
EE 3025 Dr. Kie�er12 Re
 12: WSS Pro
esses; Predi
tor DesignDire
tions: Your instru
tor will spend the the �rst 40 minutes of the re
itation periodworking some review problems and going over one or more Matlab experiments in the fol-lowing. During the last 10 minutes of re
itation, your pro
tor will give you a \Lab Form"that your re
itation team 
ompletes, signs, and turns in. See the last page for an indi
ationof what you will be asked to do on the Lab Form.Due to time limitations, only a part of the following 
an be 
overed during the re
itationperiod. However, you might want in the future to try some of the un
overed experiments onyour own. They 
ould give skills useful on some future homework problems and 
ould lendinsight into your understanding of the 
ourse from an experimental point of view.This Week's Topi
s.� Mean Fun
tion of a Pro
ess� WSS Pro
ess Power� WSS Auto
orrelations Via Time Averaging� WSS Auto
orrelations Via Spa
e Averaging� Linear Predi
tor Design12.1 Exp 1: Mean Fun
tion of a Pro
essAny pro
ess (X(t)) has a mean fun
tion �X(t), de�ned by�X(t) �= E[X(t)℄; for all tThis experiment 
onsists of two parts: in Part One, we dis
uss the mean fun
tion of anonstationary pro
ess; in Part Two, we dis
uss the mean of a wide-sense stationary pro
ess(WSS pro
ess), whi
h is a 
onstant.12.1.1 Part One: �X(t) of Nonstationary Pro
ess X(t)There are many appli
ations in whi
h one may want to estimate the mean fun
tion of anonstationary pro
ess. Here are a 
ouple of these appli
ations:Appli
ation 1: Suppose x(t) is a deterministi
 input signal to an additive noise 
ommu-ni
ation 
hannel. The 
hannel output signal Y (t) is a random signal whi
h 
an bemodeled as Y (t) = x(t) + Z(t)where the random pro
ess (Z(t)) is the 
hannel noise. If the 
hannel noise has meanzero, then x(t) = �Y (t) and trying to estimate the input signal is equivalent to esti-mating the mean fun
tion of the Y pro
ess.1



Appli
ation 2: Let (Xn) be a DTRP (dis
rete time random pro
ess) in whi
h, for ea
htime n, Xn models the Dow Jones �nal 
losing value on day n at the New York Sto
kex
hange. You might �nd wild 
u
tuations in Xn from day to day. It might bemore bene�
ial for sto
k market fore
asting purposes to �nd an underlying \trend", adeterministi
 signal xn less wild than Xn, whi
h might be modeled asXn = xn + Znwhere Zn is 0-mean noise. With this kind of modeling, xn is the mean fun
tion of RPXn.Example 1. Run the following s
ript:t=1:100;x=20*t + 10000 +200*randn(1,length(t));plot(t,x)What you see on your s
reen is an initial pie
e of a realization of a pro
ess X(t). (Thinkof this plot as the plot of 100 
onse
utive daily Dow Jones 
losing �gures, if you want.)What is the \trend"? That is, what is an estimate of the mean fun
tion �X(t), whi
h is adeterministi
 signal? Run the following Matlab 
ode, whi
h \spa
e-averages" a
ross 1000di�erent realizations to estimate the trend:
lear;t=1:100;S=zeros(1,length(t));for i=1:1000realization=20*t + 10000 +200*randn(1,length(t));S=S+realization;endmean_fun
tion_estimate=S/1000;plot(t,mean_fun
tion_estimate)Is the trend more apparent now?Example 2. Suppose one wants to estimate the mean fun
tion but one has only onerealization to work with. (This might be a more realisti
 assumption for the Dow Jonesproblem.) One 
an't just simply average a
ross the whole realization to approximate themean fun
tion, be
ause then one would obtain a 
onstant. Instead, one 
ould subdivide thetime axis into small subintervals and then average the samples over ea
h subinterval. Thisis what we do below for the pseudorandomly generated realization from Example 1. One
hange though|this type of estimation requires many more samples along the realizationthan we were using before; instead of 100 samples, we use 99000, whi
h we subdivide into1000 intervals 
ontaining 99 samples ea
h:
lear;t=1.001:.001:100;x=20*t + 10000 + 200*randn(1,length(t));2



for i=1:1000subinterval=(i-1)*99+1:i*99;tt(i)=mean(t(subinterval));xx(i)=mean(x(subinterval));endtime_axis=tt;mean_fun
tion_estimate=xx;plot(time_axis,mean_fun
tion_estimate)12.1.2 Part Two: Mean of WSS Pro
essThe mean fun
tion of a WSS pro
ess is a 
onstant. Let us take the WSS pro
ess as a dis
retetime pro
ess Xn. Then its mean is the number �X su
h thatE[Xn℄ = �Xfor every n. In other words, every 1-D 
ross-se
tion random variable of the pro
ess has thesame mean, whi
h we denote by �X . There are two methods for estimating �X , namely,\spa
e averaging" and \time averaging," des
ribed as follows:Spa
e Averaging Method For Estimating �X: For a �xed time n, estimate �X via theformula �̂X = J�1 JXj=1xjn;for a large J , where, for ea
h j = 1; 2; � � � ; J , xjn is a di�erent realization of the pro
essXn.Time Averaging Method For Estimating �X: For a realization xn of the pro
ess Xn,
ompute the following estimate of �X via time averaging:�̂X = N�1 NXn=1 xn (1)In formula (1), [x1; x2; � � � ; xN ℄ represents a large segment of the realization. We areassuming here that the estimate (1) does not vary appre
iably from realization to real-ization. (This means we have an ergodi
 pro
ess. We will 
over ergodi
 WSS pro
essesin a future le
ture.) If the right side of (1) varies from realization to realization, thenwe would have to average up the right hand sides of (1) for many di�erent realizationsin order to obtain our estimate of �X . (This is the nonergodi
 
ase.)Example 3. Let (Xn) be the IID pro
ess in whi
h all the Xn's have the same exponentialdistribution with mean 1=4. We let (Yn) be the pro
essYn = 2Xn + 3Xn�1 (2)The Y pro
ess is WSS (be
ause the X pro
ess is, and anytime you pass a WSS pro
essthrough a time-invariant stable linear �lter, you get a WSS output pro
ess; we will prove3



this in Chapter 11). In this example, we estimate the mean �Y of the Y pro
ess both byspa
e-averaging and time-averaging. Run the following 
ode, whi
h estimates �Y by spa
e-averaging:
lear;for i=1:10000X1=-(0.25)*log(rand(1,1)); X2=-(0.25)*log(rand(1,1));Y2spa
e(i)=2*X2+3*X1;endestimate_muY=mean(Y2spa
e)Can you determine what the exa
t value of �Y is using the equation (2)? Is your estimategenerated by the pre
eding Matlab 
ode very far o� from that? Now, run the followingMatlab 
ode, whi
h estimates �Y via time-averaging:x=-(0.25)*log(rand(1,50000));n=2:50000;y=2*x(n)+3*x(n-1);estimate_muY=mean(y)Re-run these lines several times to make sure you are getting about the same estimate.(This ensures that we have an ergodi
 pro
ess|the estimate is not 
hanging appre
iably ifwe re-
ompute the estimate using di�erent realizations.)Example 4. Let (Xn) be the same pro
ess as used in Example 3. If we pass (Xn) througha stable linear time-invariant �lter with impulse response fun
tion (hn), resulting in outputpro
ess Y, then Chapter 11 will tell us that �X and �Y are related by the formula�Y = �X [Xn hn℄ (3)Let (Yn) be the pro
ess Yn = Xn + (0:75)Yn�1 (4)Run the following Matlab 
ode, whi
h will estimate �Y via time-averaging:
lear;x=-(0.25)*log(rand(1,10000));y(1)=0;for i=2:10000y(i) = x(i) + (0.75)*y(i-1);endmean(y)As in Example 3, re-run the 
ode more than on
e to make sure the ergodi
 assumption isvalid (that is, you should get about the same estimate of �Y ea
h run). Re
all from EE 3015that the impulse response hn of the �lter used to obtain (Yn) from (Xn) is the response ofthe �lter to the delta fun
tion input. With this in mind, you 
an now run the following 
odewhi
h will obtain an approximation to Pn hn in equation (3):4



delta=[0 1 zeros(1,10000)℄;h(1)=0;for i=2:10000h(i) = delta(i) + (0.75)*h(i-1);endsum(h)Does formula (3) seem to be true? (Re
all that the X pro
ess has mean 1=4.)12.2 Exp 2: WSS Pro
ess PowerLet Xn; n = 1; 2; 3; � � �be a DT WSS pro
ess. The power �gure PX for the pro
ess Xn is de�ned by the se
ondmoment PX �= E[X2n℄;where, in this 
al
ulation, the dis
rete time variable n is held �xed (by the WSS assumption,you will obtain the same se
ond moment for all n). If you have already been given theauto
orrelation fun
tion RX(�) of the pro
ess, then PX 
an be 
onveniently obtained via theformula PX �= RX(0):Similarly to what we did in Experiment 1 in estimating �X , you 
an also estimate PX byeither spa
e averaging or time averaging:Spa
e Averaging Method For Estimating PX : For a �xed time n, approximate E[X2n℄ =PX as a spa
e-average P̂X � J�1 JXj=1(xjn)2;for a large J , where, for ea
h j = 1; 2; � � � ; J , xjn is a di�erent realization of the pro
essXn.Time Averaging Method For Estimating PX: For a realization xn of the pro
ess Xn,evaluate the time-average N�1 NXn=1x2n (5)over a large segment [x1; x2; � � � ; xN ℄ of the realization. See if this quantity variesappre
iably from realization to realization. If it does not, then this average 
an betaken as an estimate of PX . (That is, you have an ergodi
 pro
ess.) If the time average(5) varies from realization to realization, then you have a nonergodi
 pro
ess and thenyou must average up these time averages for many di�erent realizations in order to geta true estimate of PX .
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Example 5. We 
onsider the sum of two random sinusoidsXn = A1 
os(n+�1) + A2 
os(2n+�2); n = 1; 2; � � �in whi
h the amplitude A1 is Gaussian with mean 0 varian
e 1, the amplitude A2 is Gaussianwith mean 0 varian
e 4, and the two phases �1 and �2 are ea
h uniformly distributed in[0; 2�℄. (The amplitudes and phases are independent.) It 
an be shown that this pro
ess isWSS, so we 
an use both the spa
e and time averaging te
hniques for estimating PX . Runthe following Matlab 
ode, whi
h estimates PX using the spa
e averaging method, where thespa
e average is 
omputed at time n = 1:
lear;n=1;for i=1:5000a1=randn(1,1); a2=2*randn(1,1);theta1=2*pi*rand(1,1); theta2=2*pi*rand(1,1);x1=a1*
os(n+theta1)+a2*
os(2*n+theta2);powerterm(i)=x1^2;endPX = mean(powerterm)Just to double-
he
k that we 
an do the spa
e-averaging at any time, run the followingMatlab 
ode where the spa
e-averaging power estimate is 
omputed at time n = 2:n=2;for i=1:5000a1=randn(1,1); a2=2*randn(1,1);theta1=2*pi*rand(1,1); theta2=2*pi*rand(1,1);x2=a1*
os(n+theta1)+a2*
os(2*n+theta2);powerterm(i)=x2^2;endPX = mean(powerterm)Now, run the following 
ode, to see what time-average power a realization of this pro
essgives:n=1:100;a1=randn(1,1); a2=2*randn(1,1);theta1=2*pi*rand(1,1); theta2=2*pi*rand(1,1);x=a1*
os(n+theta1)+a2*
os(2*n+theta2);power=mean(x.^2)Run this 
ode several times to see if the power varies (it should, be
ause we have a nonergodi
pro
ess). Now run the following Matlab 
ode, in whi
h you average up 500 of these power�gures:for j=1:500n=1:100; 6



a1=randn(1,1); a2=2*randn(1,1);theta1=2*pi*rand(1,1); theta2=2*pi*rand(1,1);x=a1*
os(n+theta1)+a2*
os(2*n+theta2);power(j)=mean(x.^2);endmean(power)Run this 
ode again to see if the result 
hanges appre
iably (it should not). Does this time-averaging power �gure approximately agree with the spa
e-averaging power �gure that you
omputed at the beginning of this example?12.3 Exp 3: WSS Auto
orrelations Via Time AveragingLet Xn; n = 0;�1;�2;�3; � � �be a bilateral DT WSS pro
ess. (You 
an always 
onsider a WSS pro
ess to have started attime �1.) Then, for ea
h integer \lag" � , the auto
orrelation RX(�) at lag � is de�ned byRX(�) �= E[XnXn�� ℄(This 
omputation 
an be done for any �xed n and will yield the same answer.) In Experi-ments 1 and 2, we used the time averaging method to estimate the pro
ess mean �X and thepro
ess power PX . In this experiment, we use the time averaging method to estimate valuesof the auto
orrelation fun
tion RX(�). (In the next experiment, we use the spa
e averagingmethod to estimate RX(�) values.) Here is how the time averaging method works:Time Averaging Method For Estimating RX(�): Observe a suÆ
iently long pie
e[x1; x2; x3; � � � ; xN ℄of a realization xn, and then estimate RX(�) for a �xed � by:R̂X(�) = N�1 NXn=1xnxn�� (6)If we assume that the pro
ess Xn is ergodi
, then looking at this one realization isenough. (Subsequent realizations of the pro
ess will yield roughly the same R̂X(�)value via time averaging.) It should be pointed out that the size of N that you need in(6) is dependent upon the �xed value of � . If you make � somewhat larger, then youwould probably also have to make N somewhat larger in order for the expression (6)to give a good estimate.Example 6. We 
an obtain a WSS pro
ess by putting a white noise pro
ess through anFIR �lter. In this example, we �lter the Gaussian white noise pro
ess (Zn) in whi
h ea
hZn is a standard Gaussian RV as follows:Xn = 2Zn � (3:5)Zn�1 + 4Zn�2 + (1:5)Zn�4Run the following 
ode, whi
h will �nd an approximation R̂X(�) to RX(�) for � = 0; 1; 2; 3; 4via the time averaging method: 7




lear;z=randn(1,100000);n=5:100000;x=2*z(n)-(3.5)*z(n-1) + 4*z(n-2) + (1.5)*z(n-4);Rxhat0 = mean(x.*x)Rxhat1 = mean(x(2:length(x)).*x(1:length(x)-1))Rxhat2 = mean(x(3:length(x)).*x(1:length(x)-2))Rxhat3 = mean(x(4:length(x)).*x(1:length(x)-3))Rxhat4 = mean(x(5:length(x)).*x(1:length(x)-4))You will see the auto
orrelation estimates printed out on your s
reen. Let me guide you in
al
ulating the exa
t value of RX(2) so that you 
an 
ompare to estimate R̂X(2) on yours
reen. Sin
e RX(2) = E[XnXn�2℄, we have to multiply2Zn � (3:5)Zn�1 + 4Zn�2 + (1:5)Zn�4by 2Zn�2 � (3:5)Zn�3 + 4Zn�4 + (1:5)Zn�6You only have to worry about a produ
t of a term from the 1st sum times a term fromthe se
ond sum if both terms are of the form Zi for the same i (why?). This gives us theprodu
ts 8Z2n�2 + 6Z2n�4Taking the expe
ted value, you get 8 + 6 = 14 = RX(2). Compare this to the estimateR̂X(2). Compute one or more other values RX(�) and 
ompare to the 
orresponding R̂X(�).Save your estimates R̂X(�) (you will 
ompare them to the spa
e averaging estimates inExperiment 4).Example 7. Let (Zn) be the same pro
ess as in Example 6. We generate from (Zn) thefollowing pro
ess (Yn : n = 1; 2; � � �), via se
ond-order autoregresssive �ltering:Yn = ( 0; n = 1; 2Zn + (0:75)Yn�1 � (0:2)Yn�2; n > 2The pro
ess (Yn) is not WSS (be
ause of the initial 
onditions at times n = 1; 2), but itlooks more and more like a WSS pro
ess as time n ! 1. Therefore, the auto
orrelationsRY (�) 
an be taken as RY (�) = limn!1E[YnYn�� ℄We will not have a general method for expli
itly 
omputing these auto
orrelations until weget to Chapter 11. However, we 
an approximate these auto
orrelations via time averagingright now. Run the following 
ode to get approximations to RY (0); RY (1); RY (2):
lear;z=randn(1,10000);y(1)=0; y(2)=0;for n=3:10000y(n)=z(n) + (0.75)*y(n-1) - (0.2)*y(n-2);8



endRyhat0 = mean(y.*y)Ryhat1 = mean(y(2:length(y)).*y(1:length(y)-1))Ryhat2 = mean(y(3:length(y)).*y(1:length(y)-2))Save the approximations R̂Y (�) (� = 0; 1; 2) that you see on your s
reen (for Experiment 4).Example 8. Let � be a RV uniformly distributed in the interval [0; 2�℄. Let (Wn : n =1; 2; 3; � � �) be the DT pro
essWn = 
os(n +�); n = 1; 2; 3; � � �By running the following 
ode, you approximate some auto
orrelation values RW (�):n=1:100000;w=
os(n+2*pi*rand(1,1));Rwhat0 = mean(w.*w)Rwhat1 = mean(w(2:length(w)).*w(1:length(w)-1))Rwhat2 = mean(w(3:length(w)).*w(1:length(w)-2))Rwhat3 = mean(w(4:length(w)).*w(1:length(w)-3))Rwhat4 = mean(w(5:length(w)).*w(1:length(w)-4))12.4 Exp 4: WSS Auto
orrelations Via Spa
e AveragingLet Xn be a WSS pro
ess. This experiment illustrates the use of the spa
e averaging methodfor estimating values of the auto
orrelation fun
tion RX(�).Suppose for a �xed � that you want to estimate the auto
orrelation value RX(�). Thespa
e averaging method estimates RX(�) as follows:R̂X(�) = Average of XNXN�� a
ross a large number of realizations (7)In equation (7), the integer N is �xed. Let us dis
uss the 
hoi
e of the integer N :� If the integer time variable n in the WSS pro
ess Xn runs from �1 to 1 (bilateralpro
ess), then the �xed integer N 
ould be any integer.� If the WSS pro
ess Xn starts at time n = 0, then N would be 
hosen to be � � .� Suppose the pro
ess Xn arises from re
ursive stable linear �ltering of a WSS pro
essstarting at time n = 0. Then, Xn will not be WSS but will instead be
ome approx-imately WSS as n be
omes larger and larger; this is be
ause of the presen
e of atransient 
omponent of the random signal Xn whi
h dies out as n be
omes large. Inthis 
ase, one would 
hoose the �xed integer N in the spa
e averaging method to belarge enough so that the approximate WSS behavior is valid.Example 9. Let (Xn) be the pro
ess from Example 6. Run the following Matlab s
riptto obtain spa
e averaging estimates for the same auto
orrelation values used in Example 6.(The s
ript uses N = 9 and 5000 realizations to implement the spa
e averaging estimategiven by (7).) 9




lear;M=zeros(5000,5); %ea
h row will store X5,X6,X7,X8,X9 from a realizationfor i=1:5000z=randn(1,9);n=5:9;x=2*z(n)-(3.5)*z(n-1) + 4*z(n-2) + (1.5)*z(n-4);M(i,1:5)=x;endRxhat0 = mean(M(:,5).*M(:,5))Rxhat1 = mean(M(:,4).*M(:,5))Rxhat2 = mean(M(:,3).*M(:,5))Rxhat3 = mean(M(:,2).*M(:,5))Rxhat4 = mean(M(:,1).*M(:,5))Compare these estimates with the time averaging estimates found in Example 6.Example 10. Let Y be the pro
ess in Example 7. Starting at N = 20, the pro
ess isalmost WSS. Run the following 
ode, whi
h forms estimates of RY (0); RY (1); RY (2) via (7)with N = 20 and 5000 realizations:
lear;M=zeros(5000,3); %ea
h row will store Y18,Y19,Y20 from a realizationfor i=1:5000z=randn(1,20);y(1)=0; y(2)=0;for n=3:20y(n)=z(n) + (0.75)*y(n-1) - (0.2)*y(n-2);endM(i,1:3)=y(18:20);endRyhat0 = mean(M(:,3).*M(:,3))Ryhat1 = mean(M(:,2).*M(:,3))Ryhat2 = mean(M(:,1).*M(:,3))Compare these estimates with the time averaging estimates found in Example 7.Example 11. Let W be the pro
ess in Example 8. The following 
ode uses N = 5 and10000 realizations to obtain spa
e averaging estimates (7) of RW (�) for � = 0; 1; 2; 3; 4:
lear;M=zeros(10000,5); %ea
h row will store W1,W2,W3,W4,W5 from a realizationfor i=1:10000n=1:5;w=
os(n+2*pi*rand(1,1));M(i,1:5)=w; %the realization has been stored in MendRwhat0 = mean(M(:,5).*M(:,5)) 10



Rwhat1 = mean(M(:,4).*M(:,5))Rwhat2 = mean(M(:,3).*M(:,5))Rwhat3 = mean(M(:,2).*M(:,5))Rwhat4 = mean(M(:,1).*M(:,5))Compare these answers to the time averaging estimates in Example 8.12.5 Exp 5: Linear Predi
tor DesignLet (Xn) be a WSS pro
ess. Then, the minimum mean-square �rst, se
ond, and third orderlinear predi
tors for Xn take the form:X̂n = AXn�1X̂n = BXn�1 + CXn�2X̂n = DXn�1 + EXn�2 + FXn�3The �rst order predi
tor 
oeÆ
ient A is given by the equationA = RX(1)=RX(0): (8)The se
ond order predi
tor 
oeÆ
ients B;C are obtained by solving the matrix equation:" RX(0) RX(1)RX(1) RX(0) # " BC # = " RX(1)RX(2) # (9)The third order predi
tor 
oeÆ
ients D;E; F are obtained by solving the matrix equation:264 RX(0) RX(1) RX(2)RX(1) RX(0) RX(1)RX(2) RX(1) RX(0) 375 264 DEF 375 = 264 RX(1)RX(2)RX(3) 375 (10)Example 12. Let the WSS pro
ess Xn have auto
orrelation fun
tionRX(�) = 8>>><>>>: 5; � = 0�1; � = �12; � = �20; elsewhereRun the following Matlab s
ript, whi
h separately 
omputes the predi
tor 
oeÆ
ients forthe �rst, se
ond, and third order predi
tor:R=[5 -1 2 0℄;%find first order predi
tor 
oeffi
ient AA = R(2)/R(1);%find se
ond order predi
tor 
oeffi
ients B,CQ2=inv(toeplitz(R(1:2)))*R(2:3)';B=Q2(1), C=Q2(2);%find third order predi
tor 
oeffi
ients D,E,FQ3=inv(toeplitz(R(1:3)))*R(2:4)';D=Q3(1), E=Q3(2), F=Q3(3);[A 0 0; B C 0; D E F℄ 11



Observe what you get on your 
omputer s
reen from running the pre
eding s
ript. You shouldsee a 3�3 matrix. The �rst entry in the �rst row gives the �rst order predi
tor 
oeÆ
ient A.The �rst two entries in the se
ond row give the se
ond order predi
tor 
oeÆ
ients B;C. Thethird row gives the third order predi
tor 
oeÆ
ients D;E; F . This matrix gives a 
onvenientway to express all three of these predi
tors. Next week, we will push this topi
 furtherby presenting the Levinson re
ursion method, whi
h generates this same matrix all at on
e(therefore all three linear predi
tors are generated at the same time).
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EE 3025 S2007 Re
itation 12 Lab FormName and Student Number of Team Member 1:Name and Student Number of Team Member 2:Name and Student Number of Team Member 3:************************************************************************************Experiment 2 dis
usses both a \time averaging" method and a \spa
e averaging" methodfor estimating the power generated by the realizations of a random pro
ess. Your lab reportthis week will involve the use of one or both of these methods.
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