EE 3025 Dr. Kieffer

12 Rec 12: WSS Processes; Predictor Design

Directions: Your instructor will spend the the first 40 minutes of the recitation period
working some review problems and going over one or more Matlab experiments in the fol-
lowing. During the last 10 minutes of recitation, your proctor will give you a “Lab Form”
that your recitation team completes, signs, and turns in. See the last page for an indication
of what you will be asked to do on the Lab Form.

Due to time limitations, only a part of the following can be covered during the recitation
period. However, you might want in the future to try some of the uncovered experiments on
your own. They could give skills useful on some future homework problems and could lend
insight into your understanding of the course from an experimental point of view.

This Week’s Topics.

e Mean Function of a Process

WSS Process Power

WSS Autocorrelations Via Time Averaging

e WSS Autocorrelations Via Space Averaging

Linear Predictor Design

12.1 Exp 1: Mean Function of a Process
Any process (X (t)) has a mean function pux(t), defined by

px(t) 2 E[X(t)], forall ¢

This experiment consists of two parts: in Part One, we discuss the mean function of a
nonstationary process; in Part Two, we discuss the mean of a wide-sense stationary process
(WSS process), which is a constant.

12.1.1 Part One: ux(t) of Nonstationary Process X (t)

There are many applications in which one may want to estimate the mean function of a
nonstationary process. Here are a couple of these applications:

Application 1: Suppose z(t) is a deterministic input signal to an additive noise commu-
nication channel. The channel output signal Y (¢) is a random signal which can be
modeled as

Y(t)=a(t) + Z(1)
where the random process (Z(t)) is the channel noise. If the channel noise has mean
zero, then x(f) = uy(t) and trying to estimate the input signal is equivalent to esti-
mating the mean function of the Y process.

Application 2: Let (X,,) be a DTRP (discrete time random process) in which, for each
time n, X,, models the Dow Jones final closing value on day n at the New York Stock
exchange. You might find wild fluctuations in X, from day to day. It might be
more beneficial for stock market forecasting purposes to find an underlying “trend”, a
deterministic signal x,, less wild than X,,, which might be modeled as

X,=x,+ 2,

where 7, is 0-mean noise. With this kind of modeling, x,, is the mean function of RP
X,

Erample 1. Run the following script:

t=1:100;
x=20*%t + 10000 +200*randn(1,length(t));
plot(t,x)

What you see on your screen is an initial piece of a realization of a process X (#). (Think
of this plot as the plot of 100 consecutive daily Dow Jones closing figures, if you want.)
What is the “trend”? That is, what is an estimate of the mean function px(t), which is a
deterministic signal? Run the following Matlab code, which “space-averages” across 1000
different realizations to estimate the trend:

clear;

t=1:100;

S=zeros(1,length(t));

for i=1:1000

realization=20%t + 10000 +200*randn(1,length(t));
S=S+realization;

end

mean_function_estimate=S/1000;
plot(t,mean_function_estimate)

Is the trend more apparent now?

Ezample 2. Suppose one wants to estimate the mean function but one has only one
realization to work with. (This might be a more realistic assumption for the Dow Jones
problem.) One can’t just simply average across the whole realization to approximate the
mean function, because then one would obtain a constant. Instead, one could subdivide the
time axis into small subintervals and then average the samples over each subinterval. This
is what we do below for the pseudorandomly generated realization from Example 1. One
change though this type of estimation requires many more samples along the realization
than we were using before; instead of 100 samples, we use 99000, which we subdivide into
1000 intervals containing 99 samples each:

clear;
t=1.001:.001:100;
x=20*%t + 10000 + 200*randn(1,length(t));

for i=1:1000
subinterval=(i-1)*99+1:i%99;
tt(i)=mean(t (subinterval));

xx (i) =mean(x(subinterval)) ;

end

time_axis=tt;
mean_function_estimate=xx;
plot(time_axis,mean_function_estimate)

12.1.2 Part Two: Mean of WSS Process

The mean function of a WSS process is a constant. Let us take the WSS process as a discrete
time process X,,. Then its mean is the number pux such that

E[Xn] = KUx

for every n. In other words, every 1-D cross-section random variable of the process has the
same mean, which we denote by ux. There are two methods for estimating uy, namely,
“space averaging” and “time averaging,” described as follows:

Space Averaging Method For Estimating py: For a fixed time n, estimate ux via the

formula ;
:aX = Jil Z 'Tgu
j=1
for a large .J, where, for each j = 1,2,---,.J, 2 is a different realization of the process
X,.

Time Averaging Method For Estimating px: For a realization z,, of the process X,,,
compute the following estimate of px via time averaging:

N
ﬂX = Nfl Z Tn (1)

n=1
In formula (1), [x1, 29, -, xy] represents a large segment of the realization. We are

assuming here that the estimate (1) does not vary appreciably from realization to real-
ization. (This means we have an ergodic process. We will cover ergodic WSS processes
in a future lecture.) If the right side of (1) varies from realization to realization, then
we would have to average up the right hand sides of (1) for many different realizations
in order to obtain our estimate of py. (This is the nonergodic case.)

Ezample 3. Let (X,,) be the IID process in which all the X,,’s have the same exponential
distribution with mean 1/4. We let (Y},) be the process

Y, = 2X, +3X, , (2)

The Y process is WSS (because the X process is, and anytime you pass a WSS process
through a time-invariant stable linear filter, you get a WSS output process; we will prove

this in Chapter 11). In this example, we estimate the mean py of the Y process both by
space-averaging and time-averaging. Run the following code, which estimates uy by space-
averaging:

clear;

for i=1:10000

X1=-(0.25)*log(rand(1,1)); X2=-(0.25)*log(rand(1,1));
Y2space (1)=2*X2+3*X1;

end

estimate_muY=mean (Y2space)

Can you determine what the exact value of py is using the equation (2)? Is your estimate
generated by the preceding Matlab code very far off from that? Now, run the following
Matlab code, which estimates py via time-averaging:

x=-(0.25)*1log(rand(1,50000));
n=2:50000;

y=2*x(n)+3*x(n-1);
estimate_muY=mean (y)

Re-run these lines several times to make sure you are getting about the same estimate.
(This ensures that we have an ergodic process the estimate is not changing appreciably if
we re-compute the estimate using different realizations.)

Ezample 4. Let (X,,) be the same process as used in Example 3. If we pass (X,,) through
a stable linear time-invariant filter with impulse response function (h,,), resulting in output
process Y, then Chapter 11 will tell us that px and py are related by the formula

Hy = MX[Z h] (3)

Let (Y},) be the process
Y, = X, + (0.75)Y,, , (4)

Run the following Matlab code, which will estimate py via time-averaging:

clear;
x=-(0.25)*1log(rand(1,10000));
y(1)=0;

for i1i=2:10000

y(i) = x(1) + (0.75)*y(i-1);
end

mean (y)

As in Example 3, re-run the code more than once to make sure the ergodic assumption is
valid (that is, you should get about the same estimate of iy each run). Recall from EE 3015
that the impulse response h,, of the filter used to obtain (Y,,) from (X,,) is the response of
the filter to the delta function input. With this in mind, you can now run the following code
which will obtain an approximation to Y, h, in equation (3):

4

delta=[0 1 zeros(1,10000)];
h(1)=0;

for i1i=2:10000

h(i) = delta(i) + (0.75)*h(i-1);
end

sum(h)

Does formula (3) seem to be true? (Recall that the X process has mean 1/4.)

12.2 Exp 2: WSS Process Power

Let
Xn, n=1,23---

be a DT WSS process. The power figure Py for the process X,, is defined by the second
moment
Py £ E[X?,

n

where, in this calculation, the discrete time variable n is held fixed (by the WSS assumption,
you will obtain the same second moment for all n). If you have already been given the
autocorrelation function Ry (7) of the process, then Px can be conveniently obtained via the
formula

Px 2 Ry (0).

Similarly to what we did in Experiment 1 in estimating px, you can also estimate Py by
either space averaging or time averaging:

Space Averaging Method For Estimating Px: For a fixed time n, approximate E[X?] =

Px as a space-average
J
j=1

for a large .J, where, for each j = 1,2,---,.J, 2 is a different realization of the process
X,.

Time Averaging Method For Estimating Py: For a realization z,, of the process X,,
evaluate the time-average

N
N a2 9
n=1

over a large segment [xy,xo, -+, xy] of the realization. See if this quantity varies
appreciably from realization to realization. If it does not, then this average can be
taken as an estimate of Py. (That is, you have an ergodic process.) If the time average
(5) varies from realization to realization, then you have a nonergodic process and then
you must average up these time averages for many different realizations in order to get
a true estimate of Py.

Example 5. We consider the sum of two random sinusoids
X, =A;cos(n+0O;) + Aycos(2n+ O,), n=1,2,---

in which the amplitude A; is Gaussian with mean 0 variance 1, the amplitude A, is Gaussian
with mean 0 variance 4, and the two phases ©; and ©, are each uniformly distributed in
[0,27]. (The amplitudes and phases are independent.) It can be shown that this process is
WSS, so we can use both the space and time averaging techniques for estimating Py. Run
the following Matlab code, which estimates Py using the space averaging method, where the
space average is computed at time n = 1:

clear;

n=1;

for 1i=1:5000

al=randn(1,1); a2=2*randn(1,1);
thetal=2*pixrand(1,1); theta2=2*pi*rand(1,1);
xl1=al*cos(n+thetal)+a2*cos (2*n+theta2);
powerterm(i)=x1"2;

end

PX = mean(powerterm)

Just to double-check that we can do the space-averaging at any time, run the following
Matlab code where the space-averaging power estimate is computed at time n = 2:

n=2;

for i1i=1:5000

al=randn(1,1); a2=2*randn(1,1);
thetal=2*pixrand(1,1); theta2=2*pi*rand(1,1);
x2=al*cos(n+thetal)+a2*cos (2*n+theta2);
powerterm(i)=x2"2;

end

PX = mean(powerterm)

Now, run the following code, to see what time-average power a realization of this process
gives:

n=1:100;

al=randn(1,1); a2=2*randn(1,1);
thetal=2*pixrand(1,1); theta2=2*pi*rand(1,1);
x=al*cos(n+thetal)+a2*cos (2*n+theta?2) ;
power=mean (x."2)

Run this code several times to see if the power varies (it should, because we have a nonergodic
process). Now run the following Matlab code, in which you average up 500 of these power
figures:

for j=1:500
n=1:100;

al=randn(1,1); a2=2*randn(1,1);
thetal=2*pi*rand(1,1); theta2=2*pi*rand(1,1);
x=al*cos(n+thetal)+a2*cos (2*n+theta2) ;

power (j)=mean(x."2);

end

mean (power)

Run this code again to see if the result changes appreciably (it should not). Does this time-
averaging power figure approximately agree with the space-averaging power figure that you
computed at the beginning of this example?

12.3 Exp 3: WSS Autocorrelations Via Time Averaging

Let
X,, n=0,%1,£2 %3,

be a bilateral DT WSS process. (You can always consider a WSS process to have started at
time —oc.) Then, for each integer “lag” 7, the autocorrelation Rx (7) at lag 7 is defined by

Rx(7) £ E[X, X, _,]

(This computation can be done for any fixed n and will yield the same answer.) In Experi-
ments 1 and 2, we used the time averaging method to estimate the process mean py and the
process power Py. In this experiment, we use the time averaging method to estimate values
of the autocorrelation function Rx (7). (In the next experiment, we use the space averaging
method to estimate Ry (7) values.) Here is how the time averaging method works:

Time Averaging Method For Estimating Ry (7): Observe a sufficiently long piece
[xlu Lo, X3, 7:CN]

of a realization x,, and then estimate Rx(7) for a fixed 7 by:

N
Rx(r)=N"'"Y w2, , (6)
n=1
If we assume that the process X,, is ergodic, then looking at this one realization is
enough. (Subsequent realizations of the process will yield roughly the same sz(T)
value via time averaging.) It should be pointed out that the size of NV that you need in
(6) is dependent upon the fixed value of 7. If you make 7 somewhat larger, then you
would probably also have to make N somewhat larger in order for the expression (6)
to give a good estimate.

Erample 6. We can obtain a WSS process by putting a white noise process through an
FIR filter. In this example, we filter the Gaussian white noise process (Z,) in which each
Z, is a standard Gaussian RV as follows:

Xy =27y — (3.5) Zn1 + 4Zp_o+ (1.5) Z_4

Run the following code, which will find an approximation Rx () to Ry (r) for 7 = 0,1,2, 3,4
via the time averaging method:

clear;

z=randn(1,100000) ;

n=5:100000;

x=2*z(n)-(3.5)*z(n-1) + 4xz(n-2) + (1.5)*z(n-4);

Rxhat0 = mean(x.*x)

Rxhatl = mean(x(2:length(x)).*x(1l:length(x)-1))
Rxhat2 = mean(x(3:length(x)).*x(1l:length(x)-2))
Rxhat3 = mean(x(4:length(x)).*x(1:length(x)-3))
Rxhat4 = mean(x(5:length(x)).*x(1:length(x)-4))

You will see the autocorrelation estimates printed out on your screen. Let me guide you in
calculating the exact value of Rx(2) so that you can compare to estimate Rx(2) on your
screen. Since Ry (2) = F[X,X, 2|, we have to multiply

27, — (35)Zn 1+ 47, o+ (1.5) 7, 4

by
27, 9 — (35)Z, 3 +4Z, 4+ (1.5)Z, ¢

You only have to worry about a product of a term from the 1st sum times a term from
the second sum if both terms are of the form Z; for the same i (why?). This gives us the

products
872 ,+677 ,

Taking the expected value, you get 8 + 6 = 14 = Rx(2). Compare this to the estimate
Rx(2). Compute one or more other values Ry (7) and compare to the corresponding Ry (7).
Save your estimates ﬁX(T) (yvou will compare them to the space averaging estimates in
Experiment 4).

Ezxample 7. Let (Z,) be the same process as in Example 6. We generate from (Z,,) the
following process (Y, : n=1,2,--+), via second-order autoregresssive filtering:

v — 0, n=1,2
"7 Zn+ (0.75)Y — (02)Y, 5, n > 2

The process (Y;,) is not WSS (because of the initial conditions at times n = 1,2), but it
looks more and more like a WSS process as time n — oo. Therefore, the autocorrelations

Ry (7) can be taken as
Ry () = lim E[Y,Y,_,]

n— 00

We will not have a general method for explicitly computing these autocorrelations until we
get to Chapter 11. However, we can approximate these autocorrelations via time averaging
right now. Run the following code to get approximations to Ry (0), Ry (1), Ry (2):

clear;

z=randn(1,10000);

y(1)=0; y(2)=0;

for n=3:10000

y(n)=z(n) + (0.75)*y(n-1) - (0.2)*y(n-2);

end

RyhatO = mean(y.*y)
Ryhatl = mean(y(2:length(y)).*y(1:1length(y)-1))
Ryhat2 = mean(y(3:length(y)).*y(1:length(y)-2))

Save the approximations Ry(T) (1 =0,1,2) that you see on your screen (for Experiment 4).

Ezample 8. Let © be a RV uniformly distributed in the interval [0,27]. Let (W, : n =
1,2,3,--+) be the DT process

W,=cos(n+0), n=1,23,---
By running the following code, you approximate some autocorrelation values Ry (7):

n=1:100000;
w=cos (n+2*pi*rand(1,1));

Rwhat0 = mean(w.*w)

Rwhatl = mean(w(2:length(w)).*w(1:length(w)-1))
Rwhat2 = mean(w(3:length(w)).*w(1l:length(w)-2))
Rwhat3 = mean(w(4:length(w)).*w(1:length(w)-3))
Rwhat4 = mean(w(5:length(w)) .*w(1:length(w)-4))

12.4 Exp 4: WSS Autocorrelations Via Space Averaging

Let X, be a WSS process. This experiment illustrates the use of the space averaging method
for estimating values of the autocorrelation function Ry (7).

Suppose for a fixed 7 that you want to estimate the autocorrelation value Rx (7). The
space averaging method estimates Rx (7) as follows:

Rx(7) = Average of XyXn_, across a large number of realizations (7)

In equation (7), the integer N is fixed. Let us discuss the choice of the integer N:

e If the integer time variable n in the WSS process X,, runs from —oc to oc (bilateral
process), then the fixed integer N could be any integer.

e If the WSS process X,, starts at time n = 0, then N would be chosen to be > 7.

e Suppose the process X,, arises from recursive stable linear filtering of a WSS process
starting at time n = 0. Then, X,, will not be WSS but will instead become approx-
imately WSS as n becomes larger and larger; this is because of the presence of a
transient component of the random signal X,, which dies out as n becomes large. In
this case, one would choose the fixed integer N in the space averaging method to be
large enough so that the approximate WSS behavior is valid.

Ezxample 9. Let (X,,) be the process from Example 6. Run the following Matlab script
to obtain space averaging estimates for the same autocorrelation values used in Example 6.
(The script uses N = 9 and 5000 realizations to implement the space averaging estimate
given by (7).)

clear;

M=zeros(5000,5); %each row will store X5,X6,X7,X8,X9 from a realization
for 1i=1:5000

z=randn(1,9);

n=5:9;

x=2%z(n)-(3.5)*xz(n-1) + 4*z(n-2) + (1.5)*z(n-4);
M(i,1:5)=x;

end

Rxhat0 = mean(M(:,5).*M(:,5))

Rxhatl = mean(M(:,4).*M(:,5))

Rxhat2 = mean(M(:,3).*M(:,5))

Rxhat3 = mean(M(:,2).*M(:,5))

Rxhat4 = mean(M(:,1).*M(:,5))

Compare these estimates with the time averaging estimates found in Example 6.

Example 10. Let Y be the process in Example 7. Starting at N = 20, the process is
almost WSS. Run the following code, which forms estimates of Ry (0), Ry (1), Ry (2) via (7)
with NV = 20 and 5000 realizations:

clear;

M=zeros(5000,3); %each row will store Y18,Y19,Y20 from a realization
for 1i=1:5000

z=randn(1,20);

y(1)=0; y(2)=0;

for n=3:20

y(m)=z(n) + (0.75)*y(n-1) - (0.2)*y(n-2);
end

M(i,1:3)=y(18:20);

end

RyhatO = mean(M(:,3).*M(:,3))

Ryhatl = mean(M(:,2).*M(:,3))

Ryhat2 = mean(M(:,1).*M(:,3))

Compare these estimates with the time averaging estimates found in Example 7.

Example 11. Let W be the process in Example 8. The following code uses N = 5 and
10000 realizations to obtain space averaging estimates (7) of Ry (1) for 7 =0,1,2,3,4:

clear;

M=zeros(10000,5); %each row will store W1,W2,W3,W4,W5 from a realization
for 1i=1:10000

n=1:5;

w=cos (n+2*pi*rand(1,1));

M(i,1:5)=w; %the realization has been stored in M

end

RwhatO0 = mean(M(:,5).*M(:,5))

10

Rwhatl = mean(M(:,4).*M(:,5))
Rwhat2 = mean(M(:,3).*M(:,5))
Rwhat3 = mean(M(:,2).*M(:,5))
Rwhat4 = mean(M(:,1).*M(:,5))

Compare these answers to the time averaging estimates in Example 8.

12.5 Exp 5: Linear Predictor Design

Let (X,,) be a WSS process. Then, the minimum mean-square first, second, and third order
linear predictors for X, take the form:

- Aanl

= BX,1+CX,

X, = DX, +EX, »+FX, 3

X
X

The first order predictor coefficient A is given by the equation
A= Rx(1)/Rx(0). (8)

The second order predictor coefficients B, C' are obtained by solving the matrix equation:

Rx(0) Rx(1) B _ Rx(1) (9)
Rx(1) Rx(0) C Rx(2)
The third order predictor coefficients D, E, F' are obtained by solving the matrix equation:
Rx(0) Rx(1) Rx(2) D Rx (1)
Rx(1) Rx(0) Rx(1) E | = | Rx(2) (10)
Rx(2) Rx(1) Rx(0) F Rx(3)

Ezample 12. Let the WSS process X,, have autocorrelation function

o, 7=0
-1, 7=4=1
Bxmi=9 9 1o

0, elsewhere

Run the following Matlab script, which separately computes the predictor coefficients for
the first, second, and third order predictor:

R=[5 -1 2 0];

%find first order predictor coefficient A

A = R(2)/R(1);

%find second order predictor coefficients B,C
Q2=inv(toeplitz(R(1:2)))*R(2:3)7;

B=Q2(1), C=Q2(2);

%find third order predictor coefficients D,E,F
Q3=inv(toeplitz(R(1:3)))*R(2:4)’;

D=Q3(1), E=Q3(2), F=Q3(3);

[AOO; BCO; DEF]

11

Observe what you get on your computer screen from running the preceding script. You should
see a 3 x 3 matrix. The first entry in the first row gives the first order predictor coefficient A.
The first two entries in the second row give the second order predictor coefficients B, C'. The
third row gives the third order predictor coefficients D, F, F'. This matrix gives a convenient
way to express all three of these predictors. Next week, we will push this topic further
by presenting the Lewvinson recursion method, which generates this same matrix all at once
(therefore all three linear predictors are generated at the same time).

12

EE 3025 S2007 Recitation 12 Lab Form

Name and Student Number of Team Member 1:
Name and Student Number of Team Member 2:

Name and Student Number of Team Member 3:

>k 3k 3Kk Kok kosk sk sk sk sk sk sk sk sk sk sk sk sk sk skok sk skok skosk sk sk sk sk sk ko skokok sk sk sk sk sk sk sk sk skokokoskosk sk sk sk sk sk sk sk skokok sk sk sk skosk sk skoskokoskokoskok sk skoskoskokokokoskoksk

Experiment 2 discusses both a “time averaging” method and a “space averaging” method
for estimating the power generated by the realizations of a random process. Your lab report
this week will involve the use of one or both of these methods.

13

