
EE 3025 Dr. Kie�er12 Re 12: WSS Proesses; Preditor DesignDiretions: Your instrutor will spend the the �rst 40 minutes of the reitation periodworking some review problems and going over one or more Matlab experiments in the fol-lowing. During the last 10 minutes of reitation, your protor will give you a \Lab Form"that your reitation team ompletes, signs, and turns in. See the last page for an indiationof what you will be asked to do on the Lab Form.Due to time limitations, only a part of the following an be overed during the reitationperiod. However, you might want in the future to try some of the unovered experiments onyour own. They ould give skills useful on some future homework problems and ould lendinsight into your understanding of the ourse from an experimental point of view.This Week's Topis.� Mean Funtion of a Proess� WSS Proess Power� WSS Autoorrelations Via Time Averaging� WSS Autoorrelations Via Spae Averaging� Linear Preditor Design12.1 Exp 1: Mean Funtion of a ProessAny proess (X(t)) has a mean funtion �X(t), de�ned by�X(t) �= E[X(t)℄; for all tThis experiment onsists of two parts: in Part One, we disuss the mean funtion of anonstationary proess; in Part Two, we disuss the mean of a wide-sense stationary proess(WSS proess), whih is a onstant.12.1.1 Part One: �X(t) of Nonstationary Proess X(t)There are many appliations in whih one may want to estimate the mean funtion of anonstationary proess. Here are a ouple of these appliations:Appliation 1: Suppose x(t) is a deterministi input signal to an additive noise ommu-niation hannel. The hannel output signal Y (t) is a random signal whih an bemodeled as Y (t) = x(t) + Z(t)where the random proess (Z(t)) is the hannel noise. If the hannel noise has meanzero, then x(t) = �Y (t) and trying to estimate the input signal is equivalent to esti-mating the mean funtion of the Y proess.1



Appliation 2: Let (Xn) be a DTRP (disrete time random proess) in whih, for eahtime n, Xn models the Dow Jones �nal losing value on day n at the New York Stokexhange. You might �nd wild utuations in Xn from day to day. It might bemore bene�ial for stok market foreasting purposes to �nd an underlying \trend", adeterministi signal xn less wild than Xn, whih might be modeled asXn = xn + Znwhere Zn is 0-mean noise. With this kind of modeling, xn is the mean funtion of RPXn.Example 1. Run the following sript:t=1:100;x=20*t + 10000 +200*randn(1,length(t));plot(t,x)What you see on your sreen is an initial piee of a realization of a proess X(t). (Thinkof this plot as the plot of 100 onseutive daily Dow Jones losing �gures, if you want.)What is the \trend"? That is, what is an estimate of the mean funtion �X(t), whih is adeterministi signal? Run the following Matlab ode, whih \spae-averages" aross 1000di�erent realizations to estimate the trend:lear;t=1:100;S=zeros(1,length(t));for i=1:1000realization=20*t + 10000 +200*randn(1,length(t));S=S+realization;endmean_funtion_estimate=S/1000;plot(t,mean_funtion_estimate)Is the trend more apparent now?Example 2. Suppose one wants to estimate the mean funtion but one has only onerealization to work with. (This might be a more realisti assumption for the Dow Jonesproblem.) One an't just simply average aross the whole realization to approximate themean funtion, beause then one would obtain a onstant. Instead, one ould subdivide thetime axis into small subintervals and then average the samples over eah subinterval. Thisis what we do below for the pseudorandomly generated realization from Example 1. Onehange though|this type of estimation requires many more samples along the realizationthan we were using before; instead of 100 samples, we use 99000, whih we subdivide into1000 intervals ontaining 99 samples eah:lear;t=1.001:.001:100;x=20*t + 10000 + 200*randn(1,length(t));2



for i=1:1000subinterval=(i-1)*99+1:i*99;tt(i)=mean(t(subinterval));xx(i)=mean(x(subinterval));endtime_axis=tt;mean_funtion_estimate=xx;plot(time_axis,mean_funtion_estimate)12.1.2 Part Two: Mean of WSS ProessThe mean funtion of a WSS proess is a onstant. Let us take the WSS proess as a disretetime proess Xn. Then its mean is the number �X suh thatE[Xn℄ = �Xfor every n. In other words, every 1-D ross-setion random variable of the proess has thesame mean, whih we denote by �X . There are two methods for estimating �X , namely,\spae averaging" and \time averaging," desribed as follows:Spae Averaging Method For Estimating �X: For a �xed time n, estimate �X via theformula �̂X = J�1 JXj=1xjn;for a large J , where, for eah j = 1; 2; � � � ; J , xjn is a di�erent realization of the proessXn.Time Averaging Method For Estimating �X: For a realization xn of the proess Xn,ompute the following estimate of �X via time averaging:�̂X = N�1 NXn=1 xn (1)In formula (1), [x1; x2; � � � ; xN ℄ represents a large segment of the realization. We areassuming here that the estimate (1) does not vary appreiably from realization to real-ization. (This means we have an ergodi proess. We will over ergodi WSS proessesin a future leture.) If the right side of (1) varies from realization to realization, thenwe would have to average up the right hand sides of (1) for many di�erent realizationsin order to obtain our estimate of �X . (This is the nonergodi ase.)Example 3. Let (Xn) be the IID proess in whih all the Xn's have the same exponentialdistribution with mean 1=4. We let (Yn) be the proessYn = 2Xn + 3Xn�1 (2)The Y proess is WSS (beause the X proess is, and anytime you pass a WSS proessthrough a time-invariant stable linear �lter, you get a WSS output proess; we will prove3



this in Chapter 11). In this example, we estimate the mean �Y of the Y proess both byspae-averaging and time-averaging. Run the following ode, whih estimates �Y by spae-averaging:lear;for i=1:10000X1=-(0.25)*log(rand(1,1)); X2=-(0.25)*log(rand(1,1));Y2spae(i)=2*X2+3*X1;endestimate_muY=mean(Y2spae)Can you determine what the exat value of �Y is using the equation (2)? Is your estimategenerated by the preeding Matlab ode very far o� from that? Now, run the followingMatlab ode, whih estimates �Y via time-averaging:x=-(0.25)*log(rand(1,50000));n=2:50000;y=2*x(n)+3*x(n-1);estimate_muY=mean(y)Re-run these lines several times to make sure you are getting about the same estimate.(This ensures that we have an ergodi proess|the estimate is not hanging appreiably ifwe re-ompute the estimate using di�erent realizations.)Example 4. Let (Xn) be the same proess as used in Example 3. If we pass (Xn) througha stable linear time-invariant �lter with impulse response funtion (hn), resulting in outputproess Y, then Chapter 11 will tell us that �X and �Y are related by the formula�Y = �X [Xn hn℄ (3)Let (Yn) be the proess Yn = Xn + (0:75)Yn�1 (4)Run the following Matlab ode, whih will estimate �Y via time-averaging:lear;x=-(0.25)*log(rand(1,10000));y(1)=0;for i=2:10000y(i) = x(i) + (0.75)*y(i-1);endmean(y)As in Example 3, re-run the ode more than one to make sure the ergodi assumption isvalid (that is, you should get about the same estimate of �Y eah run). Reall from EE 3015that the impulse response hn of the �lter used to obtain (Yn) from (Xn) is the response ofthe �lter to the delta funtion input. With this in mind, you an now run the following odewhih will obtain an approximation to Pn hn in equation (3):4



delta=[0 1 zeros(1,10000)℄;h(1)=0;for i=2:10000h(i) = delta(i) + (0.75)*h(i-1);endsum(h)Does formula (3) seem to be true? (Reall that the X proess has mean 1=4.)12.2 Exp 2: WSS Proess PowerLet Xn; n = 1; 2; 3; � � �be a DT WSS proess. The power �gure PX for the proess Xn is de�ned by the seondmoment PX �= E[X2n℄;where, in this alulation, the disrete time variable n is held �xed (by the WSS assumption,you will obtain the same seond moment for all n). If you have already been given theautoorrelation funtion RX(�) of the proess, then PX an be onveniently obtained via theformula PX �= RX(0):Similarly to what we did in Experiment 1 in estimating �X , you an also estimate PX byeither spae averaging or time averaging:Spae Averaging Method For Estimating PX : For a �xed time n, approximate E[X2n℄ =PX as a spae-average P̂X � J�1 JXj=1(xjn)2;for a large J , where, for eah j = 1; 2; � � � ; J , xjn is a di�erent realization of the proessXn.Time Averaging Method For Estimating PX: For a realization xn of the proess Xn,evaluate the time-average N�1 NXn=1x2n (5)over a large segment [x1; x2; � � � ; xN ℄ of the realization. See if this quantity variesappreiably from realization to realization. If it does not, then this average an betaken as an estimate of PX . (That is, you have an ergodi proess.) If the time average(5) varies from realization to realization, then you have a nonergodi proess and thenyou must average up these time averages for many di�erent realizations in order to geta true estimate of PX .
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Example 5. We onsider the sum of two random sinusoidsXn = A1 os(n+�1) + A2 os(2n+�2); n = 1; 2; � � �in whih the amplitude A1 is Gaussian with mean 0 variane 1, the amplitude A2 is Gaussianwith mean 0 variane 4, and the two phases �1 and �2 are eah uniformly distributed in[0; 2�℄. (The amplitudes and phases are independent.) It an be shown that this proess isWSS, so we an use both the spae and time averaging tehniques for estimating PX . Runthe following Matlab ode, whih estimates PX using the spae averaging method, where thespae average is omputed at time n = 1:lear;n=1;for i=1:5000a1=randn(1,1); a2=2*randn(1,1);theta1=2*pi*rand(1,1); theta2=2*pi*rand(1,1);x1=a1*os(n+theta1)+a2*os(2*n+theta2);powerterm(i)=x1^2;endPX = mean(powerterm)Just to double-hek that we an do the spae-averaging at any time, run the followingMatlab ode where the spae-averaging power estimate is omputed at time n = 2:n=2;for i=1:5000a1=randn(1,1); a2=2*randn(1,1);theta1=2*pi*rand(1,1); theta2=2*pi*rand(1,1);x2=a1*os(n+theta1)+a2*os(2*n+theta2);powerterm(i)=x2^2;endPX = mean(powerterm)Now, run the following ode, to see what time-average power a realization of this proessgives:n=1:100;a1=randn(1,1); a2=2*randn(1,1);theta1=2*pi*rand(1,1); theta2=2*pi*rand(1,1);x=a1*os(n+theta1)+a2*os(2*n+theta2);power=mean(x.^2)Run this ode several times to see if the power varies (it should, beause we have a nonergodiproess). Now run the following Matlab ode, in whih you average up 500 of these power�gures:for j=1:500n=1:100; 6



a1=randn(1,1); a2=2*randn(1,1);theta1=2*pi*rand(1,1); theta2=2*pi*rand(1,1);x=a1*os(n+theta1)+a2*os(2*n+theta2);power(j)=mean(x.^2);endmean(power)Run this ode again to see if the result hanges appreiably (it should not). Does this time-averaging power �gure approximately agree with the spae-averaging power �gure that youomputed at the beginning of this example?12.3 Exp 3: WSS Autoorrelations Via Time AveragingLet Xn; n = 0;�1;�2;�3; � � �be a bilateral DT WSS proess. (You an always onsider a WSS proess to have started attime �1.) Then, for eah integer \lag" � , the autoorrelation RX(�) at lag � is de�ned byRX(�) �= E[XnXn�� ℄(This omputation an be done for any �xed n and will yield the same answer.) In Experi-ments 1 and 2, we used the time averaging method to estimate the proess mean �X and theproess power PX . In this experiment, we use the time averaging method to estimate valuesof the autoorrelation funtion RX(�). (In the next experiment, we use the spae averagingmethod to estimate RX(�) values.) Here is how the time averaging method works:Time Averaging Method For Estimating RX(�): Observe a suÆiently long piee[x1; x2; x3; � � � ; xN ℄of a realization xn, and then estimate RX(�) for a �xed � by:R̂X(�) = N�1 NXn=1xnxn�� (6)If we assume that the proess Xn is ergodi, then looking at this one realization isenough. (Subsequent realizations of the proess will yield roughly the same R̂X(�)value via time averaging.) It should be pointed out that the size of N that you need in(6) is dependent upon the �xed value of � . If you make � somewhat larger, then youwould probably also have to make N somewhat larger in order for the expression (6)to give a good estimate.Example 6. We an obtain a WSS proess by putting a white noise proess through anFIR �lter. In this example, we �lter the Gaussian white noise proess (Zn) in whih eahZn is a standard Gaussian RV as follows:Xn = 2Zn � (3:5)Zn�1 + 4Zn�2 + (1:5)Zn�4Run the following ode, whih will �nd an approximation R̂X(�) to RX(�) for � = 0; 1; 2; 3; 4via the time averaging method: 7



lear;z=randn(1,100000);n=5:100000;x=2*z(n)-(3.5)*z(n-1) + 4*z(n-2) + (1.5)*z(n-4);Rxhat0 = mean(x.*x)Rxhat1 = mean(x(2:length(x)).*x(1:length(x)-1))Rxhat2 = mean(x(3:length(x)).*x(1:length(x)-2))Rxhat3 = mean(x(4:length(x)).*x(1:length(x)-3))Rxhat4 = mean(x(5:length(x)).*x(1:length(x)-4))You will see the autoorrelation estimates printed out on your sreen. Let me guide you inalulating the exat value of RX(2) so that you an ompare to estimate R̂X(2) on yoursreen. Sine RX(2) = E[XnXn�2℄, we have to multiply2Zn � (3:5)Zn�1 + 4Zn�2 + (1:5)Zn�4by 2Zn�2 � (3:5)Zn�3 + 4Zn�4 + (1:5)Zn�6You only have to worry about a produt of a term from the 1st sum times a term fromthe seond sum if both terms are of the form Zi for the same i (why?). This gives us theproduts 8Z2n�2 + 6Z2n�4Taking the expeted value, you get 8 + 6 = 14 = RX(2). Compare this to the estimateR̂X(2). Compute one or more other values RX(�) and ompare to the orresponding R̂X(�).Save your estimates R̂X(�) (you will ompare them to the spae averaging estimates inExperiment 4).Example 7. Let (Zn) be the same proess as in Example 6. We generate from (Zn) thefollowing proess (Yn : n = 1; 2; � � �), via seond-order autoregresssive �ltering:Yn = ( 0; n = 1; 2Zn + (0:75)Yn�1 � (0:2)Yn�2; n > 2The proess (Yn) is not WSS (beause of the initial onditions at times n = 1; 2), but itlooks more and more like a WSS proess as time n ! 1. Therefore, the autoorrelationsRY (�) an be taken as RY (�) = limn!1E[YnYn�� ℄We will not have a general method for expliitly omputing these autoorrelations until weget to Chapter 11. However, we an approximate these autoorrelations via time averagingright now. Run the following ode to get approximations to RY (0); RY (1); RY (2):lear;z=randn(1,10000);y(1)=0; y(2)=0;for n=3:10000y(n)=z(n) + (0.75)*y(n-1) - (0.2)*y(n-2);8



endRyhat0 = mean(y.*y)Ryhat1 = mean(y(2:length(y)).*y(1:length(y)-1))Ryhat2 = mean(y(3:length(y)).*y(1:length(y)-2))Save the approximations R̂Y (�) (� = 0; 1; 2) that you see on your sreen (for Experiment 4).Example 8. Let � be a RV uniformly distributed in the interval [0; 2�℄. Let (Wn : n =1; 2; 3; � � �) be the DT proessWn = os(n +�); n = 1; 2; 3; � � �By running the following ode, you approximate some autoorrelation values RW (�):n=1:100000;w=os(n+2*pi*rand(1,1));Rwhat0 = mean(w.*w)Rwhat1 = mean(w(2:length(w)).*w(1:length(w)-1))Rwhat2 = mean(w(3:length(w)).*w(1:length(w)-2))Rwhat3 = mean(w(4:length(w)).*w(1:length(w)-3))Rwhat4 = mean(w(5:length(w)).*w(1:length(w)-4))12.4 Exp 4: WSS Autoorrelations Via Spae AveragingLet Xn be a WSS proess. This experiment illustrates the use of the spae averaging methodfor estimating values of the autoorrelation funtion RX(�).Suppose for a �xed � that you want to estimate the autoorrelation value RX(�). Thespae averaging method estimates RX(�) as follows:R̂X(�) = Average of XNXN�� aross a large number of realizations (7)In equation (7), the integer N is �xed. Let us disuss the hoie of the integer N :� If the integer time variable n in the WSS proess Xn runs from �1 to 1 (bilateralproess), then the �xed integer N ould be any integer.� If the WSS proess Xn starts at time n = 0, then N would be hosen to be � � .� Suppose the proess Xn arises from reursive stable linear �ltering of a WSS proessstarting at time n = 0. Then, Xn will not be WSS but will instead beome approx-imately WSS as n beomes larger and larger; this is beause of the presene of atransient omponent of the random signal Xn whih dies out as n beomes large. Inthis ase, one would hoose the �xed integer N in the spae averaging method to belarge enough so that the approximate WSS behavior is valid.Example 9. Let (Xn) be the proess from Example 6. Run the following Matlab sriptto obtain spae averaging estimates for the same autoorrelation values used in Example 6.(The sript uses N = 9 and 5000 realizations to implement the spae averaging estimategiven by (7).) 9



lear;M=zeros(5000,5); %eah row will store X5,X6,X7,X8,X9 from a realizationfor i=1:5000z=randn(1,9);n=5:9;x=2*z(n)-(3.5)*z(n-1) + 4*z(n-2) + (1.5)*z(n-4);M(i,1:5)=x;endRxhat0 = mean(M(:,5).*M(:,5))Rxhat1 = mean(M(:,4).*M(:,5))Rxhat2 = mean(M(:,3).*M(:,5))Rxhat3 = mean(M(:,2).*M(:,5))Rxhat4 = mean(M(:,1).*M(:,5))Compare these estimates with the time averaging estimates found in Example 6.Example 10. Let Y be the proess in Example 7. Starting at N = 20, the proess isalmost WSS. Run the following ode, whih forms estimates of RY (0); RY (1); RY (2) via (7)with N = 20 and 5000 realizations:lear;M=zeros(5000,3); %eah row will store Y18,Y19,Y20 from a realizationfor i=1:5000z=randn(1,20);y(1)=0; y(2)=0;for n=3:20y(n)=z(n) + (0.75)*y(n-1) - (0.2)*y(n-2);endM(i,1:3)=y(18:20);endRyhat0 = mean(M(:,3).*M(:,3))Ryhat1 = mean(M(:,2).*M(:,3))Ryhat2 = mean(M(:,1).*M(:,3))Compare these estimates with the time averaging estimates found in Example 7.Example 11. Let W be the proess in Example 8. The following ode uses N = 5 and10000 realizations to obtain spae averaging estimates (7) of RW (�) for � = 0; 1; 2; 3; 4:lear;M=zeros(10000,5); %eah row will store W1,W2,W3,W4,W5 from a realizationfor i=1:10000n=1:5;w=os(n+2*pi*rand(1,1));M(i,1:5)=w; %the realization has been stored in MendRwhat0 = mean(M(:,5).*M(:,5)) 10



Rwhat1 = mean(M(:,4).*M(:,5))Rwhat2 = mean(M(:,3).*M(:,5))Rwhat3 = mean(M(:,2).*M(:,5))Rwhat4 = mean(M(:,1).*M(:,5))Compare these answers to the time averaging estimates in Example 8.12.5 Exp 5: Linear Preditor DesignLet (Xn) be a WSS proess. Then, the minimum mean-square �rst, seond, and third orderlinear preditors for Xn take the form:X̂n = AXn�1X̂n = BXn�1 + CXn�2X̂n = DXn�1 + EXn�2 + FXn�3The �rst order preditor oeÆient A is given by the equationA = RX(1)=RX(0): (8)The seond order preditor oeÆients B;C are obtained by solving the matrix equation:" RX(0) RX(1)RX(1) RX(0) # " BC # = " RX(1)RX(2) # (9)The third order preditor oeÆients D;E; F are obtained by solving the matrix equation:264 RX(0) RX(1) RX(2)RX(1) RX(0) RX(1)RX(2) RX(1) RX(0) 375 264 DEF 375 = 264 RX(1)RX(2)RX(3) 375 (10)Example 12. Let the WSS proess Xn have autoorrelation funtionRX(�) = 8>>><>>>: 5; � = 0�1; � = �12; � = �20; elsewhereRun the following Matlab sript, whih separately omputes the preditor oeÆients forthe �rst, seond, and third order preditor:R=[5 -1 2 0℄;%find first order preditor oeffiient AA = R(2)/R(1);%find seond order preditor oeffiients B,CQ2=inv(toeplitz(R(1:2)))*R(2:3)';B=Q2(1), C=Q2(2);%find third order preditor oeffiients D,E,FQ3=inv(toeplitz(R(1:3)))*R(2:4)';D=Q3(1), E=Q3(2), F=Q3(3);[A 0 0; B C 0; D E F℄ 11



Observe what you get on your omputer sreen from running the preeding sript. You shouldsee a 3�3 matrix. The �rst entry in the �rst row gives the �rst order preditor oeÆient A.The �rst two entries in the seond row give the seond order preditor oeÆients B;C. Thethird row gives the third order preditor oeÆients D;E; F . This matrix gives a onvenientway to express all three of these preditors. Next week, we will push this topi furtherby presenting the Levinson reursion method, whih generates this same matrix all at one(therefore all three linear preditors are generated at the same time).
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EE 3025 S2007 Reitation 12 Lab FormName and Student Number of Team Member 1:Name and Student Number of Team Member 2:Name and Student Number of Team Member 3:************************************************************************************Experiment 2 disusses both a \time averaging" method and a \spae averaging" methodfor estimating the power generated by the realizations of a random proess. Your lab reportthis week will involve the use of one or both of these methods.

13


