EE 3025 Dr. Kieffer

11 Rec 11:Mean-Square Estimation/Random Process
Introduction

Directions: Your instructor will spend the the first 40 minutes of the recitation period
working some review problems and going over one or more Matlab experiments in the fol-
lowing. During the last 10 minutes of recitation, your proctor will give you a “Lab Form”
that your recitation team completes, signs, and turns in. See the last page for an indication
of what you will be asked to do on the Lab Form.

Due to time limitations, only a part of the following can be covered during the recitation
period. However, you might want in the future to try some of the uncovered experiments on
your own. They could give skills useful on some future homework problems and could lend
insight into your understanding of the course from an experimental point of view.

This Week’s Topics.

Straight Line Receiver Versus Correlation Receiver

Least Squares Straight Line Fitting

Realizations of Random Processes

1-D/2-D Cross-Sections of a Process

Introduction to Poisson Process

11.1 Exp 1: Straight Line Receiver Versus Correlation Receiver

In the Lecture 21 Notes, the correlation receiver is developed, and you did a little bit with
it in a previous lab report. In Section 24.2 of the Lecture 24 Notes, the straight line receiver
is developed. It provides a smaller mean square estimation error performance than the
correlation receiver. This fact can be demonstrated with Matlab simulations, and we will
lead you toward this in the present experiment.

Suppose in the block diagram

X > [channel] — V' — [receiver] — X = AY + B

the estimator is the straight-line receiver, which is the receiver of the form X = AY + B which
minimizes mean-square estimation error E[(X — X)?] among all receivers of the straight line
form. Mean-square estimation theory tells us that there are two ways to find the constants

A and B:
Method 1:

A = PX,YUX/CTY

B = pux — Apy

Method 2: Solve

AE[Y?|+ BE[Y] = E[XY]
AEY]+B = FE[X]

Whichever way you solve the problem, you can solve the problem if you know the vector of

means
Hx
Mty

2
Ox OX,Y
2 .
OxX)y Oy

Ezample 1. Let the vector of means be

along with the covariance matrix

and let the covariance matrix be

0%(OxX)Yy o 5 —2
Ox)Yy 0'32/ N —2 7 '
Use Method 1 to find the optimum choice of A, B in the straight line estimator X = AY + B.

Ezample 2. For the same (X,Y) as in Example 1, now use Method 2 to find the optimum
choice of A, B in the straight line estimator X = AY +B. (Write the system of two equations
in Method 2 in matrix form, and then use the inverse of the 2 x 2 coefficient matrix to solve
the system.) Obviously, you should get the same answers for A, B as you got in Example 2.

Example 3. The straight line receiver is better than the correlation receiver in the follow-
ing sense: it yields mean square estimation error E[(X — X)?] less than or equal to the mean
square estimation error yielded by the correlation receiver X = C'Y. In this example, you
obtain Matlab verification of this fact. In a future lecture or in the class notes, I will prove
that the mean square estimation error for the correlation receiver is given by the formula

' timati EIX* (1 BIXYT (1)
corr recetver estimation error = -
E[X?E[Y?]
I will also prove that the mean square estimation error E[(X — X)?] for the straight line
receiver is given by the formula

(2)

straight line receiver estimation error = oy =
OxOy

, (1 ~ CoulX, Y)2>

Run the Matlab script:

x=randn(1,50000)+1;
z=2*randn(1,50000)+2;
y=x+2;

You have now stored in Matlab memory a vector x of 50000 simulated values of a random
variable X and a vector y of 50000 simulated values of a random variable Y. The random
pair (X,Y) may be viewed as the random input and output, respectively, from a Gaussian
additive noise channel. Use the vectors x,y to obtain estimates of the two figures (1)-(2).
Your instructor will give you some hints on obtaining the estimates. (For example,

mean(x.”2)

estimates E[X?|, and var(x) estimates 0%.) See if your estimate for (2) is less than your

estimate for (1). Do the experiment again to see if your estimates “hold true”. Now pick a
different correlated random pair (X,Y’) that you can do the experiment on. (Hint: In the
Matlab script above for generating vectors x,y, replace each “randn” by “rand”.)

11.2 Exp 2: Least Squares Straight Line Fitting

“Least Squares straight line fitting to data” is something you typically do in a freshman or
sophomore physics lab: you plot a bunch of (z,y) data points that you obtain from some
experiment and then you try to pass a straight line through these points. It is interesting
to note that the theory of straight line receivers gives us a mechanism for solving the “Least
Squares straight line fitting” problem. You will become aware of this fact via this experiment.

Let n be a positive integer. Suppose we are given a vector of n observations x = (z; :
i=1,2,---,n) and a vector of n observations y = (y; : i = 1,2,---,n). We will call (z;) the
“x-data” and we will call (y;) the “y-data.” In many science and engineering applications
you have to find a least-squares straight-line fit of the y-data to the x-data. This means you
find a straight line x = Ay + B such that

n

> (zi = {Ayi + B})”

i=1

is a minimum. Taking the partial derivatives with respect to A and B and setting them
equal to zero, we see that A and B are found by solving the following equations (written in
Matlab syntax):

Asxmean(y.”2) + Bxmean(y) = mean(x. xy)
Axmean(y) + B = mean(z) (3)

e FExample 4. Run the following Matlab code in order to store in Matlab memory a data
vector x and a data vector y, each consisting of 10000 samples:

u=randn(1,10000);
v=randn(1,10000) ;
X=u-3%v;
y=2%u+v;

Now run some more lines of Matlab code that will compute the constants A, B such
that the straight line x = Ay + b is the best mean-square straight line fit of the y-data
given by y to the x-data given by x.

e Fzample 5. Let U,V be independent standard Gaussian RV’s. Let X,Y be the depen-
dent RV’s defined by

X = U-3V
Y = 204V

Let X = AY + B be the minimum least-squares linear estimator of X based on Y. Find
approximations to A and to B using Matlab. Hint: With x and y the pseudorandom
vectors generated in Example 4, argue that the solutions A, B to the system (3) are
approximately the same as the solutions to

AE[Y?] + BE[Y] = E[XY]
AE)Y]|+ B = E[X]

11.3 Exp 3: Realizations of Random Processes

If (X,,:n=1,23,--+) is a discrete-time random process (DTRP), and you observe that
the component RV X, takes the value x, for each n, then the DT signal x,,n > 0, is a
realization of the DTRP. Similarly, if (X (¢) : ¢ > 0) is a continuous-time random process
(CTRP), and you observe that the component RV X () takes the value x(¢) for each ¢, then
the CT signal z(t),# > 0, is a realization of the CTRP. In this experiment, you plot some
realizations of random processes in order to get an idea of what the realizations look like.

e FHzample 6. The following Matlab code plots four different realizations of the Bernoulli
coin-flip process (X, : n =1,2,3,---), plotted from n =1 to n = 50 only. (This is the
process which at time n generates +1 depending on whether n-th flip of fair coin is
heads or tails.)

u=rand (1,50);
x1=(u>1/2)- (u<=1/2);
subplot(2,2,1)
bar(1:50,x1,.05)
u=rand(1,50);
x2=(u>1/2)-(u<=1/2);
subplot(2,2,2)
bar(1:50,x2, .05)
u=rand(1,50);
x3=(u>1/2)-(u<=1/2);
subplot(2,2,3)
bar(1:50,x3,.05)
u=rand (1,50);
x4=(u>1/2)-(u<=1/2);
subplot(2,2,4)
bar(1:50,x4, .05)

Suppose you were able to plot a realization of the Bernoulli process from n = 1 to
n = 10000. About how many of the lines in the plot would be pointing up and how
many pointing down?

Erample 7. In this example, you plot some realizations of the random walk process
(Y, :n=20,1,2,---) (i.e., the drunkard’s walk) from n = 0 to n = 20. (This is the
process you get by passing the Bernoulli process through a discrete-time integrator.)

u=rand(1,20);
x=(u>1/2)-(u<=1/2);
y1=[0 cumsum(x)];
subplot(2,2,1)
plot(0:length(y1)-1,y1)
u=rand(1,20);
x=(u>1/2)-(u<=1/2);
y2=[0 cumsum(x)];
subplot(2,2,2)
plot(0:length(y2)-1,y2)
u=rand(1,20);
x=(u>1/2)-(uk=1/2);
y3=[0 cumsum(x)];
subplot(2,2,3)
plot(0:length(y3)-1,y3)
u=rand(1,20);
x=(u>1/2)-(u<=1/2);
y4=[0 cumsum(x)];
subplot(2,2,4)
plot(0:length(y4)-1,y4)

Examine one of the realizations. Describe the motion of the drunkard based on this
realization. (From one time instant to the next, the drunkard either takes one step
forward or one step backward along a horizontal axis = start the drunkard at the origin.)

Erample 8. In this example you plot some realizations of the CT random sinusoid

process
X(t)=Asin(2rt +0©), t >0

where ©, the “random phase”, is uniformly distributed between 0 and 27, and where
A, the “random amplitude”, is a standard gaussian RV. The plots are done only from
t =0 to t =3 (three periods).

t=0:.01:3;
xl=randn(1,1)*sin(2*pi*t+2*pi*rand(1,1));
subplot(2,2,1)

plot(t,x1)

x2=randn (1, 1) *sin(2*pi*t+2*pi*rand(1,1));

subplot(2,2,2)

plot(t,x2)

x3=randn(1,1) *sin(2*pi*t+2*pi*rand(1,1));
subplot(2,2,3)

plot(t,x3)

x4=randn(1,1) *sin(2*pi*t+2*pi*rand(1,1));
subplot(2,2,4)

plot (t,x4)

Is the amplitude of the realization more likely to be between 0 and 1 or more likely to
be between 1 and 27 Generate a few more realizations until you feel you are ready to
answer this question.

11.4 Exp 4: 1-D/2-D Cross-Sections of a Process

Let X(¢) be a random process associated with a random experiment. Fix any time t.
Suppose you were to execute the following two steps:

Step 1: Perform the experiment and observe the realization signal x(¢) that you get.
Step 2: Sample z(t) at time t = ¢y, obtaining the value x(ty).

As the result of these two steps, you obtain the value of a random variable which we denote
by X(t9). This RV X (t¢) is called a “1-D cross-section” of the process X (t). If you sample
the process at different times, then you get different 1-D cross-sections.

Example 9. This example teaches you that 1-D cross-sections taken at different times
can have quite a different statistical character. Perform the following steps:

(a) Run the lines of code:

t=0:.01:3;

a=2*floor (2*rand(1,2))-1;
x=a(1)*xt+a(2);

plot(t,x)

You will see the plot of a realization of a process X (f) on your screen.

(b) Run the lines of code in (a) 10 different times. On each run, look at the plot of the
realization that you get and using your eyeball, sample the realization at time £ = 1.
Write down the sequence of 10 sample values that you get in your recitation notebook.
These are 10 simulated values of the 1-D cross-section random variable X (1).

(c) Repeat (b), now sampling each of your 10 realizations at time ¢ = 2. The 10 sample
values in your notebook now simulate 10 values of the 1-D cross-section random variable
X(2).

(d) Compare the results from (a) and (b) that you wrote down in your notebook. Do the
cross-sections X (1) and X (2) seem to have different PMF’s? Do you have any idea
what these PMF’s might be?

For a given random process X (t), suppose you now fix two times tg,t;, with t5 < #;.
Then, the pair of RV's (X (to), X (¢1)) is called a 2-D cross-section of process X (¢). You can
observe a value of (X (tp), X(¢1)) by (i) performing the underlying experiment and seeing
what realization results, and then (ii) sampling that realization at times ¢y, ¢, respectively.
If these samples are a,b, respectively, then the point (a,b) is one observed value of the 2-
D cross-section (X (ty), X (#1)). Performing the experiment repeatedly, you will get further
observed values (a, b) of (X (to), X (t1)).

Ezample 10. Run the script in part(a) of Example 9 ten times. Each time, sample the
realization you see on your screen at times t = 1 and ¢ = 2. This will give you 10 (a, b)
points in your notebook, which are simulated values of the 2-D cross-section (X (1), X(2)).
If you obtained thousands of (a, b) points in this way, you could average up the a * b values
to estimate the correlation E[X (t9) X (¢1)] between the process and time , and time ¢;. We
will use this correlation estimation technique next week (where we will call this method
“space-averaging” or “averaging across cross-sections”). If you have more time, estimate
E[X(1)X(2)] for the process of Examples 9-10 in this way.

11.5 Exp 5: Poisson Process Introduction

The Poisson process (also called Poisson arrival process) is used to model arrivals in a
queueing system. In this experiment, we look at some realizations of a Poisson process and
conclude various things from them.

Ezample 11. Let us first consider a Poisson process for which there is one arrival per
second, on average. We can simulate the first six arrival times via the Matlab code:

t=cumsum(-log(rand(1,6)));

Let these six arrival times be ¢, 19, t3, t4. t5, tg; these are the entries of the vector t. Consider
the step function defined s(t) over the time interval 0 < ¢t < 4 defined as follows: s(t) is equal
to 0 in the time interval 0 < t < t;, is equal to 1 in the time interval ¢; <t < t5, 2 in the time
interval t, < t < t3, etc., ending up equal to 5 in the time interval t5 < t < t5. If we were
to consider more and more arrivals until we had infinitely many, then the step function s(¢)
would keep getting extended until the result would be a realization of the Poisson process.
Plot s(t) using Matlab, by running the following Matlab code:

t=cumsum(-log(rand(1,6)));

t=round(10°3%t)/1073; %rounds arrival time to 3 decimal places
delta=.001;

x1=0:delta:t(1)-delta; yl1=0%*ones(1,length(x1));

x2=t (1) :delta:t(2)-delta; y2=1*ones(1,length(x2));

x3=t(2) :delta:t(3)-delta; y3=2*ones(1,length(x3));

x4=t(3) :delta:t(4)-delta; y4=3*ones(1,length(x4));

7

x5=t (4) :delta:t(b)-delta; yb=4*ones(1,length(x5));
x6=t (5) :delta:t(6)-delta; yb6=5*ones(1,length(x6));
plot([x1 x2 x3 x4 x5 x61,[yl y2 y3 y4 y5 y6l)

axis ([0 t(6) 0 6]1)

xlabel(’time axis t’)

ylabel (’number of arrivals s(t) up through time t’)
title(’plot of realization of Poisson process’)

The resulting plot you see on your screen is a realization s(t) of the Poisson process. Does

it look a little bit like the plot above?

plot of realization of Poisson process
6 T T T

number of arrivals s(t) up through time t
w
T
|

time axis t

Look at your realization s(t), and answer the following questions:
e At what times do each of the first 6 arrivals occur?

e What is the length of time between the first arrival and the second arrival, or between
the second arrival and the fourth arrival?

e What does the arrival rate seem to be in number of arrivals per second (approximately)?

Re-run the preceding lines of code repeatedly to get other realizations. They should all
give you roughly 6 arrivals in the first 6 seconds. But of course no two realizations will be
the same.

Erample 12. Suppose you now want the arrival rate of the Poisson process to be two
arrivals per second. Then, you replace the first line of the Matlab script of Example 11 with

t=cumsum(-log(rand(1,6))/2);

Run the script of Example 11 after making this change and then look at the realization of
the Poisson process that you see plotted on your Matlab screen. It should look a little bit
like the following plot:

plot of realization of Poisson process
6 T T

number of arrivals s(t) up through time t
w
T
|

0 ! ! ! ! ! !
0 0.5 1 15 2 25 3

time axis t

You can re-run the script to get still further realizations. On average, you will have 6 arrivals
in 3 seconds, an arrival rate of 2 arrivals per second.

EE 3025 S2007 Recitation 11 Lab Form

Name and Student Number of Team Member 1:
Name and Student Number of Team Member 2:

Name and Student Number of Team Member 3:

>k 3k 3Kk Kok kosk sk sk sk sk sk sk sk sk sk sk sk sk sk skok sk skok skosk sk sk sk sk sk ko skokok sk sk sk sk sk sk sk sk skokokoskosk sk sk sk sk sk sk sk skokok sk sk sk skosk sk skoskokoskokoskok sk skoskoskokokokoskoksk

Study Experiment 1. You will be doing something in connection with the Experiment 1
framework.

10

