
EE 3025 Dr. Kie�er11 Re
 11:Mean-Square Estimation/Random Pro
essIntrodu
tionDire
tions: Your instru
tor will spend the the �rst 40 minutes of the re
itation periodworking some review problems and going over one or more Matlab experiments in the fol-lowing. During the last 10 minutes of re
itation, your pro
tor will give you a \Lab Form"that your re
itation team 
ompletes, signs, and turns in. See the last page for an indi
ationof what you will be asked to do on the Lab Form.Due to time limitations, only a part of the following 
an be 
overed during the re
itationperiod. However, you might want in the future to try some of the un
overed experiments onyour own. They 
ould give skills useful on some future homework problems and 
ould lendinsight into your understanding of the 
ourse from an experimental point of view.This Week's Topi
s.� Straight Line Re
eiver Versus Correlation Re
eiver� Least Squares Straight Line Fitting� Realizations of Random Pro
esses� 1-D/2-D Cross-Se
tions of a Pro
ess� Introdu
tion to Poisson Pro
ess11.1 Exp 1: Straight Line Re
eiver Versus Correlation Re
eiverIn the Le
ture 21 Notes, the 
orrelation re
eiver is developed, and you did a little bit withit in a previous lab report. In Se
tion 24.2 of the Le
ture 24 Notes, the straight line re
eiveris developed. It provides a smaller mean square estimation error performan
e than the
orrelation re
eiver. This fa
t 
an be demonstrated with Matlab simulations, and we willlead you toward this in the present experiment.Suppose in the blo
k diagramX ! 
hannel ! Y ! re
eiver ! X̂ = AY +Bthe estimator is the straight-line re
eiver, whi
h is the re
eiver of the form X̂ = AY +B whi
hminimizes mean-square estimation error E[(X� X̂)2℄ among all re
eivers of the straight lineform. Mean-square estimation theory tells us that there are two ways to �nd the 
onstantsA and B:Method 1: A = �X;Y �X=�YB = �X � A�Y1



Method 2: Solve AE[Y 2℄ +BE[Y ℄ = E[XY ℄AE[Y ℄ +B = E[X℄Whi
hever way you solve the problem, you 
an solve the problem if you know the ve
tor ofmeans " �X�Y #along with the 
ovarian
e matrix " �2X �X;Y�X;Y �2Y # :Example 1. Let the ve
tor of means be" �X�Y # = " �12:5 #and let the 
ovarian
e matrix be" �2X �X;Y�X;Y �2Y # = " 5 �2�2 7 # :Use Method 1 to �nd the optimum 
hoi
e of A;B in the straight line estimator X̂ = AY +B.Example 2. For the same (X; Y ) as in Example 1, now use Method 2 to �nd the optimum
hoi
e of A;B in the straight line estimator X̂ = AY +B. (Write the system of two equationsin Method 2 in matrix form, and then use the inverse of the 2� 2 
oeÆ
ient matrix to solvethe system.) Obviously, you should get the same answers for A;B as you got in Example 2.Example 3. The straight line re
eiver is better than the 
orrelation re
eiver in the follow-ing sense: it yields mean square estimation error E[(X� X̂)2℄ less than or equal to the meansquare estimation error yielded by the 
orrelation re
eiver X̂ = CY . In this example, youobtain Matlab veri�
ation of this fa
t. In a future le
ture or in the 
lass notes, I will provethat the mean square estimation error for the 
orrelation re
eiver is given by the formula
orr re
eiver estimation error = E[X2℄ 1� E[XY ℄2E[X2℄E[Y 2℄! (1)I will also prove that the mean square estimation error E[(X � X̂)2℄ for the straight linere
eiver is given by the formulastraight line re
eiver estimation error = �2X  1� Cov(X; Y )2�2X�2Y ! (2)Run the Matlab s
ript: 2



x=randn(1,50000)+1;z=2*randn(1,50000)+2;y=x+z;You have now stored in Matlab memory a ve
tor x of 50000 simulated values of a randomvariable X and a ve
tor y of 50000 simulated values of a random variable Y . The randompair (X; Y ) may be viewed as the random input and output, respe
tively, from a Gaussianadditive noise 
hannel. Use the ve
tors x,y to obtain estimates of the two �gures (1)-(2).Your instru
tor will give you some hints on obtaining the estimates. (For example,mean(x.^2)estimates E[X2℄, and var(x) estimates �2X .) See if your estimate for (2) is less than yourestimate for (1). Do the experiment again to see if your estimates \hold true". Now pi
k adi�erent 
orrelated random pair (X; Y ) that you 
an do the experiment on. (Hint: In theMatlab s
ript above for generating ve
tors x,y, repla
e ea
h \randn" by \rand".)11.2 Exp 2: Least Squares Straight Line Fitting\Least Squares straight line �tting to data" is something you typi
ally do in a freshman orsophomore physi
s lab: you plot a bun
h of (x; y) data points that you obtain from someexperiment and then you try to pass a straight line through these points. It is interestingto note that the theory of straight line re
eivers gives us a me
hanism for solving the \LeastSquares straight line �tting" problem. You will be
ome aware of this fa
t via this experiment.Let n be a positive integer. Suppose we are given a ve
tor of n observations x = (xi :i = 1; 2; � � � ; n) and a ve
tor of n observations y = (yi : i = 1; 2; � � � ; n). We will 
all (xi) the\x-data" and we will 
all (yi) the \y-data." In many s
ien
e and engineering appli
ationsyou have to �nd a least-squares straight-line �t of the y-data to the x-data. This means you�nd a straight line x = Ay +B su
h thatnXi=1(xi � fAyi +Bg)2is a minimum. Taking the partial derivatives with respe
t to A and B and setting themequal to zero, we see that A and B are found by solving the following equations (written inMatlab syntax): A �mean(y:^2) +B �mean(y) = mean(x: � y)A �mean(y) +B = mean(x) (3)� Example 4. Run the following Matlab 
ode in order to store in Matlab memory a datave
tor x and a data ve
tor y, ea
h 
onsisting of 10000 samples:u=randn(1,10000);v=randn(1,10000);x=u-3*v;y=2*u+v; 3



Now run some more lines of Matlab 
ode that will 
ompute the 
onstants A;B su
hthat the straight line x = Ay+ b is the best mean-square straight line �t of the y-datagiven by y to the x-data given by x.� Example 5. Let U; V be independent standard Gaussian RV's. Let X; Y be the depen-dent RV's de�ned by X = U � 3VY = 2U + VLet X̂ = AY +B be the minimum least-squares linear estimator ofX based on Y . Findapproximations to A and to B using Matlab. Hint: With x and y the pseudorandomve
tors generated in Example 4, argue that the solutions A;B to the system (3) areapproximately the same as the solutions toAE[Y 2℄ +BE[Y ℄ = E[XY ℄AE[Y ℄ +B = E[X℄11.3 Exp 3: Realizations of Random Pro
essesIf (Xn : n = 1; 2; 3; � � �) is a dis
rete-time random pro
ess (DTRP), and you observe thatthe 
omponent RV Xn takes the value xn for ea
h n, then the DT signal xn; n � 0, is arealization of the DTRP. Similarly, if (X(t) : t � 0) is a 
ontinuous-time random pro
ess(CTRP), and you observe that the 
omponent RV X(t) takes the value x(t) for ea
h t, thenthe CT signal x(t); t � 0, is a realization of the CTRP. In this experiment, you plot somerealizations of random pro
esses in order to get an idea of what the realizations look like.� Example 6. The following Matlab 
ode plots four di�erent realizations of the Bernoulli
oin-
ip pro
ess (Xn : n = 1; 2; 3; � � �), plotted from n = 1 to n = 50 only. (This is thepro
ess whi
h at time n generates �1 depending on whether n-th 
ip of fair 
oin isheads or tails.)u=rand(1,50);x1=(u>1/2)-(u<=1/2);subplot(2,2,1)bar(1:50,x1,.05)u=rand(1,50);x2=(u>1/2)-(u<=1/2);subplot(2,2,2)bar(1:50,x2,.05)u=rand(1,50);x3=(u>1/2)-(u<=1/2);subplot(2,2,3)bar(1:50,x3,.05)u=rand(1,50);x4=(u>1/2)-(u<=1/2);subplot(2,2,4)bar(1:50,x4,.05) 4



Suppose you were able to plot a realization of the Bernoulli pro
ess from n = 1 ton = 10000. About how many of the lines in the plot would be pointing up and howmany pointing down?� Example 7. In this example, you plot some realizations of the random walk pro
ess(Yn : n = 0; 1; 2; � � �) (i.e., the drunkard's walk) from n = 0 to n = 20. (This is thepro
ess you get by passing the Bernoulli pro
ess through a dis
rete-time integrator.)u=rand(1,20);x=(u>1/2)-(u<=1/2);y1=[0 
umsum(x)℄;subplot(2,2,1)plot(0:length(y1)-1,y1)u=rand(1,20);x=(u>1/2)-(u<=1/2);y2=[0 
umsum(x)℄;subplot(2,2,2)plot(0:length(y2)-1,y2)u=rand(1,20);x=(u>1/2)-(u<=1/2);y3=[0 
umsum(x)℄;subplot(2,2,3)plot(0:length(y3)-1,y3)u=rand(1,20);x=(u>1/2)-(u<=1/2);y4=[0 
umsum(x)℄;subplot(2,2,4)plot(0:length(y4)-1,y4)Examine one of the realizations. Des
ribe the motion of the drunkard based on thisrealization. (From one time instant to the next, the drunkard either takes one stepforward or one step ba
kward along a horizontal axis|start the drunkard at the origin.)� Example 8. In this example you plot some realizations of the CT random sinusoidpro
ess X(t) = A sin(2�t+�); t � 0where �, the \random phase", is uniformly distributed between 0 and 2�, and whereA, the \random amplitude", is a standard gaussian RV. The plots are done only fromt = 0 to t = 3 (three periods).t=0:.01:3;x1=randn(1,1)*sin(2*pi*t+2*pi*rand(1,1));subplot(2,2,1)plot(t,x1)x2=randn(1,1)*sin(2*pi*t+2*pi*rand(1,1));5



subplot(2,2,2)plot(t,x2)x3=randn(1,1)*sin(2*pi*t+2*pi*rand(1,1));subplot(2,2,3)plot(t,x3)x4=randn(1,1)*sin(2*pi*t+2*pi*rand(1,1));subplot(2,2,4)plot(t,x4)Is the amplitude of the realization more likely to be between 0 and 1 or more likely tobe between 1 and 2? Generate a few more realizations until you feel you are ready toanswer this question.11.4 Exp 4: 1-D/2-D Cross-Se
tions of a Pro
essLet X(t) be a random pro
ess asso
iated with a random experiment. Fix any time t0.Suppose you were to exe
ute the following two steps:Step 1: Perform the experiment and observe the realization signal x(t) that you get.Step 2: Sample x(t) at time t = t0, obtaining the value x(t0).As the result of these two steps, you obtain the value of a random variable whi
h we denoteby X(t0). This RV X(t0) is 
alled a \1-D 
ross-se
tion" of the pro
ess X(t). If you samplethe pro
ess at di�erent times, then you get di�erent 1-D 
ross-se
tions.Example 9. This example tea
hes you that 1-D 
ross-se
tions taken at di�erent times
an have quite a di�erent statisti
al 
hara
ter. Perform the following steps:(a) Run the lines of 
ode:t=0:.01:3;a=2*floor(2*rand(1,2))-1;x=a(1)*t+a(2);plot(t,x)You will see the plot of a realization of a pro
ess X(t) on your s
reen.(b) Run the lines of 
ode in (a) 10 di�erent times. On ea
h run, look at the plot of therealization that you get and using your eyeball, sample the realization at time t = 1.Write down the sequen
e of 10 sample values that you get in your re
itation notebook.These are 10 simulated values of the 1-D 
ross-se
tion random variable X(1).(
) Repeat (b), now sampling ea
h of your 10 realizations at time t = 2. The 10 samplevalues in your notebook now simulate 10 values of the 1-D 
ross-se
tion random variableX(2). 6



(d) Compare the results from (a) and (b) that you wrote down in your notebook. Do the
ross-se
tions X(1) and X(2) seem to have di�erent PMF's? Do you have any ideawhat these PMF's might be?For a given random pro
ess X(t), suppose you now �x two times t0; t1, with t0 < t1.Then, the pair of RV's (X(t0); X(t1)) is 
alled a 2-D 
ross-se
tion of pro
ess X(t). You 
anobserve a value of (X(t0); X(t1)) by (i) performing the underlying experiment and seeingwhat realization results, and then (ii) sampling that realization at times t0, t1, respe
tively.If these samples are a; b, respe
tively, then the point (a; b) is one observed value of the 2-D 
ross-se
tion (X(t0); X(t1)). Performing the experiment repeatedly, you will get furtherobserved values (a; b) of (X(t0); X(t1)).Example 10. Run the s
ript in part(a) of Example 9 ten times. Ea
h time, sample therealization you see on your s
reen at times t = 1 and t = 2. This will give you 10 (a; b)points in your notebook, whi
h are simulated values of the 2-D 
ross-se
tion (X(1); X(2)).If you obtained thousands of (a; b) points in this way, you 
ould average up the a � b valuesto estimate the 
orrelation E[X(t0)X(t1)℄ between the pro
ess and time t0 and time t1. Wewill use this 
orrelation estimation te
hnique next week (where we will 
all this method\spa
e-averaging" or \averaging a
ross 
ross-se
tions"). If you have more time, estimateE[X(1)X(2)℄ for the pro
ess of Examples 9-10 in this way.11.5 Exp 5: Poisson Pro
ess Introdu
tionThe Poisson pro
ess (also 
alled Poisson arrival pro
ess) is used to model arrivals in aqueueing system. In this experiment, we look at some realizations of a Poisson pro
ess and
on
lude various things from them.Example 11. Let us �rst 
onsider a Poisson pro
ess for whi
h there is one arrival perse
ond, on average. We 
an simulate the �rst six arrival times via the Matlab 
ode:t=
umsum(-log(rand(1,6)));Let these six arrival times be t1; t2; t3; t4; t5; t6; these are the entries of the ve
tor t. Considerthe step fun
tion de�ned s(t) over the time interval 0 � t � t6 de�ned as follows: s(t) is equalto 0 in the time interval 0 � t < t1, is equal to 1 in the time interval t1 � t < t2, 2 in the timeinterval t2 � t < t3, et
., ending up equal to 5 in the time interval t5 � t � t6. If we wereto 
onsider more and more arrivals until we had in�nitely many, then the step fun
tion s(t)would keep getting extended until the result would be a realization of the Poisson pro
ess.Plot s(t) using Matlab, by running the following Matlab 
ode:t=
umsum(-log(rand(1,6)));t=round(10^3*t)/10^3; %rounds arrival time to 3 de
imal pla
esdelta=.001;x1=0:delta:t(1)-delta; y1=0*ones(1,length(x1));x2=t(1):delta:t(2)-delta; y2=1*ones(1,length(x2));x3=t(2):delta:t(3)-delta; y3=2*ones(1,length(x3));x4=t(3):delta:t(4)-delta; y4=3*ones(1,length(x4));7



x5=t(4):delta:t(5)-delta; y5=4*ones(1,length(x5));x6=t(5):delta:t(6)-delta; y6=5*ones(1,length(x6));plot([x1 x2 x3 x4 x5 x6℄,[y1 y2 y3 y4 y5 y6℄)axis([0 t(6) 0 6℄)xlabel('time axis t')ylabel('number of arrivals s(t) up through time t')title('plot of realization of Poisson pro
ess')The resulting plot you see on your s
reen is a realization s(t) of the Poisson pro
ess. Doesit look a little bit like the plot above?
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Look at your realization s(t), and answer the following questions:� At what times do ea
h of the �rst 6 arrivals o

ur?� What is the length of time between the �rst arrival and the se
ond arrival, or betweenthe se
ond arrival and the fourth arrival?� What does the arrival rate seem to be in number of arrivals per se
ond (approximately)?Re-run the pre
eding lines of 
ode repeatedly to get other realizations. They should allgive you roughly 6 arrivals in the �rst 6 se
onds. But of 
ourse no two realizations will bethe same. 8



Example 12. Suppose you now want the arrival rate of the Poisson pro
ess to be twoarrivals per se
ond. Then, you repla
e the �rst line of the Matlab s
ript of Example 11 witht=
umsum(-log(rand(1,6))/2);Run the s
ript of Example 11 after making this 
hange and then look at the realization ofthe Poisson pro
ess that you see plotted on your Matlab s
reen. It should look a little bitlike the following plot:
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You 
an re-run the s
ript to get still further realizations. On average, you will have 6 arrivalsin 3 se
onds, an arrival rate of 2 arrivals per se
ond.
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EE 3025 S2007 Re
itation 11 Lab FormName and Student Number of Team Member 1:Name and Student Number of Team Member 2:Name and Student Number of Team Member 3:************************************************************************************Study Experiment 1. You will be doing something in 
onne
tion with the Experiment 1framework.
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