
EE 3025 Dr. Kie�er14 Re
itation 14Dire
tions: Your instru
tor will spend the the �rst 40 minutes of the re
itation periodworking some review problems and going over one or more Matlab experiments in the fol-lowing. During the last 10 minutes of re
itation, your pro
tor will give you a \Lab Form"that your re
itation team 
ompletes, signs, and turns in. See the last page for an indi
ationof what you will be asked to do on the Lab Form.Due to time limitations, only a part of the following 
an be 
overed during the re
itationperiod. However, you might want in the future to try some of the un
overed experiments onyour own. They 
ould give skills useful on some future homework problems and 
ould lendinsight into your understanding of the 
ourse from an experimental point of view.This Week's Topi
s.� Periodogram Method to Estimate Power Spe
trum� Bartlett's Method to Estimate Power Spe
trum� Appli
ation to Sto
k Market Investment� More on Single Server Queue� Review of Bayes Method14.1 Exp 1: Periodogram Method to Estimate Power Spe
trumLet (Xn) be a dis
rete-time ergodi
 WSS pro
ess whose power spe
tral density SX(f) is notknown. In order to estimate SX(f), one 
an use samples of the pro
ess x[1℄; x[2℄; : : : ; x[N ℄measured at times n = 1 through n = N along a realization x[n℄ of the X pro
ess, where Nis large. There are quite a number of e�e
tive spe
trum estimation pro
edures that 
an bebased upon these N samples. We dis
uss the periodogram estimate in this �rst experiment.In Experiment 2, you will look at Bartlett's estimate of the power spe
trum (whi
h typi
allygives a better estimate than the periodogram does).The periodogram estimate ŜX(f) of SX(f) is given by the formula:ŜX(f) �= 1N ����� NXk=1x[k℄e�jk2�f �����2 ; �1 < f <1 (1)The periodogram estimate 
an be easily found using the MATLAB fun
tion \fft". Justform a ve
tor x = [x[1℄; x[2℄; : : : ; x[N ℄℄ 
onsisting of the N samples of the pro
ess. Then theMATLAB operationabs(fft(x)).^2/N
1




omputes the right hand side of (1).Example 1. Let (Zn) be Gaussian white noise with unit varian
e. Let (Xn) be the pro
essde�ned by �ltering the white noise as follows:Xn = (0:5)Xn�1 + (0:5)Zn (2)The power spe
tral density SX(f) of the X pro
ess was derived in Experiment 3 of Re
itation13. It is SX(f) = 15� 4 
os(2�f) : (3)Suppose we do not know the �ltering me
hanism given by (2), and therefore we do not knowthe expression for SX(f) given in (3). Instead, we are simply handed a series of 
onse
utivesamples of pro
ess Xn, and must then estimate SX(f) based on these samples.Step 1: In this step, we ran the following MATLAB s
ript to generate the periodogramestimate of SX(f) based on the samples x[1℄; x[2℄; : : : ; x[4096℄ from a realization x[n℄of (Xn):N=4096;z=randn(1,N);x(1)=0;for i=2:Nx(i)=.5*x(i-1)+.5*z(i);endperiodogram = abs(fft(x)).^2/N;freq = (0:N-1)/N;plot(freq,periodogram)axis([ 0, 1, 0, 6℄)xlabel('frequen
y f')ylabel('periodogram power spe
trum estimate')The following plot resulted:
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Step 2: In this step, we ran the following s
ript in order to obtain a plot of the a
tual SX(f)(3) and its periodogram estimate on the same set of 
oordinate axes:PSD = (5-4*
os(2*pi*freq)).^(-1);plot(freq,periodogram,freq,PSD)axis([ 0, 1, 0, 6℄)xlabel('frequen
y f')ylabel('power spe
trum value (a
tual vs. estimated)')title('solid 
urve=a
tual power spe
trum, spiky 
urve=periodogram estimate')The following plot resulted:
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solid curve=actual power spectrum, spiky curve=periodogram estimate

The periodogram looks \spiky"; as a 
onsequen
e, the periodogram provides a poor estimateof SX(f) in 
ertain frequen
y ranges. The Bartlett estimate in Experiment 2 \smooths out"the spikiness in the periodogram estimate in a 
lever way, thereby providing better estimationof the power spe
trum.14.2 Exp 2: Bartlett's Method to Estimate Power Spe
trumLet (Xn) be a DT ergodi
 WSS pro
ess. In this experiment, you will try two di�erent waysto get an estimate ŜX(f) of the PSD SX(f) of the X pro
ess whi
h will hopefully improveupon the periodogram estimate obtained in Experiment 1.(i)Spa
e-Averaging Method: For some large positive integer N , you average up N peri-odograms, ea
h periodogram 
omputed from a di�erent realization of pro
ess X.(ii)Bartlett's Method: For some large positive integer N , you average up N periodograms
omputed from disjoint segments of the same realization of pro
ess X.Here are more details 
on
erning Bartlett's method. Given N 
onse
utive samples of a real-ization of the X pro
ess, Bartlett's method partitions these N samples into N2 segments, ea
hsegment 
onsisting of N1 
onse
utive samples (of 
ourse, N=N1*N2 must hold); a periodogramfor ea
h segment is 
omputed, and then the N2 periodograms are averaged to get Bartlett'sPSD estimate.In the examples whi
h follow, to see how good the power spe
trum estimates are, youwill do s
atter plots of them versus the a
tual PSD plot.4



� Example 2. Let (Zn) be Gaussian white noise with unit varian
e. Let (Xn) be thepro
ess obtained by �ltering the white noise as follows:Xn = (0:5)Xn�1 + (0:5)ZnIn this example, you use the spa
e-averaging method. The estimate of SX(f) willbe obtained by averaging up 32 periodograms from 32 di�erent realizations of the Xpro
ess. (Ea
h periodogram is 
omputed from 256 samples.) Run the following Matlab
ode, whi
h plots the resulting PSD estimate as a s
atter plot on the same set of axesas the a
tual PSD SX(f):
learN=256;s=zeros(1,N);for j=1:32z=randn(1,N);x(1)=0;for i=2:Nx(i)=.5*x(i-1)+.5*z(i);endperiodogram=abs(fft(x)).^2/N;s=s+periodogram;endSXhat=s/32;freq=(0:N-1)/N;SX = (5-4*
os(2*pi*freq)).^(-1);subplot(2,1,1)plot(freq,SXhat,'+',freq,SX,'*')title('Plot of SX(f) and its spa
e-averaging estimate')Examine your plot. Does the spa
e-averaging estimate given by the s
atter plot seemto be fairly 
lose to the a
tual SX(f)?� Example 3. Let X be the same pro
ess used in Example 2. In this example, you useBartlett's method. You average up 32 periodograms, ea
h periodogram 
omputed from256 points on the same realization. Your goal is to see whether you get 
omparable(or better) performan
e than in Example 2. Run the 
ode:
learN1=256;N2=32;N=N1*N2;z=randn(1,N);x(1)=0;for i=2:Nx(i)=.5*x(i-1)+.5*z(i); 5



ends=zeros(1,N1);for j=1:N2segment=x((j-1)*N1+1:j*N1);periodogram=abs(fft(segment)).^2/N1;s=s+periodogram;endSXhat=s/N2;t=0:N1-1;freq=t/N1;SX = (5-4*
os(2*pi*freq)).^(-1);subplot(2,1,2)plot(freq,SXhat,'+',freq,SX,'*')title('Plot of SX(f) and its Bartlett estimate')Compare your plot with the plot in Example 2. Do the two s
atter plots seem to give
omparable estimates? The two estimation methods use the same number of pointsto form their estimates, and give 
omparable performan
e. The di�eren
e betweenthe two methods resides in the fa
t that Bartlett's method uses just one realization.Therefore, Bartlett's method is the superior of the two methods.14.3 Exp 3: Appli
ation to Sto
k Market InvestmentLet Xn be the pri
e of a sto
k (in dollars per share) on day n. We suppose that the Xn'sare independent, identi
ally distributed random variables. At the beginning of ea
h day, theinvestor invests in this sto
k and in this sto
k only as follows:(i) The investor sells all of his shares of the sto
k and adds the pro
eeds to his 
apital.(ii) The investor invests 100p% of his 
apital in the sto
k. (p is a �xed parameter that iskept �xed from day to day.)If the investor's initial 
apital is one dollar, then his/her 
apital Cn after n days of investment(i.e., at the beginning of day n+ 1) is given by the formula:Cn = nYi=1�pXi+1Xi + 1� p�If n is large, then with probability 
lose to 1,Cn � exp(n�(p));where �(p) = E[loge �pX2X1 + 1� p�℄ (4)
6



The best 
hoi
e of p is the one for whi
h �(p) is a maximum, whi
h, setting equal to zerothe derivative of the right side of (4), yields:E " X2 �X1pX2 + (1� p)X1# = 0 (5)Let the \Louis Rukeyser strategy" be the best investment strategy whi
h uses the 
hoi
e ofp satisfying equation (5). In this experiment, you simulate the return on your 
apital frominvestment using the Louis Rukeyser strategy as 
ompared to the return obtained from moresimple-minded strategies. For simpli
ity, we take the sto
k pri
e Xn on day n to be either1; 2; or 3 dollars (equidistributed).Example 4. You will model sto
k pri
es for n 
onse
utive days as:x = 
eil(3*rand(1,n));Let the initial 
apital be 1 dollar. You will see what your �nal return will be over 100
onse
utive days. In this example, you test the \let it ride" strategy in whi
h the re-investedfra
tion of day-to-day 
apital is 
lose to one. Run the s
ript:p=.99; %Re-investment fra
tion of daily 
apitalC(1)=1; % initial 
apitalfor j=1:100x = 
eil(3*rand(1,101));for i=1:100C(i+1)=C(i)*(p*(x(i+1)/x(i))+1-p);end
apital(j)=C(101);endmean(
apital)You have estimated the return on your 
apital over a 100 day period, averaged over 100runs. Do you get something on the order of $1.50 or $1.60 for the return on your investment?If so, you have earned about 50�60 
ents over the 100 days. (Remember: you only investedone dollar!)Example 5. You now test the \play it safe" strategy in whi
h the re-investment fra
tionis taken to be 
lose to zero:p=.01; %Re-investment fra
tion of daily 
apitalC(1)=1; % initial 
apitalfor j=1:100x = 
eil(3*rand(1,101));for i=1:100C(i+1)=C(i)*(p*(x(i+1)/x(i))+1-p);end
apital(j)=C(101);endmean(
apital) 7



Is your return on the order of $1.25? If so, you have earned about 25 
ents over the 100days.Example 6. In this example, you test the e�e
t of using the Louis Rukeyser investmentstrategy. First, you verify that p = 1=2 is the best re-investment fra
tion of 
apital, byverifying that it satis�es equation (5):p=1/2;n=10001;x=
eil(3*rand(1,n));y=x(2:length(x))-x(1:length(x)-1);x=x(1:length(x)-1);mean(y./(p*y+x))Did you get nearly zero?Example 7. Run the following 
ode, to test the return you get from the Louis Rukeyserinvestment strategy:p=.5; %Re-investment fra
tion of daily 
apitalC(1)=1; % initial 
apitalfor j=1:100x = 
eil(3*rand(1,101));for i=1:100C(i+1)=C(i)*(p*(x(i+1)/x(i))+1-p);end
apital(j)=C(101);endmean(
apital)Are you surprised by your result? This just goes to show you what an a

urate model of thesto
k market 
ould do for investors, potentially.114.4 Exp 4: More on Single Server QueueIn Re
itation 13, we showed you how to simulate a single server queue with arrival rate �and servi
e rate �. You learned that su
h a queue is stable if and only if � > �. For a stablequeue, you did a simulation to verify that the length of the queue does not blow up withtime. For an unstable queue, you did a simulation to verify that the length of the queuedoes blow up with time. Instead of looking at the behavior of the length of the queue astime goes to in�nity, the present experiment examines the behavior of the waiting time ofthe i-th arriving pa
ket as i!1. Spe
i�
ally, you will do the following:� For a stable queue (� > �), you investigate the behavior of the waiting time of the i-tharriving pa
ket as i ! 1. In this 
ase, the expe
ted waiting time of the i-th pa
ket
onverges to a �nite limit as i ! 1, and you do simulation to verify a theoreti
alformula that tells us what this limit is.1Of 
ourse, the IID pri
ing model we used is unrealisti
. A more 
ompli
ated pri
ing model would beused in pra
ti
e. 8



� For a unstable queue (� � �), you investigate the behavior of the waiting time of thei-th arriving pa
ket as i ! 1. In this 
ase, the expe
ted waiting time of the i-thpa
ket blows up as i!1, and you do a simulation to verify this.The purpose of the following Matlab examples is to provide elu
idation of asymptoti
properties of single server queues dis
ussed in Se
tion 42.2 of Le
ture Notes 42.Example 8. In this example, we let the arrival rate be � = 1 and the servi
e rate be� = 2. This will be a stable queue. Let Wi be the waiting time of the i-th arriving pa
ket.We expe
t to see E[Wi℄ leveling o� as i ! 1. Run the following Matlab s
ript, whi
hsimulates the waiting times of ea
h of the �rst 100 arriving pa
kets:lambda=1;mu=2;w(1)=0;for i=2:100;w(i)=max(0,log(rand(1,1))/lambda-log(rand(1,1))/mu+w(i-1));endExe
ute the line of 
ode w(1:15). You will see the waiting times for ea
h of the �rst 15pa
kets printed out on your 
omputer s
reen.Now run the following Matlab s
ript to generate the waiting times of the �rst 20000pa
kets:n=20000;lambda=1;mu=2;w(1)=0;for i=2:nw(i)=max(0,log(rand(1,1))/lambda-log(rand(1,1))/mu+w(i-1));endt=1:n;plot(t,
umsum(w)./t)xlabel('number of pa
kets')ylabel('average waiting time')What you see is the plot of ea
h i versus the average waiting time for pa
kets 1 through i,for i = 1; 2; � � � ; 20000. Do these average waiting times appear to be \settling down" as thenumber of pa
kets gets large? In the optional se
tion of notes to be posted next week, it willbe shown that E[Wi℄ � ��(�� �) ; i large: (6)For � = 1 and � = 2, 
ompute ��(�� �) (7)and 
ompare this theoreti
al value with the asymptoti
 average waiting time you see at theright end of your plot. Are these about the same? Re-run the pre
eding s
ript a few times9



to see if the resulting plot's asymptoti
 average waiting time 
u
tuates 
losely about thevalue (7).Example 9. In this example, you simulate the waiting times of pa
kets for another stablesingle server queue, this time with � = 2 and � = 1:5. Run the Matlab s
ript:n=20000;lambda=1.5;mu=2;w(1)=0;for i=2:n;w(i)=max(0,log(rand(1,1))/lambda-log(rand(1,1))/mu+w(i-1));endt=1:n;plot(t,
umsum(w)./t)lambda/(mu*(mu-lambda))Compare the asymptoti
 average waiting time you see at the right end of your plot with thenumber (7) 
omputed for � = 2 and � = 1:5. Do you get 
lose agreement? Run your Matlabs
ript again to be sure.Example 10. Now we simulate what happens to the waiting times for an unstable queue.We will take � = 1 and � = 2. Run the Matlab s
riptn=20000;lambda=2;mu=1;w(1)=0;for i=2:n;w(i)=max(0,log(rand(1,1))/lambda-log(rand(1,1))/mu+w(i-1));endt=1:n;plot(t,
umsum(w)./t)Do the average waiting times appear to be growing linearly as the number of pa
kets getslarge? If so, this is the earmark of an unstable system. Run the s
ript at least one moretime to be sure that this behavior keeps o

uring. (There is a theory giving the slope of thisasymptoti
 straight line 
urve as a fun
tion of � and �, whi
h one 
an read about in anygood textbook on queueing systems.)14.5 Exp 5: Review of Bayes MethodBayes Method will be one of the review topi
s for the �nal exam. The purpose of thisexperiment is to remind you how to implement the di�erent steps of Bayes Method inMatlab.Let X; Y be dis
rete random variables. It is helpful to view X as the input to a 
hanneland to view Y as the 
orresponding output from the 
hannel. We suppose that there areNx values of X and Ny values of Y , that the values of X have been ordered in some way,10



and that the values of Y have been ordered in some way. We let PX, PY, PXY, PY_X, PX_Ydenote the matri
es given below.� PX= the ve
tor of 
hannel input probabilities. This means that PX is theNx-dimensionalrow ve
tor whose i-th 
omponent is PfX = xig, where xi is the i-th value of X in theordering of the values of X.� PY = the ve
tor of 
hannel output probabilities. This means that PY is the Ny-dimensional row ve
tor whose j-th 
omponent is PfY = yjg, where yj is the j-thvalue of Y .� PXY = the matrix of joint input-output probabilities. This means that PXY is theNx �Ny matrix su
h that the element in row i and 
olumn j is PfX = xi; Y = yjg.� PY_X = the 
hannel matrix. This means that PY_X is the Nx � Ny matrix su
h thatthe element in row i and 
olumn j is PfY = yjjX = xig.� PX_Y = the matrix of posterior probabilities. This means that PX_Y is the Nx � Nymatrix su
h that element in row i and 
olumn j is PfX = xijY = yjg.14.5.1 Computing PY From PX and PY_XThe following MATLAB 
ommand will do this:PY = PX*PY_XExample 11. Let the ve
tor of input probabilities and the 
hannel matrix be given by:PX = [1=3; 1=3; 1=3℄PY_X = 264 1=3 1=3 1=31=2 1=2 01=4 1=4 1=2375Then PY is 
omputed by the three line MATLAB programPX = [1/3 1/3 1/3℄;PY_X = [1/3 1/3 1/3; 1/2 1/2 0; 1/4 1/4 1/2℄;PY = PX*PY_XPY =0.3611 0.3611 0.277814.5.2 Computing PX and PY From PXYThe following two MATLAB 
ommands will do this:PX = sum(PXY')PY = sum(PXY)11



Example 12. Let the matrix of input-output probabilities by given byPXY = 264 :1 :2 :050 :1 :2:05 :2 :1 375Then PX and PY are 
omputed by the following MATLAB programPXY = [.1 .2 .05; 0 .1 .2; .05 .2 .1℄;PX = sum(PXY')PY = sum(PXY)PX =0.3500 0.3000 0.3500PY =0.1500 0.5000 0.350014.5.3 Computing PXY From PX and PY_XThe following MATLAB 
ommand will do this:PXY = diag(PX)*PY_XExample 13. Let PX and PY_X be as given in Example 11. Then the following MATLABprogram 
omputes PXY.PX = [1/3 1/3 1/3℄;PY_X = [1/3 1/3 1/3; 1/2 1/2 0; 1/4 1/4 1/2℄;PXY = diag(PX)*PY_XPXY =0.1111 0.1111 0.11110.1667 0.1667 00.0833 0.0833 0.166714.5.4 Computing PY_X From PXYThe following MATLAB 
ommand will do this:PY_X = PXY./(diag(sum(PXY'))*ones(size(PXY)))Example 14. Let PXY be as given in Example 12. Then the following MATLAB program
omputes PY_X. 12



PXY = [.1 .2 .05; 0 .1 .2; .05 .2 .1℄;PY_X = PXY./(diag(sum(PXY'))*ones(size(PXY)))PY_X =0.2857 0.5714 0.14290 0.3333 0.66670.1429 0.5714 0.285714.5.5 Computing PX_Y From PXYThe following MATLAB 
ommand will do this:PX_Y = PXY./(ones(size(PXY))*diag(sum(PXY)))Example 15. Let PXY be as given in Example 12. Then the following MATLAB program
omputes PX_Y.PXY = [.1 .2 .05; 0 .1 .2; .05 .2 .1℄;PX_Y = PXY./(ones(size(PXY))*diag(sum(PXY)))PX_Y =0.6667 0.4000 0.14290 0.2000 0.57140.3333 0.4000 0.2857Final Remark. Bayes Method is used to perform the following two tasks:� Given PX and PY_X, 
ompute PY.� Given PX and PY_X, 
ompute PX_Y.The �rst task is a

omplished a

ording to Se
tion 14.5.1 and the se
ond task is a

omplisheda

ording to Se
tions 14.5.3 and 14.5.5.
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EE 3025 S2007 Re
itation 14 Lab FormName and Student Number of Team Member 1:Name and Student Number of Team Member 2:Name and Student Number of Team Member 3:************************************************************************************Study Experiment 3 on sto
k market investment 
arefully. I will have you do somethingwith this on the lab reports. For more about this, read Se
tion 42.6 of the Le
ture 42 Notes.
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