering contexts. It was discovered by Louis Bachelier in his 1900 thesis
on �nancial theory. It was exploited by Norbert Wiener in his work on Brownian motion and other
topics. (The Brownian motion process W (t) is also called the Wiener process or the Bachelier-
Wiener process. The W in W (t) stands for Wiener.)

We describe a simple way of obtaining the Brownian motion process W (t). Let X(t) be a
Gaussian white noise process with autocorrelation function

RX(�) = AÆ(�):

We pass the process X(t) through an integrator, as illustrated in the following block diagram:

X(t)!
Z t

0
!W (t)

The integrator output process W (t), de�ned for t � 0, is the Brownian motion process. Thus, we
may take the following equation as the de�nition of the Brownian motion process:

W (t)
�
=

Z t

0
X(�)d�; t � 0:

In our earlier section on Gaussian processes, we learned that if we linearly �lter a Gaussian process,
then we obtain another Gaussian process. This is why the Brownian motion process W (t) is a
Gaussian process.

Component RV's of Brownian Motion Process. Fix a time T > 0. We �nd the probability
density of the random variable W (T ). The component RV's of a Gaussian process are Gaussian
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RV's. Therefore, the density of W (T ) is of Gaussian form, completely determined by the mean �
of W (T ) and the variance �2 of W (T ). Computation of � is easy:

� = E

"Z T

0
X(�)d�

#

=

Z T

0
E[X(�)]d� =

Z T

0
0 d� = 0:

Since the mean of W (T ) is zero, the variance �2 coincides with the second moment E[W (T )2].
Now W (T ) is an integral. We express W (T )2, an integral times itself, as a double integral (this is
a standard trick):

W (T )2 =

"Z T

0
X(t)dt

# "Z T

0
X(s)ds

#

=

Z T

0

Z T

0
X(s)X(t)dsdt:

Next, we take the expected value of both sides, at the same time moving the expected value inside
the double integral (another standard trick):

�2 =

Z T

0

Z T

0
E[X(s)X(t)]dsdt

=

Z T

0

Z T

0
RX(s� t)dsdt

=

Z T

0

"Z T

0
AÆ(s� t)ds

#
dt

=

Z T

0
A[u(T � t)� u(�t)]dt

= AT:

The last step followed from the fact that u(T � t)� u(�t) is a rectangular pulse of amplitude one
over the time interval [0; T ], the area under which is T . We can now express the PDF of W (T ) as
follows:

fW (T )(w) =
1p

2�AT
exp

"
� w2

2AT

#
; �1 < w <1:

One can now compute any probability of the form P [a �W (T ) � b].

Facts About Brownian Motion Process

� Every Brownian motion realization starts at the origin (i.e., W (0) = 0) and is a continuous
nowhere-di�erentiable function of time.1

1This is a deep result which is not easy to prove.
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� If t1 < t2 are any two times, then the \increment random variable"W (t2)�W (t1) is Gaussian
with mean 0 and variance A(t2� t1). (As a special case, taking t1 = 0 and t2 = t, we see that
W (t) is Gaussian with mean 0 and variance At, as proved previously.)

� The Brownian motion process obeys the \independent increments property": If t1 < t2 �
t3 < t4 are four times, then the incrementsW (t2)�W (t1) andW (t4)�W (t3) are independent
RV's. (Recall that the Poisson process also satis�es the independent increments property.)

� The autocorrelation and autocovariance structure of the Brownian motion process is as fol-
lows:

RW (t1; t2) = Amin(t1; t2): (37.11)

Cov[W (t1);W (t2)] = Amin(t1; t2): (37.12)

Exercise. Prove (37.11) using the \double integral trick" in similar fashion to our earlier deriva-
tion of V ar(W (T )).

Example 37.2. For the Brownian motion process W (t), let us compute

(a) E[W (5)jW (3) = 2]

(b) E[W (6)W (9)]

Computation (a).

E[W (5)jW (3) = 2] = E[W (5)�W (3)jW (3) = 2] +E[W (3)jW (3) = 2]

= E[W (5)�W (3)] + 2

= 0 + 2 = 2

We used the fact that W (5)�W (3) and W (3) =W (3)�W (0) are independent increments.
Computation (b).

E[W (6)W (9)] = E[W (6)(W (9) �W (6))] +E[W (6)W (6)]

= E[W (6)]E[W (9) �W (6)] + Var[W (6)]

= 0 � 0 + 6A = 6A

Remarks:

� The DT random walk process (Xn) has autocorrelation structure

RX(n1; n2) = min(n1; n2):

Comparing this to (37.11), we see that the Brownian motion process and random walk have
similar autocorrelation structure. Brownian motion is often thought of as a continuous-time
analogue of random walk.
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� A Poisson process X(t) with arrival rate � satis�es

Cov(X(t1);X(t2)) = �min(t1; t2):

(Show this.) The Brownian motion process W (t) has the similar autocovariance structure
(37.12). But the realizations of the Poisson process are quite di�erent from the realizations
of the Brownian motion process (step functions versus continuous functions). Thus, the
autocovariance structure of a random process does not determine the shape of its realizations.

� The 1-D Brownian motion process (the one we described here) can be used as a tool in
expressing the solution to certain stochastic di�erential equations.

� Sometimes, people design a continuous-time �lter to convert Gaussian white noise into a
process with a desired autocorrelation structure. Unfortunately, Gaussian white noise is not
physically realizable. However, the Brownian motion process is physically realizable. One
could instead apply the designed �lter to Brownian motion and then di�erentiate the output
signal to arrive at the same result.

� The 2-D Brownian motion process (not covered here) is useful in EE because there is a method
based on it for solving Laplace's partial di�erential equation

@2u=@2x+ @2u=@2y = 0:

� The bouncing around of a pollen particle in a uid, �rst observed by botanist Robert Brown
in 1827 and later explained by Einstein in the early 1900's, is called Brownian motion, and
can be thought of as a realization of a 3-D Brownian motion process.

Exercise. Fix any two times t1; t2 for which 0 < t1 < t2. The 2-D cross section (W (t1);W (t2))
has a bivariate Gaussian density f(w1; w2). Determine f(w1; w2).

37.4 Properties of CT Power Spectral Density

Property 1: SX(f) � 0 for all frequencies f .

Property 2: SX(�f) = SX(f) (i.e., SX(f) is an even function).

Property 3: PX is the area under the SX(f) curve.

Remarks. Property 3 has been remarked upon previously. (See equation (36.9).) Property
2 follows immediately from the EE 3015 fact that the Fourier transform of an even function is an
even function. Property 1 is a nontrivial fact that I will attempt to prove later on.
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Example 37.3. Let X(t) be WSS with

RX(�) = C exp(�aj� j):

We shall see later that such a process arises from passing white noise through an RC �lter. In a
good Fourier transform table, one will �nd the Fourier transform pair

exp(�aj� j)$ 2a

a2 + (2�f)2
:

Therefore

SX(f) =
2aC

a2 + (2�f)2
: (37.13)

As a test of our EE 3015 skills, let us see if we can derive this another way. (You are recommended
to go through this discussion if your EE 3015 skills are rather abysmal.) Let �(�) be the one-sided
decaying exponential function

�(�) = exp(�a�)u(�):
Then we have

RX(�) = C[�(�) + �(��)]:
The Laplace transform of �(�) is well known to be

�(s) =
1

s+ a
:

Applying the reection property of Laplace transforms, we can say that the Laplace transform of
RX(�) is

C[�(s) + �(�s)];
which we can simplify as

C

s+ a
+

C

�s+ a
=

2aC

a2 � s2
:

We can go from this expression to the Fourier transform by substituting s = j(2�f):

�
2aC

a2 � s2

�
s=j(2�f)

=
2aC

a2 + (2�f)2
:

The formula (37.13) has therefore been established. Here is the plot of a typical SX(f) of this type:
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Note the nonegativity (Property 1) and the evenness (Property 2). Also, note that SX(f) is most
dominant at low frequencies f . Such a random signal is called a \lowpass random signal". Finally,
let us verify that the power PX generated by our random signal can be computed as

PX =

Z 1

�1
SX(f)df:

We make use of the calculus formulaZ
a

a2 + u2
du = Tan�1

�
u

a

�
:

We obtain, making the change of variable ! = 2�f ,

Z 1

�1
SX(f)df =

Z 1

�1

2aC

a2 + (2�f)2
df

=
C

�

Z 1

�1

a

a2 + !2
d!

=
C

�

h
Tan�1(!=a)

i!!1

!!�1

=
C

�
[(�=2) � (��=2)] = C:
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We conclude that the power generated by this random signal must be

PX = C:

This coincides with the result we get doing the power computation via the autocorrelation function:

PX = RX(0) = C exp(�a � 0) = C:

37.5 Disc Time Power Spectral Density De�nition/Properties

Let Xn be a discrete-time WSS random process. Then, the power spectral density is the discrete-
time Fourier transform of RX(�):

SX(f) =
1X

�=�1

RX(�)e
�j(2�f)� :

By taking the inverse discrete-time Fourier transform of the power spectral density, you get back
to RX(�):

RX(�) =

Z 1

0
SX(f)e

j(2�f)�df:

In particular, plugging in � = 0, we see that power is computed by

PX =

Z 1

0
SX(f)df: (37.14)

Here are some properties of the discrete-time power spectral density:

Property 1: SX(f) � 0 for all frequencies f .

Property 2: SX(�f) = SX(f) (i.e., SX(f) is an even function).

Property 3: SX(f) is periodic with period 1.

Property 4: PX can be computed by integrating SX(f) over any one period. (In (37.14), we
integrated from f = 0 to f = 1. We can equally well integrate from f = �1=2 to f = 1=2.)

Remarks. Properties 1 and 2 above should not be surprising, because they coincide with
Properties 1 and 2 of the CT power spectrum. Property 3 is an additional property that the CT
power spectrum did not have; Property 3 must be true because any discrete-time Fourier transform
is periodic with period 1.

Example 37.4. Let Xn be discrete-time white noise. This means the autocorrelation function is
of the form

RX(�) = AÆ[� ];
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where A is the process variance (which coincides with PX , since the process mean �X is zero for
white noise). The DT Fourier transform of Æ[� ] is 1. Therefore,

SX(f) = A; �1 < f <1:

Amusingly, this is the same expression for the power spectral density of continuous time white
noise that we obtained in Example 36.13. However, keep in mind that the power characteristics of
CT white noise and DT white noise are completely di�erent. Our DT white noise process in this
example has �nite power, according to the calculation

PX =

Z 1

0
SX(f)df =

Z 1

0
Adf = A; (37.15)

because we are integrating the constant power spectrumA over just a �nite range of frequencies. For
CT white noise, we'd be integrating this same power spectrum A over all frequencies �1 < f <1,
thereby giving us an in�nite power calculation for CT white noise. Finally, note that the power
�gure A we got for our DT white noise process Xn via the \frequency domain" calculation (37.15)
coincides with what we get by doing the power calculation in \time domain":

PX = RX(0) = AÆ[0] = A � 1 = A:



Lecture 38

Random Processes Part 8

38.1 Power Spectra of Periodic Processes

The random sinusoid is one example of a type of process called periodic process; periodic processes
are common in many communication systems applications. For our purposes here, we will de�ne a
process to be a periodic process if all of its realizations are periodic signals with the same period. In
this section, we want to examine the form of the power spectral densities of WSS periodic processes.
First, some examples.

Example 38.1. Suppose
X(t) = A cos(2�f0t+�)

is the random sinusoid with A and � independent RV's and � uniformly distributed between 0
and 2�. All of the realizations are periodic with period 1=f0. Therefore, the random sinusoid is a
periodic process. In addition, we already know that this process is WSS and that its autocorrelation
function is

RX(�) = (E[A2]=2) cos(2�f0�):

Taking the Fourier transform, we see that the power spectral density is

SX(f) = (E[A2]=4)Æ(f + f0) + (E[A2]=4)Æ(f � f0):

This is a discrete spectrum. We shall ultimately see that every WSS periodic process has discrete
spectrum.

Example 38.2. Let �(t) be a deterministic periodic signal with period T0. Let U be a random
variable uniformly disributed in the interval [0; T0]. De�ne the process

X(t)
�
= �(t+ U); �1 < t <1:

63
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Notice that every realization of this process is period with period T0. Therefore, X(t) is a periodic
process. We now show that this process is WSS. First, we compute the mean function:

E[X(t)] = E[�(t+ U)] =
1

T0

Z T0

0
�(t+ u)du:

Making the change of variable v = t+ u, this becomes

E[X(t)] =
1

T0

Z t+T0

t
�(v)dv:

Since � is periodic, its integral will be the same no matter what interval we integrate over that is
of length equal to one period. In other words, integrating � over the interval [t; t + T0] will yield
the same result as integrating over the interval [0; T0]. We conclude that

E[X(t)] =
1

T0

Z T0

0
�(u)du; �1 < t <1:

We have shown that the mean function is constant. Now let us compute autocorrelations. We have

E[X(t1)X(t2)] = E[�(t1 + U)�(t2 + U)] =
1

T0

Z T0

0
�(t1 + u)�(t2 + u)du:

Making the change of variable v = t1 + u, this becomes

E[X(t1)X(t2)] =
1

T0

Z t1+T0

t1
�(v)�(v + t2 � t1)dv:

For �xed t1; t2, the function �(v)�(v+ t2� t1), considered as a function of v, is periodic with period
T0, so we will obtain the same integral for this function whether we integrate over the interval
[t1; t1 + T0] of length one period, or whether we integrate over the interval [0; T0] of length one
period. We conclude that

E[X(t1)X(t2)] =
1

T0

Z T0

0
�(u)�(u+ t2 � t1)du;

which depends only on the time di�erence t2 � t1. This completes the proof that the periodic
process X(t) is WSS. For future reference, the process mean �X and the autocorrelation function
RX(�) of this process are given by

�X =
1

T0

Z T0

0
�(u)du

RX(�) =
1

T0

Z T0

0
�(u)�(u+ �)du (38.1)
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From equation (38.1), it follows that RX(�) is periodic with period T0. The reader can easily prove
this by showing that

Z T0

0
�(u)�(u + �)du =

Z T0

0
�(u)�(u+ � + T0)du

is true as a consequence of the fact that � is periodic with period T0.

Remark. It is a useful fact that RX(�) is periodic if X(t) is a WSS periodic process, and that
the period of RX(�) is the common period possessed by all of the realizations of X(t). We have so
far already seen two special cases of this useful result to be true: (1) the random sinusoid, and (2)
the class of WSS peridic processes discussed in Example 38.2.

We are now in a position to discuss the power spectrum of a WSS periodic process. Accordingly,
let X(t) be a WSS periodic process. Let T0 be the common period of all the realizations of X(t). As
we have pointed out in the preceding remark, the autocorrelation function RX(�) is also periodic
with period T0. It has the following Fourier series expansion:

RX(�) =
1X

k=�1

ake
jk2�f0� (38.2)

where f0 is the fundamental frequency in cycles/second given by

f0 =
1

T0

and each ak is a Fourier coeÆcient given by

ak =
1

T0

Z T0

0
RX(�)e

�jk2�f0�d�:

Taking the Fourier transform of both sides of (38.2), we obtain the following formula for the power
spectrum of our WSS periodic random signal X(t):

SX(f) =
1X

k=�1

akÆ(f � kf0); �1 < f <1

Conclusion. The fundamental conclusion of this section is that every WSS periodic process

has discrete power spectrum.

Example 38.3. Let X(t) be a WSS periodic process with

RX(�) = 3 cos(2�f0�) + 5 cos(4�f0�): (38.3)
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The right side of (38.3) is already a linear combination of sinusoidal terms, so we do not need to
�nd the Fourier series expansion of RX(�). (In fact, the right side of (38.3) is already the Fourier
series expansion of RX(�).) Taking the Fourier transform of the right side of (38.3), we obtain the
following power spectral density:

SX(f) = (1:5)Æ(f � f0) + (1:5)Æ(f + f0) + (2:5)Æ(f � 2f0) + (2:5)Æ(f + 2f0):

Exercise. Let X(t) be a WSS periodic process with

RX(�) = 2 cos(2�f0�) + cos(2�f0(� � 1)) + cos(2�f0(� + 1)):

Show that
SX(f) = [1 + cos(2�f0)][Æ(f + f0) + Æ(f � f0)]:

38.2 Some Random Signal Filtering Scenarios

In �ltering a WSS random signal X(t) via a LTI stable �lter, we obtain a WSS random signal
Y (t) at the �lter output. To �nish the present lecture, we illustrate a couple of common �ltering
scenarios of this type, concentrating on continuous-time scenarios. In our next lecture, we will
continue with further scenarios, both in continuous-time and discrete-time.

38.2.1 Ideal Low Pass Filtering

The �lter input signal X(t) and �lter output signal Y (t) are here taken to be CT WSS random
signals. Suppose we take our �lter to be an ideal low pass �lter. We assume the �lter frequency
response function H(f) takes the form:

H(f) =

(
1; �B � f � B
0; elsewhere

(38.4)

Using the formula
SY (f) = jH(f)j2SX(f);

we obtain

SY (f) =

(
SX(f); �B � f � B

0; elsewhere

Therefore, we may express the output power as

PY =

Z 1

�1
SY (f)df =

Z B

�B
SX(f)df: (38.5)
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Example 38.4. WSS random signal X(t) with RX(�) = C exp(��j� j) is passed through an ideal
low pass �lter with frequency response (38.4). Let us �nd the �lter bandwidth B so that the �lter
output signal Y (t) will have 90% of the signal input power. The signal input power is RX(0) = C.
By formula (38.5), the signal output power is

PY =

Z B

�B
SX(f)df

=

Z B

�B

2�C

(2�f)2 + �2
df =

2C

�
Tan�1

�
2�B

�

�
:

Setting PY = (0:9)PX , we must solve

2C

�
Tan�1(B=�) = 0:9C

for B. We obtain
B = �[tan(0:45�)]:

38.2.2 Delay Line Filtering

Again, the �lter input signal X(t) and �lter output signal Y (t) are here taken to be CT WSS
random signals. \Delay line �ltering" describes the scenario in which the �lter impulse response
function takes the form

h(t) =
X
i

ciÆ(t � ti);

for constants ci and times ti. The frequency response would be

H(f) =
X
i

ci exp(�jti2�f):

The computation of the �lter output power spectrum SY (f) requires us to compute jH(f)j2. Here
is how we can do this:

jH(f)j2 = H(f)H(�f)
=

X
i

ci exp(�jti2�f)
X
k

ck exp(jtk2�f)

=
X
i;k

cick exp(�j[ti � tk]2�f)

In the preceding double sum over i and k, you can sum over the pairs (i; k) for which i = k �rst.
This part yields X

i

c2i :
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In the remaining part of the double sum, the best thing to do is to group the terms as follows:X
i<k

cickfexp(�j[ti � tk]2�f) + exp(j[ti � tk]2�f)g = 2
X
i<j

cick cos([ti � tj]2�f):

This gives us output power spectrum expressible as

SY (f) = jH(f)j2SX(f) =
8<
:
X
i

c2i + 2
X
i<j

cick cos([ti � tk]2�f)

9=
;SX(f): (38.6)

Example 38.5. Let's take our delay line �lter impulse response as

h(t) = Æ(t)� Æ(t� 1):

There are two ti's, namely, t1 = 0 and t2 = 1. The corresponding ci's are c1 = 1 and c2 = �1.
Plugging into (38.6), we see that

SY (f) = [2� 2 cos(2�f)]SX(f):

This gives us one way to compute the output power:

PY =

Z 1

�1
[2� 2 cos(2�f)]SX(f)df:

Another way to compute PY would be to use the time domain technique via which you compute
PY as RY (0). We have

RY (�) = RX(�) � h(�) � h(��):
Observe that

h(�) � h(��) = [Æ(�) � Æ(� � 1)] � [Æ(�) � Æ(� + 1)]

= 2Æ(�) � Æ(� + 1)� Æ(� + 1):

Convoluting this with RX(�), we obtain

RY (�) = 2RX(�)�RX(� + 1)�RX(� � 1):

Finally,
PY = RY (0) = 2RX(0) � 2RX(1):
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39.1 Another Periodic Process Example

Let X(t) be the periodic random signal

X(t) = A0 +A1 cos(2�f0t+�1) +A2 cos(4�f0t+�2);

where A0, A1, �1, A2, �2 are independent RV's. We assume further that

E[A2
0] = 4; E[A2

1=2] = 1; E[A2
2=2] = 2;

and that �1 and �2 are each uniformly distributed in the interval [0; 2�]. Under the given assump-
tions, X(t) is a WSS process. Let us compute RX(�) and SX(f). We can write

X(t) = X0(t) +X1(t) +X2(t);

where X0(t) is the \random DC signal"

X0(t) = A0;

and X1(t) and X2(t) are the random sinusoids

X1(t) = A1 cos((2�f0t+�1)

X2(t) = A2 cos(4�f0t+�2)

It is easy to show that

�X0
= E[A0]

RX0
(�) = E[A2

0] = 4:

69
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From our earlier work, we know that

�X1
(�) = 0

RX1
(�) = (E[A2

1=2]) cos(2�f0�) = cos(2�f0�)

�X2
= 0

RX2
(�) = (E[A2

2=2]) cos(4�f0�) = 2 cos(4�f0�)

It is easy to generalize the result of Section 37.1.1 to obtain

RX(�) = RX0
(�) +RX1

(�) +RX2
(�) + 2�X0

�X1
+ 2�X0

�X2
+ 2�X1

�X2
:

The last three terms drop out, and we obtain the following expression for RX(�) in simplest form:

RX(�) = 4 + cos(2�f0�) + 2 cos(4�f0�):

Fourier transforming, we see that

SX(f) = 4 + 0:5Æ(f + f0) + 0:5Æ(f � f0) + Æ(f + 2f0) + Æ(f � 2f0):

Let us check whether we get the same value for PX using both RX(�) and SX(f) to compute the
power. The integral of a delta function is 1. Therefore

PX =

Z 1

�1
SX(f)df = 4 + 0:5 + 0:5 + 1 + 1 = 7:

Also,
PX = RX(0) = 4 + cos(0) + 2 cos(0) = 7:

39.2 Filtering White Noise

Let X(t) be CT white noise. This means X(t) is WSS and

�X = 0

RX(�) = AÆ(�)

SX(f) = A

Suppose we �lter X(t) with a stable continuous-time LTI �lter with impulse response h(t):

X(t)! h(t) ! Y (t)
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In general, we have the following three formulas concerning the WSS �lter output process Y (t)
valid for any WSS input X(t):

RY (�) = RX(�) � h(�) � h(��)
SY (f) = SX(f)jH(f)j2

PY =

Z 1

�1
SX(f)jH(f)j2df

In the special case of our white noise input X(t), these become

RY (�) = Ah(�) � h(��) = A

Z 1

�1
h(t� �)h(t)dt (39.1)

SY (f) = AjH(f)j2 (39.2)

PY = A

Z 1

�1
jH(f)j2df (39.3)

Plugging � = 0 into the right side of (39.1) we also obtain the formula

PY = A

Z 1

�1
h(t)2dt; (39.4)

which, combined with (39.3), gives us two ways to compute the output power in response to a white
noise input.

We obtain similar results when we �lter DT white noise. Suppose we have a DT white noise
process Xn, which means Xn is WSS and

�X = 0

RX(�) = AÆ[� ]

SX(f) = A

Suppose we �lter Xn with a stable discrete-time LTI �lter with impulse response h[n]:

Xn ! h[n] ! Yn

Then one can establish the following four formulas concerning the WSS �lter output process Yn:

RY (�) = Ah(�) � h(��) = A
1X

n=�1

h[n� � ]h[n] (39.5)

SY (f) = AjH(f)j2 (39.6)

PY = A

Z 1

0
jH(f)j2df (39.7)

PY = A
1X

n=�1

h[n]2 (39.8)
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Warning. Only use formulas (39.1)-(39.8) when you have a white noise �lter input!

Example 39.1. CT white noise X(t) with autocorrelation function RX(�) = Æ(�) is passed
through the �lter with impulse response h(t) = e�3tu(t). Then the power generated by the �lter
output process Y (t) is given by

PY =

Z 1

�1
h(t)2dt =

Z 1

0
e�6tdt = 1=6:

Example 39.2. DT white noise Xn with autocorrelation function RX(�) = Æ[� ] is passed through
a so-called �rst order autoregressive �lter. The resulting �lter output process Yn is related to Xn

via the recursion
Yn = Xn + (1=3)Yn�1:

Let's compute the output power PY . By the recursion method from EE 3015, it is easy to see that
the impulse response of the �lter is

h[n] = (1=3)nu[n]:

Therefore,

PY =
1X

n=�1

h[n]2 =
1X
n=0

(1=3)2n =
1X
n=0

(1=9)n =
1

1� (1=9)
= 9=8:

Exercise. For the scenario in Example 39.2, show that the frequency response of the �lter is

H(f) =
3

3� exp(�j2�f) :

Use this result to show that

SY (f) = jH(f)j2 = 9

10� 6 cos(2�f)
:

Then use Matlab function int to verify that the result of the following integration is correct:

PY =

Z 1

0
SY (f) =

Z 1

0

9

10� 6 cos(2�f)
df = 9=8:

39.2.1 A Spectral Synthesis Application

Suppose we wish to design a �lter so that if we �lter white noise with the �lter, then the �lter
output random signal will have a certain autocorrelation function (or, equivalently, a certain power
spectral density function). This �lter design problem is called the spectral synthesis problem. In
this section, we work out a speci�c instance of the spectral synthesis problem.

Let Z(t) be white noise with RZ(�) = Æ(�). Suppose we �lter Z(t), obtaining a WSS process
X(t):
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Z(t)! h(t) ! X(t)

We wish to design the �lter impulse response h(t) so that the process X(t) will have autocorrelation
function

RX(�) = exp(�aj� j);
where a is a positive real constant. Using a Fourier transform table, we see that the power spectral
density of X(t) must be

SX(f) =
2a

a2 + (2�f)2
:

Since we are �ltering a white noise process whose PSD is 1, we must have

SX(f) = jH(f)j2 = H(f)H(�f):

To �nd the frequency response H(f) of the desired �lter, we can �nd a facotrization of the form

2a

a2 + (2�f)2
= H(f)H(�f): (39.9)

It is easy in this case to see what the two factors on the right side of (39.9) should be:

2a

a2 + (2�f)2
=

 p
2a

a+ j(2�f)

! p
2a

a� j(2�f)

!
: (39.10)

We can take either of the two factors on the right side of (39.10) to be H(f). This will give us
two solutions for h(t). One of the solutions gives us a causal �lter and the other one gives us an
anticausal �lter. Obviously, for implementation purposes, we prefer to choose the causal �lter as
our solution. The causal solution is

H(f) =

p
2a

a+ j(2�f)
:

Taking the inverse Fourier transform, we see that

h(t) =
p
2a exp(�at)u(t):

39.2.2 RC Filtering of White Noise

In this section, you learn that one possible solution to the spectral synthesis �lter design problem
of the preceding section is to use an RC �lter.

We consider the following RC �lter:
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�
��D
DD�
��D
DD�
��D
DD��BB

Z(t) X(t)

+

-

+

-

R

C

The input voltage Z(t) is white noise with RZ(�) = Æ(�). Let us determine the autocorrelation
function RX(�) of the random output voltage X(t). From your earlier coursework, you know that
the frequency response function of the RC �lter is

H(f) =
1

RCj2�f + 1

and therefore

SX(f) = jH(f)j2 = 1

(RC)2(2�f)2 + 1
:

Using the Fourier transform pair

exp(��j� j)$ 2�

�2 + (2�f)2

we see that
RX(�) = (1=2RC) exp(�j� j=RC):

Our conclusion is that if we use an RC �lter to �lter white noise, then we do obtain output
autocorrelation function in the form of a two-sided decaying exponential function.

Let us go further with this example to see if we can compute PX three di�erent ways. The �rst
way to do it is to use RX(�):

PX = RX(0) =
1

2RC
:

The second way to do it is to integrate the power spectrum:

PX =

Z 1

�1
SX(f)df =

Z 1

�1

1

(RC)2(2�f)2 + 1
df =

1

2RC
:

Evaluate the integral in the preceding line using the calculus formulaZ
a

a2 + u2
du = Tan�1(u=a):
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The third way to do it is to use the impulse response function, which is

h(t) = F�1
�

1

RCj2�f + 1

�
=

�
1

RC

�
exp(�t=RC)u(t):

We have

PX =

Z 1

�1
h(t)2dt =

Z 1

0

�
1

(RC)2

�
exp(�2t=RC)dt = 1

2RC
:

39.3 Filter Output Mean Function

Let X(t) be any random process (not necessarily WSS). Suppose we pass X(t) through an arbitrary
linear �lter as follows:

X(t)! linear
�lter

! Y (t)

The question we answer in this section is how to compute the mean function �Y (t) of the �lter
output process Y (t). Suppose we perform our random experiment over and over again (independent
trials) in order to obtain N realizations of X(t), denoted as follows:

xi(t); i = 1; 2; � � � ; N:

Suppose we pass each realization xi(t) through the linear system:

xi(t)! linear
�lter

! yi(t)

The resulting output signal yi(t) can be regarded as a realization of the random output signal Y (t).
Suppose we apply as input to the linear system the signal

PN
i=1 x

i(t)

N
: (39.11)

Then the principle of superposition from EE 3025 tells us that the corresponding system response
will be PN

i=1 y
i(t)

N
: (39.12)

The law of large numbers tells us that for large N , it is highly likely that the signal (39.11) will be
close to the signal �X(t) and that the signal (39.12) will be close to the signal �Y (t). If we pass to
the limit as N ! 1, we are forced to conclude that �Y (t) is the response of the linear system to
input signal �X(t). This argument has given us the following useful result.
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Useful Result: If random signal Y (t) is the output from a linear system when the input is random
signal X(t), then the mean function �Y (t) will be the output from the linear system when
the input is the signal �X(t). Schematically, we have

�X(t)! linear
�lter

! �Y (t)

Remark. The Useful Result is also true for discrete-time linear �ltering of discrete-time random
signals.

Example 39.3. Let A be a RV taking the values 0; 1 with prob. 1=2 each. Consider the process

X(t) =

(
At; t � 0
0; elsewhere

Let Y (t) be the integrated process:

X(t)!
Z t

0
! Y (t)

It is easily determined that �X(t) = tu(t)=2. We get �Y (t) from a consideration of the block
diagram:

�X(t) = tu(t)=2!
Z t

0
! �Y (t) = t2u(t)=4

39.3.1 Special Case: Output Mean in LTI Filtering of WSS Process

Suppose now we take our linear system to be a stable LTI �lter with impulse response function
h(t). As input to this �lter, we apply a WSS random signal X(t). The resulting output signal Y (t)
is also WSS. The mean function of process X is the constant �X , and the mean function of process
Y is the constant �Y . Suppose we consider �X and �Y to be DC signals. Then from our Useful
Result above, we see that the DC signal �Y must be the �lter output when the �lter input is the
DC signal �X . Via convolution, we have

�Y = �X � h(t):

Doing the convolution on the right side, we obtain the following formula that allows us to compute
�Y from �X :

�Y = �X

�Z 1

�1
h(t)dt

�
:
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We can also relate �Y to �X using the frequency response function H(f). We know from EE 3015
that if the input to the �lter is the complex sinusoid

C exp(j2�fot);

then the corresponding �lter output will be the complex sinusoid

CH(f0) exp(j2�f0t):

In particular, we can see what happens when f0 = 0. Then the �lter output when the �lter input is
the DC signal �X will be the DC signal �XH(0). This reasoning has given us the following second
formula relating �Y and �X :

�Y = �XH(0):

We obtain a similar result relating �Y and �X for LTI discrete-time �ltering of a WSS discrete-time
process. We summarize our results as follows.

Useful Result 2:

(a): Suppose you �lter a continuous-time WSS process X(t) with continuous-time LTI stable
�lter having impulse response h(t) and frequency response H(f), thereby obtaining WSS
process Y (t) at the �lter output. Then the input and output process means are related
by the formulas

�Y = �X

�Z 1

�1
h(t)dt

�
�Y = �XH(0)

(b): Suppose you �lter a discrete-time WSS process Xn with continuous-time LTI stable
�lter having impulse response h[n] and frequency response H(f), thereby obtaining
WSS process Yn at the �lter output. Then the input and output process means are
related by the formulas

�Y = �X

(
1X

n=�1

h[n]

)

�Y = �XH(0)

Example 39.4. Let Xn be a WSS process with �X = 1. Let Yn be the process arising from the
�ltering operation

Yn = (1=2)Yn�1 +Xn:
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The �lter impulse response and frequency response are given by

h[n] = (1=2)nu[n]

H(f) =
exp(j2�f)

exp(j2�f)� (1=2)
;

as every good EE 3015 student knows. The mean �Y of process Yn can then be computed in two
di�erent ways:

�Y = �X
X
n

h[n] =
1X
n=0

(1=2)n = 2

= �XH(0) =
1

1� (1=2)
= 2



Lecture 40

Random Processes Part 10

40.1 Random DC Signal

The random DC signal is possibly the simplest of all WSS random signals, and I should have
presented it to you earlier. (I forgot.)

Let A be a RV. Then
X(t) = A; �1 < t <1

de�nes a random DC signal. It is WSS and its mean and autocorrelation function (whose simple
derivations we omit) are

�X = E[A]

RX(�) = E[A2]

Because of the Fourier transform pair
1$ Æ(f);

the power spectral density of our random DC signal would then be

SX(f) = E[A2]Æ(f):

The power PX generated by the random DC signal is

PX = E[A2]:

The process variance is
�2A = V ar[A]:

The random DC signal X(t) is clearly nonergodic (unless A is a constant).

79
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40.2 Amplitude Modulation

Let M(t) be a random message signal, assumed to be WSS. Here is the block diagram of an
amplitude modulation (AM) system for transmitting M(t):

��
��

��
��

��
��

-
?

- -
?

- -
?

M(t) �

cos(2�fct+�)

+ � LPF M̂(t)

cos(2�fct+�1)
Z(t)

The signal cos(2�fct + �) is called the carrier wave and fc is the carrier frequency; in order that
we may take the carrier wave to be a WSS random signal (which simpli�es the analysis), we make
the usual assumption that � is uniformly distributed between 0 and 2�. The random signal

X(t) =M(t) cos(2�fct+�)

is the AM modulated signal. The channel noise Z(t) is assumed to be white and uncorrelated with
X(t). The �lter marked LPF is a low pass �lter.

Let us determine the power spectrum of the modulated signal X(t). From our earlier work on
random sinusoids, we know that the autocorrelation function of the carrier wave is cos(2�fc�)=2.
Assuming the carrier wave and the message signal to be statistically independent, we know from
Section 37.1.2 that the autocorrelation function of X(t) is the product of the autocorrelation func-
tion of M(t) and the autocorrelation function of the carrier wave:

RX(�) = RM (�) cos(2�fc�)=2

We can take the Fourier transform using the Fourier transform pair

�1(t)�2(t)$ �1(f) � �2(f)

getting

SX(�) = SM (f) � [Æ(f � fc) + Æ(f + fc)]=4

= SM (f � fc)=4 + SM (f + fc)=4

In other words, AM modulation \frequency shifts" the message signal power spectrum to the right
and to the left an amount equal to fc. For example, if the message power spectrum looks like
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then the AM modulated power spectrum looks like

-
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fc�fc

f

SX(f)

C=4

At the receiving end of the channel, note that we have a second multiplier in which we multiply
by carrier wave cos(2�fc + �1), where �1 is uniformly distributed between 0 and 2�. (Since the
carrier waves before and after transmission need not be synchronized with respect to phase, it is
not necessarily true that �1 = �; whether this is true or not makes no di�erence in our analysis.)
Doing the \frequency shifting" a second time, we see that the power spectrum of the signal part of
the second multiplier output will look like
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The noise component of the second multiplier output will still be white. Taking LPF to be an ideal
low pass �lter with bandwidth B (the message signal bandwidth), the power spectra of the signal
and noise components of the low pass �lter output then look like
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-B 0 B

f

f

C=8

LPF output power spectrum (noise part)

LPF output power spectrum (signal part)

In our analysis up to now, we have taken the amplitude of the carrier wave in the AM modulator
to be 1. As we increase the amplitude of the carrier wave through various amplitude levels above
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1, the noise power at the LPF output remains �xed, so that we may set the signal-to-noise ratio at
the LPF output to any desired level by adjusting the carrier wave amplitude appropriately.

40.3 Receiver Design Methods For AWN Channels

The quintessential communication systems channel model is the additive white noise (AWN) chan-
nel, given by the following block diagram:

X(t)! AWN channel ! Y (t) = X(t) + Z(t)

The input random signal X(t) to the AWN channel is assumed to be WSS. The channel noise
process Z(t) is assumed to be white noise with autocorrelation function

RZ(�) = AÆ(�):

We make the usual assumption that the X process and Z process are uncorrelated, so that

E[X(s)Z(t)] = E[X(s)]E[Z(t)] = 0;

for all times s; t. (The preceding \cross correlation" vanishes because E[Z(t)] = 0 is part of the
white noise assumption.) To complete the design of the communication system, a receiver must
be designed to process the channel output random signal Y (t). We will only consider receivers
which are LTI stable linear systems; let h(t) denote the receiver's impulse response function. The
following block diagram illustrates the scenario that occurs when the receiver processes Y (t):

Y (t) = X(t) + Z(t)! receiver
h(t)

! X0(t) + Z0(t)

Process X0(t) is the signal component of the receiver output, that is, random signal X0(t) is the
receiver's response to the random signal X(t). Process Z0(t) is the noise component of the receiver
output, that is, random signal Z0(t) is the receiver's response to the noise Z(t). In order to judge
how well the receiver is doing, some people look at the SNR (signal to noise ratio) at the receiver
output, which is de�ned by:

receiver output SNR
�
=

X0(t) power

Z0(t) power
:

If you have a choice between two receivers, it might make sense (all other things being equal) to
choose the receiver which gives the bigger SNR at the receiver output. We can express the receiver
output SNR in terms of the frequency response H(f) of the receiver as follows:

receiver output SNR =

Z 1

�1
SX(f)jH(f)j2dfZ 1

�1
SZ(f)jH(f)j2df

=

Z 1

�1
SX(f)jH(f)j2df

A

Z 1

�1
jH(f)j2df
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To conclude this section, we point out three common receiver design methodologies.

Method 1: Low Pass Filtering. Suppose the bandwidth of the signal X(t) is B. That is,

SX(f) = 0; jf j > B:

Then one can use as receiver a low pass �lter will frequency response

H(f) =

(
1; �B � f � B
0; elsewhere

The advantage to this receiver is that it passes X(t) through perfectly (that is, X0(t) = X(t))
while suppressing the noise in the sense that the noise power spectrum at the receiver output
will be limited strictly to the frequency band �B � f � B. The SNR at the receiver output
for the low pass �lter receiver is given by the formula

receiver output SNR =
PX
2AB

:

The low pass �lter receiver is sometimes regarded as a pre�ltering operation. That is, one
can design a second receiver to be applied to the output of the low pass �lter. Since the low
pass �lter passes X(t) through perfectly, there is no loss of generality if in our overall receiver
design we �rst pre�lter with a low pass �lter.

Method 2: Max SNR Filtering. Suppose one has a class of possible h(t)'s which could poten-
tially be used for the receiver's impulse response. In Max SNR Filtering, one would choose
that h(t) from the class for which the receiver output SNR is the biggest. We will consider
Max SNR Filtering in the lecture notes for Lecture 41.

Method 3: Wiener Filtering. Suppose we wish to regard the receiver output as an estimate
X̂(t) of the random signal X(t):

Y (t)! receiver
h(t)

! X̂(t)

Suppose one has a class of possible h(t)'s that can be considered for the receiver impulse
response. In the Wiener �ltering approach, one chooses h(t) from this class so that X̂(t) will
be the minimum mean square estimate of X(t), that is, we want the mean square estimation
error

E[(X(t) � X̂(t))2] (40.1)

to be minimized. Note that the quantity (40.1) does not depend on t because we assumed the
signal X(t) is WSS. As a result, there will be just one receiver that will provide the minimum
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mean square estimation error (40.1) for all times t. (If we had to change the receiver's
characteristics with time, we would obtain a time-varying �lter by this approach and not a
time-invariant �lter.) This unique receiver is called a Wiener �lter. In Section 40.4, I design
a type of Wiener �lter called FIR Wiener �lter. In the notes for Lecture 41, I will derive
another Wiener �lter called the noncausal Wiener �lter.

40.4 FIR Wiener Filter Design

I will do FIR Wiener Filter Design in the context of discrete-time signals and systems. We have a
WSS random signal Xn. It is sent through the AWN channel and is then processed by a receiver
with impulse response h[n]:

Xn ! AWN channel ! Yn = Xn + Zn ! h[n] ! X̂n

The channel noise process Zn is white noise, and is uncorrelated with the random signal Xn.
Let k be any positive integer. I show you how to design the k-tap FIR Wiener �lter. This

means X̂n has the form

X̂n = h[0]Yn + h[1]Yn�1 + h[2]Yn�2 + : : :+ h[k � 1]Y [n� k + 1]:

We must determine the k �lter tap weights

h[0]; h[1]; � � � ; h[k � 1]

so that the MS estimation error E[(Xn � X̂n)
2] is minimized. (Since the �lter we are designing is

an FIR �lter, the remaining h[n] values are all equal to zero.) The orthogonality principle of linear
MS estimation theory tells us that the estimation error Xn� X̂n must be orthogonal to each of the
k observations Yn�i (i = 0; 1; : : : ; k � 1) that are being combined to form the estimate X̂n of Xn.
That is, we have the equations

E[(Xn � X̂n)Yn�i] = 0; i = 0; 1; : : : ; k � 1:

These equations simplify to the equations

E[X̂nYn�i] = E[XnYn�i]; i = 0; 1; : : : ; k � 1: (40.2)

Notice that

E[XnYn�i] = E[XnXn�i] +E[XnZn�i] = E[XnXn�i] + 0 = RX(i):

This allows us to simplify equations (40.2) to

h[0]RY (i) + h[1]RY (i� 1) + h[2]RY (i� 2) + : : :+ h[k]RY (i� k) = RX(i); i = 0; 1; : : : ; k � 1:
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The autocorrelations RY (0); RY (1); : : : ; RY (k � 1) are computed according to the formula

RY [� ] = RX [� ] +RZ [� ];

which we learned in Section 37.1.1. Let Rk
Y be the k� k matrix such that the element in row i and

column j is RY (i� j). (That is, Rk
Y is the correlation matrix of any k consecutive samples of the

Y process.) We can write our system of equations in matrix form as:

Rk
Y

2
6666664

h[0]
h[1]
h[2]
...

h[k � 1]

3
7777775
=

2
6666664

RX(0)
RX(1)
RX(2)

...
RX(k � 1)

3
7777775

You solve these equations to �nd the k-tap Wiener �lter impulse response function h[n].

Example 40.1. For a two-tap Wiener �lter, the receiver output takes the form

X̂n = h[0]Yn + h[1]Yn�1;

where we �nd the two tap weights h[0]; h[1] by solving the equations

"
RY [0] RY [1]
RY [1] RY [0]

# "
h[0]
h[1]

#
=

"
RX [0]
RX [1]

#
:

Let's suppose that
RX(�) = (1=2)j� j + (1=4)j� j:

and that
RZ(�) = Æ[� ]:

Then

RX(0) = 2

RX(1) = 3=4

RY (0) = RX(0) +RZ(0) = 3

RY (1) = RX(1) +RZ(1) = 3=4:

Plugging these values in the equations above, we have to solve"
3 3=4
3=4 3

# "
h[0]
h[1]

#
=

"
2
3=4

#
:
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The solutions are
h[0] = 29=45; h[1] = 4=45:

Example 40.2. For a three-tap Wiener �lter, the receiver output takes the form

X̂n = h[0]Yn + h[1]Yn�1 + h[2]Yn�2;

where we �nd the three tap weights h[0]; h[1]; h[2] by solving the equations

2
64 RY (0) RY (1) RY (2)
RY (1) RY (0) RY (1)
RY (2) RY (1) RY (0)

3
75
2
64 h[0]
h[1]
h[2]

3
75 =

2
64 RX(0)
RX(1)
RX(2)

3
75 :

Let's use the same X and Z process characteristics that we did in Example 40.1. Then the above
system of equations becomes2

64 3 3=4 5=16
3=4 3 3=4
5=16 3=4 3

3
75
2
64 h[0]
h[1]
h[2]

3
75 =

2
64 2

3=4
5=16

3
75 :

The solution is
h[0] = 0:6437; h[1] = 0:0851; h[2] = 0:0158:
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Random Processes Part 11

41.1 FIR Max SNR Filter Design

In the block diagram

X[n]! channel ! Y [n] = X[n] + Z[n]! h[n] ! X0[n] + Z0[n]

we assume that the random signal X[n] is WSS and that the random noise Z[n] is white with
RZ [� ] = Æ[� ]. The �lter with impulse response h[n] is to be designed so that the �lter output
signal-to-noise ratio (SNR) is maximized:

SNR =
X0[n] power

Z0[n] power

In the SNR ratio, X0[n] is the signal part of the �lter output and Z0[n] is the noise part of the
�lter output. The resulting �lter is called a max SNR �lter. There is more than one max SNR
�lter, depending upon the form of the �lter. For example, for each k, one could design a unique
max SNR �lter to be a FIR �lter with k taps. The resulting k tap max SNR �lter would provide
an output satisfying

X0[n] + Z0[n] = h[0]Y [n] + h[1]Y [n� 1] + : : :+ h[k � 1]Y [n� k + 1]

and the SNR would be expressible in the form

SNR =

Pk�1
i;j=0 h[i]h[j]RX [i� j]Pk�1

i=0 h[i]
2

Notice that if we take a scalar multiple of h[n], the SNR does not change. Therefore, in maximizing
the SNR, we may assume that h[0]2 + h[1]2 + : : : + h[k � 1]2 = 1. Let R be the k � k matrix such

88
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that the element in row i and column j is RX [i� j], and let h be the k-dimensional column vector
whose entries are h[0]; h[]1; : : : ; h[k � 1]. Then, to �nd the k-tap max SNR �lter we must solve the
optimization problem

max
jjhjj=1

hTRh

where
jjhjj =

q
h[0]2 + h[1]2 + : : :+ h[k � 1]2

is the length of the vector h. It is well known how to solve this problem: Let � be the maximum
eigenvalue of R. Then, h is the eigenvector of R of length one corresponding to the eigenvalue �,
obtained by solving the equation

Rh = �h

(h is unique up to sign). Matlab can be used to quickly �nd the eigenvalues and eigenvectors of
a matrix. Therefore, max SNR �lter design is easily accomplished with Matlab, as the following
example illustrates.

Example 41.1. Let RX [� ] = 8(2�j� j). Let us �nd the 4-tap max SNR �lter. We have

R =

2
6664
RX [0] RX [1] RX [2] RX [3]
RX [1] RX [0] RX [1] RX [2]
RX [2] RX [1] RX [0] RX [1]
RX [3] RX [2] RX [1] RX [0]

3
7775 =

2
6664
8 4 2 1
4 8 4 2
2 4 8 4
1 2 4 8

3
7775

R=toeplitz([8 4 2 1]);

[a,b]=eig(R)

a =

0.3162 -0.5573 -0.6325 0.4352

-0.6325 0.4352 -0.3162 0.5573

0.6325 0.4352 0.3162 0.5573

-0.3162 -0.5573 0.6325 0.4352

b =

3.0000 0 0 0

0 4.3153 0 0

0 0 8.0000 0

0 0 0 16.6847
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The diagonal elements of b are the eigenvalues of R. The largest one, 16:6847, is in the fourth
position, so the fourth column of a is the eigenvector corresponding to this eigenvalue. We see that
the desired impulse response is

h[0] = 0:4352; h[1] = 0:5573; h[2] = 0:5573; h[3] = 0:4352

The maximum possible SNR for a 4-tap �lter is the largest eigenvalue just found, which is 16:6847.
Max SNR �ltering is also called principal component �ltering.

41.2 More Time-Varying Linear Filtering of Gaussian White Noise

When we earlier de�ned the Brownian motion process in Section 37.3, we obtained it by performing
a certain time-varying linear �ltering operation on a Gaussian white noise random signal. In this
section, we briey point out that we can obtain other processes, which behave much like the
Brownian motion process, by similar �ltering operations.

Let X(t) be Gaussian white noise. Let �(t) be any deterministic signal. Then

Y (t) =

Z t

0
�(u)X(u)du; t � 0;

de�nes a random process Y (t). You may visualize Y (t) as being formed from X(t) via the following
two-step linear �ltering operation on X(t): (1) First multiply X(t) by �(t), and then (2) pass the
resulting signal through the integrator

R t
0 .

By looking at di�erent �(t)'s, one obtains many di�erent processes Y (t). One of these is the
Brownian motion process (just take �(t) = 1 for all t). All of these Y (t) processes share the
following properties (which we noticed earlier were true of the Brownian motion process):

� Realizations of Y (t) process start at origin, that is, Y (0) = 0.

� Y (t) is not a WSS process.1

� Y (t) is an independent increments process.

� Y (t) is a Gaussian process with zero mean.

In Section 37.3, we employed a \double integral trick" to compute the variance of each component
RV of the Brownian motion process. A similar trick can be exploited to compute autocorrelations
for the Y (t) process. Observe that

Y (t1Y (t2) =

�Z t1

0
�(t)X(t)dt

� �Z t2

0
�(s)X(s)ds

�

=

Z t1

0

Z t2

0
�(t)�(s)X(s)X(t)dsdt:

1There are trivial exceptions to this. For example, take �(t) = 0 for all t. Then Y (t) is a trivial WSS process
equal to zero at all times.
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When you compute the expected value of Y (t1)Y (t2), you can pull the expected value operator
inside the double integral, yielding

RY (t1; t2) = E[Y (t1)Y (t2)] =

Z t1

0

Z t2

0
E[�(s)�(t)X(s)X(t)]dsdt =

Z t1

0

Z t2

0
�(s)�(t)E[X(s)X(t)]dsdt:

Let us suppose that
RX(�) = AÆ(�):

Then we have

RY (t1; t2) = A

Z t1

0

Z t2

0
�(t)�(s)Æ(s � t)dsdt = A

Z min(t1;t2)

0
�(t)2dt:

41.3 Periodogram Estimate of Power Spectrum

For an ergodic WSS continuous-time process X(t) with realization x(t), we want to be able to say
the following:

SX(f) � 1

T

�����
Z T

0
x(t)e�j2�jtdt

�����
2

(large T ) (41.1)

The right side of formula (41.1) is called the periodogram estimate of the power spectrum. Notice
that the periodogram estimate is random because the process realization is random. Let us use
ŜTX(f) to denote the periodogram estimate, that is, we de�ne

ŜTX(f)
�
=

1

T

�����
Z T

0
X(t)e�j2�jtdt

�����
2

:

In the integrand on the right side, notice that we have written X(t) instead of x(t) to denote that
the realization is random and therefore, for �xed frequency f , ŜTX(f) is a random variable.

With the tools available to us in EE 3025, we will not be able to prove that the approximation
(41.1) is highly likely to be valid when we observe a realization x(t) of X(t). However, we will be
able to prove the next best thing, namely, that ŜTX(f) is an asymptotically unbiased estimator of
SX(f) as T !1. That is, we shall prove that

E[ŜTX(f)]! SX(f) as T !1: (41.2)

I will prove (41.2) via a \double integral trick" similar to what I did in Section 41.2. I start with
Ŝ2TX (f) instead of ŜTX(f) because it is easier to work with. By wide-sense stationarity, we may write

E[Ŝ2TX (f)] =
1

2T
E

2
4
�����
Z 2T

0
X(t)e�j2�jtdt

�����
2
3
5 = 1

2T
E

2
4
�����
Z T

�T
X(t)e�j2�jtdt

�����
2
3
5 :
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We now do the double integral trick:�����
Z T

�T
X(t)e�j2�ftdt

�����
2

=

Z T

�T

Z T

�T
X(t1)X(t2)e

�j2�f(t1�t2)dt1dt2:

We then take the expected value of both sides, moving the expected value into the double integral:

E

"Z T

�T

Z T

�T
X(t1)X(t2)e

�j2�f(t1�t2)dt1dt2

#
=

Z T

�T

Z T

�T
E[X(t1)X(t2)]e

�j2�f(t1�t2)dt1dt2

=

Z T

�T

Z T

�T
RX(t1 � t2)e

�j2�f(t1�t2)dt1dt2 (41.3)

We then make the change of variable

u = t1

� = t1 � t2

In the double integral in (41.3), we are integrating in the (t1; t2) plane over the square

f(t1; t2) : �T � t1 � T; �T � t2 � Tg (41.4)

Under the above change of variable, we are integrating in the (u; �) plane over the parallelo-
gram R bounded by the four vertices (T; 0); (T; 2T ); (�T; 0); (�T;�2T ) (transform the four vertices
(T; T ); (T;�T ); (�T;�T ); (�T; T ) of the square (41.4)). This region R is sketched as follows:

R

�

u
(�T; 0)

(�T;�2T )

(T; 0)

(T; 2T )

�
�
�
�

�
�
�

�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�

�
�

�
�

�
�

�
�

�

�
�
�
�
�
�
�
�
�
�
�

-

6
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Under our change of variable, the integral in (41.3) becomesZ Z
R
RX(�)e

�j2�f�dud�

If we integrate in the u direction �rst, this integral becomesZ 2T

�2T
RX(�)(2T � j� j)e�j2�f�d�

(Because, if we �x a point � between �2T and 2T on the vertical axis of the preceding plot, the
length of the horizontal slice through R at that point is (2T � j� j).) We may split this integration
into two parts:

2T

Z 2T

�2T
RX(�)e

�j2�f�d� �
Z 2T

�2T
j� jRX(�)e

�j2�f�d�: (41.5)

Dividing the expression (41.5) by 2T , we obtain E[Ŝ2TX (f)]. We have shown that

E[Ŝ2TX (f)] =

Z 2T

�2T
RX(�)e

�j2�f�d� � �(T );

where

�(T ) =
1

2T

Z 2T

�2T
j� jRX(�)e

�j2�f�d�:

It is not hard to see that �(T ) vanishes in the limit as T !1, using the fact that�����
Z 2T

�2T
j� jRX(�)e

�j2�f�d�

����� �
Z 1

�1
j� jRX(�)d� <1: (41.6)

(We assume the integral on the right in (41.6) is �nite; many autocorrelation functions decay
suÆciently fast so that this will be true.) We have therefore shown that

lim
T!1

E
h
Ŝ2TX (f)

i
= lim

T!1

Z 2T

�2T
RX(�)e

�j2�f�d�

=

Z 1

�1
RX(�)e

�j2�f�d� = SX(f);

which is what we wanted to prove.

Discussion. The periodogram estimate of the power spectrum is not as good as some other
power spectrum estimates. For example, Bartlett's method yields a better estimate. Bartlett's
method partitions a long piece of the realization into nonoverlapping parts of equal length; a
periodogram is computed for each part, and then the periodograms of the parts are averaged to
obtain the Bartlett estimate of SX(f). Using the asymptotic unbiasedness of the periodogram
estimate and the fact that process X(t) is ergodic, one can show that the Bartlett power spectrum
estimate will converge to SX(f) as we let the estimate be computed over a bigger and bigger piece
of the realization of X(t).
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Discrete-Time Power Spectrum Estimation

For an ergodic WSS discrete-time process X[n] with realization x[n], the periodogram estimate of
the power spectral density SX(f) is

1

N

�����
NX
n=1

x[n]e�j2�n
�����
2

:

One can show this estimate is asymptotically unbiased much as we did for the continuous-time
case.

Recitation 14 gives you Matlab experiments in which realizations of discrete-time signals are
simulated and their power spectra estimated from these realizations using periodogram estimates
and Bartlett estimates.
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42.1 Noncausal Wiener Filter

In Section 40.4, we considered the FIR Wiener �lter, which is the minimum MS receiver for the
additive noise channel model which uses just �nitely many of the received channel outputs to form
the estimate of the random channel input signal. In this section, we develop the noncausal Wiener

�lter. This is the minimum MS receiver for the additive noise channel model which uses all of the
channel outputs to estimate the channel input signal. Surprisingly, the noncausal Wiener �lter is
much easier to derive than the FIR Wiener �lter. Although the noncausal Wiener �lter is physically
unrealizable, it is useful in that it gives the limiting performance of all minimumMS receiving �lters
with �nite memory and delay. It is therefore the \granddaddy" of all possible MS receivers: it is
the receiver whose performance one should try to get as close as possible to in receiver design.

As in Section 40.4, I will do Wiener Filter Design in the context of discrete-time signals and
systems. We have a WSS random signal Xn. It is sent through an additive noise channel:

Xn ! additive noise channel ! Yn = Xn + Zn ! h[n] ! X̂n

The channel noise process Zn need not be white: we will assume only that Zn is WSS and is
orthogonal to the channel input process in the sense that

E[XnZi] = 0; for all i; n:

This fact allows us to say the following two things about output autocorrelations and cross-
correlations:

RY (�) = RX(�) +RZ(�) (42.1)

E[XnYi] = RX(n� i); for all i; n: (42.2)
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Let us now derive the noncausal Wiener �lter impulse response function h[n]. Our starting point
is the orthogonality principle. In this case, it says the the estimation error Xn � X̂n is orthogonal
to every Yi, as i ranges through all integers. This gives us the equation

E[(Xn � X̂n)Yi] = 0; for all i; n:

We can re-write this as
E[X̂nYi] = E[XnYi]; for all i; n:

Using (42.2) and the fact that the receiver output signal X̂n is equal to the convolution h[n] � Yn,
this equation then becomes

E[(h[n] � Yn)Yi] = RX(n� i); for all i; n:

In the preceding equation, it suÆces to consider the case i = 0 for us to be able to determine what
h[n] is; the i = 0 case gives us

E[(h[n] � Yn)Y0] = RX(n); for all n:

We can re-write the left hand side as

E[(h[n] � Yn)Y0] = E[(h[n] � fYnY0g)] = h[n] �E[YnY0] = h[n] � RY (n):

We conclude that
h[n] �RY (n) = RX(n); for all n: (42.3)

We remark that for the FIR Wiener �lter, the two sides of equation (42.3) are equal for only �nitely
many n. Since the two sides of (42.3) are equal for all n in the case of the noncausal Wiener �lter,
we are allowed to take the Fourier transform of both sides of equation (42.3); it is this fact which
makes it easier for us to �nd the noncausal Wiener than the FIR Wiener �lter considered in Section
40.4. Fourier transforming both sides of (42.3), we obtain

H(f)SY (f) = SX(f);

where H(f) is the frequency response function of the noncausal Wiener �lter. Using (42.3) and
(42.1), we conclude that the frequency response function of the noncausal Wiener �lter is given by
the following simple formula:

H(f) =
SX(f)

SY (f)
=

SX(f)

SX(f) + SZ(f)
: (42.4)

Remark. The preceding derivation goes through almost word for word for the derivation of the
continuous-time noncausal Wiener �lter. The formula (42.4) expresses both the frequency response
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function of the discrete-time noncausal Wiener �lter and the continuous-time noncausal Wiener
�lter.

Example 42.1. We derive a continuous-time noncausal Wiener �lter. The channel input is a
WSS process X(t) with autocorrelation function

RX(�) = exp(�j� j):

The additive channel noise Z(t) is assumed to have autocorrelation function

RZ(�) = Æ(�) + 3 exp(�j� j):

The channel output process Y (t) = X(t) + Z(t) is to be �ltered by noncausal Wiener �lter with
frequency response function h(t). Let's �nd h(t). We have

SX(f) =
2

(2�f)2 + 1

SZ(f) = 1 +
6

(2�f)2 + 1

Substituting these expressions into (42.4) we see that the frequency response function H(f) of the
noncausal Wiener �lter is given by (after some algebraic simpli�cation):

H(f) =
2

(2�f)2 + 9
;

from which it follows that
h(t) = (1=3) exp(�3jtj):

Noncausal Wiener Filter MS Estimation Error

There is a nice formula for the MS estimation error of the noncausal Wiener �lter. For the discrete-
time noncausal Wiener �lter, the formula is:

DT noncausal Wiener filter MS estimation error =

Z 1

0

�
SX(f)SZ(f)

SX(f) + SZ(f)

�
df: (42.5)

For the continuous-time noncausal Wiener �lter, the formula is:

CT noncausal Wiener filter MS estimation error =

Z 1

�1

�
SX(f)SZ(f)

SX(f) + SZ(f)

�
df: (42.6)

I �nish this section with a derivation of the discrete-time formula (42.5). Obvious modi�cations in
the proof can be made to obtain formula (42.6) for the continuous-time case.
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For the discrete-time case, the MS estimation error is E[(Xn � X̂n)
2], which can be rewritten

as follows:

E[(Xn � X̂n)
2] = E[(Xn � X̂n)(Xn � X̂n)]

= E[(Xn � X̂n)Xn]�E[(Xn � X̂n)X̂n]

= E[(Xn � X̂n)Xn]� 0

In the preceding, I used the fact that E[(Xn � X̂n)X̂n] = 0, in other words, the estimation error
Xn � X̂n is orthgonal to the estimate X̂n. This is true because the estimation error is orthogonal
to every receiver input Yi and therefore it must also be orthogonal to any linear combination of the
Yi's; in particular, the estimation error must be orthogonal to the estimate X̂n itself. We can now
simplify the MS estimation error further as follows:

E[(Xn � X̂n)Xn] = E[X2
n]�E[X̂nXn]

= RX(0) �E[(h[n] �Xn)Xn]

= RX(0) �E[(
1X

u=�1

h[n� u]Xu)Xn]

= RX(0) �E[
1X

u=�1

h[n� u]XuXn]

= RX(0) �
1X

u=�1

h[n� u]E[XuXn]

= RX(0) �
1X

u=�1

h[n� u]RX(n� u)

= RX(0) �
1X

�=�1

h[� ]RX(�)

We want to re-express this last expression in frequency domain. To do this, let �[n] be the discrete-
time signal

�[n]
�
= h[n] �RX(n):

It is not hard to see that

�[0] =
1X

�=�1

h[� ]RX (�):

On the other hand, we know from EE 3015 Fourier transform theory that

�[0] =

Z 1

0
�(f)df =

Z 1

0
H(f)SX(f)df;
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and so we can say that
1X

�=�1

h[� ]RX (�) =

Z 1

0
H(f)SX(f)df:

We conclude that

E[(Xn � X̂n)
2] = RX(0) �

Z 1

0
H(f)SX(f)df

=

Z 1

0
SX(f)df �

Z 1

0
H(f)SX(f)df

=

Z 1

0
SX(f)[1�H(f)]df

In this last expression, substitute the expression for the noncausal Wiener �lter frequency response
H(f) on the right side of (42.4). After some simple algebra, you obtain the formula (42.5) for the
discrete-time noncausal Wiener �lter MS estimation error.

42.2 Single Server Queue Asymptotics

In Recitations 13 and 14, you worked a little bit with the single-server queueing system model. In
this model, the arrivals of the message packets occur according to a Poisson process with arrival
rate � (packets/second). The single server serves packets (i.e., routes packets) at a rate of �
(packets/second). Suppose � > �. (This is the case of a stable queue.) Let random variable Wn

denote the waiting time of the n-th arriving packet, for n = 1; 2; 3; � � �. (In other words, Wn is the
length of time that packet n waits in the queue from its time of arrival until the time it starts to be
served by the server.) In this section, I want to discuss a little bit the asymptotic behavior of the
sequence of waiting times Wn. Since the queue is stable, the waiting times Wn will not blow up as
n!1. It is a well-known fact that can be found in any basic textbook on queueing systems that
the probability density function of Wn for large n is approximately equal to the density

f(w) =

�
1� �

�

�
Æ(w) +

�

�
(�� �)e�(���)wu(w); (42.7)

a mixed probability distribution. It is easy to see why this density function should be mixed: it may
happen that when packet n arrives, the queue is empty, which means that the waiting timeWn takes
the value 0, producing the delta function component at the beginning of f(w); on the other hand,
if the length of the queue is > 0 upon the packet's arrival, the packet will wait an amount of time
which is continuously distributed (in fact, formula (42.7) tells us that this continuous conditional
distribution is exponential with mean 1=(�� �)).

Here are some simple conclusions we can draw from the form of the asymptotic waiting time
density (42.7):
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� For any nonnegative real numbers a � b, we have

P [a �Wn � b] �
Z b

a
f(w)dw; for large n:

In particular,

P [Wn = 0] � 1� �

�
; for large n:

� The expected waiting time satis�es

E[Wn] �
Z 1

0
wf(w)dw =

�

�(�� �)
; for large n:

� For large n, the expected amount of time that packet n stays in the queueing system is
approximately equal to 1=(� � �). To see this, note that the amount of time spent by the
packet in the system is the sum of its waiting time and service time, and therefore we have

E[waiting time] +E[service time] � �

�(�� �)
+

1

�
=

1

�� �
; for large n:

42.3 Why SX(f) � 0

Suppose we have a continuous-time WSS process X(t). I have put o� until now trying to explain
why the power spectral density SX(f) takes nonnegative values at all frequencies f . In this section,
I show you why this is true. Let f� be a particular positive frequency at which we want to measure
approximately what SX(f

�) is. Pick a narrowband idealized �lter with center frequency f� and
bandwidth �f . This means the frequency response of the �lter is

H(f) =

(
1; f� ��f=2 � jf j � f� +�f=2
0; elsewhere

Pass a realization x(t) of X(t) through this narrowband �lter and then measure the �lter output
power with a power meter:

x(t)! narrowband
�lter

! power
meter

! output power

Assuming we have an ergodic process, approximately what will we obtain for our power meter
measurement? By the ergodic process assumption, we know that the power measured by the power
meter will be approximately equal to

2

Z f�+�f=2

f���f=2
SX(f)df: (42.8)
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Since �f is close to zero, the usual calculus approximation tells us that (42.8) is approximately
equal to

2(�f)SX(f
�):

Conclusion: The power measured at the output of the narrowband �lter, divided by by 2�f , is
approximately equal to SX(f

�). Since a power measurement will always give a nonegative
result, we are forced to conclude that SX(f

�) must be nonnegative.

Remark. There is another way to prove that SX(f) � 0. Back in Section 34.4, we introduced
a property of autocorrelation function RX(�) called the positive semide�niteness property. It turns
out that RX(�) obeys the positive semide�niteness property if and only if SX(f) � 0 for all f . The
positive semide�niteness property says that the double integralZ 1

�1

Z 1

�1
h(s)h(t)RX (s� t)dsdt (42.9)

is nonnegative for any function h(t) for which the preceding double integral exists. The reader can
easily check that the integral (42.9) is the same thing as the quantity

h(�) � h(��) � RX(�)

evaluated at � = 0, which is the same thing as the integralZ 1

�1
jH(f)j2SX(f)df: (42.10)

Saying that the quantity (42.10) is always nonnegative for every �lter h(t) is therefore the same
thing as saying that the quantity (42.9) is always nonnegative. Saying that the quantity (42.10) is
always nonnegative for every �lter h(t) is equivalent to saying that SX(f) � 0 at all f . Therefore,
saying that SX(f) � 0 at all f is equivalent to saying that (42.9) is nonnegative for all h(t), which
is the positive semide�niteness property.

42.4 Proof of Formula RY (�) = h(�) � h(��) � RX(�)

Suppose we pass WSS process X(t) through LTI stable �lter with impulse response h(t), obtaining
WSS �lter output process Y (t). Here, I �nally prove for you that

RY (�) = h(�) � h(��) � RX(�)

holds.
To start the proof, we note that since

(X(t); Y (t))
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is a �lter input-output pair, so is
(Y (0)X(t); Y (0)Y (t)): (42.11)

Notice that (42.11) is a random input-output pair. If we observe many realizations of input and
the corresponding output, and then average, we obtain by the principle of superposition another
input-output pair. If we then take a limit of such averages, we conclude by the law of large numbers
that

(E[Y (0)X(t)]; E[Y (0)Y (t)]) = (E[Y (0)X(t)]; RY (t))

is an input-output pair, and then applying the convolution theorem we see that

RY (t) = h(t) � E[Y (0)X(t)]: (42.12)

Now send random signal X(�t) through the �lter with impulse response h(�t), thereby obtaining
random output signal Y (�t). That is,

(X(�t); Y (�t))

is an input-output pair for the �lter h(�t). Consequently,

(X(0)X(�t);X(0)Y (�t))

is also an input-output pair for the �lter h(�t). By using the principle of superposition and the
law of large numbers as we did in our preceding argument, we conclude that

(E[X(0)X(�t)]; E[X(0)Y (�t)]) = (RX(t); E[X(0)Y (�t)])

is an input-output pair for the �lter h(�t), from which it follows that

E[X(0)Y (�t)] = h(�t) � RX(t): (42.13)

Note the following time-invariance property:

E[X(0)Y (�t)] = E[X(u)Y (u� t)]; for all t; u:

In particular, taking u = t, we can say that

E[X(0)Y (�t)] = E[X(t)Y (0)]: (42.14)

If you stare at the three equations (42.12)-(42.14), you see that equation

RY (t) = h(t) � h(�t) �RX(t)

pops out!


