EE 3025 Dr. Kieffer

14 Recitation 14

Directions: Your instructor will spend the the first 40 minutes of the recitation period
working some review problems and going over one or more Matlab experiments in the fol-
lowing. During the last 10 minutes of recitation, your proctor will give you a “Lab Form”
that your recitation team completes, signs, and turns in. See the last page for an indication
of what you will be asked to do on the Lab Form.

Due to time limitations, only a part of the following can be covered during the recitation
period. However, you might want in the future to try some of the uncovered experiments on
your own. They could give skills useful on some future homework problems and could lend
insight into your understanding of the course from an experimental point of view.

This Week’s Topics.

Periodogram Method to Estimate Power Spectrum

Bartlett’s Method to Estimate Power Spectrum

Application to Stock Market Investment

More on Single Server Queue

Review of Bayes Method

14.1 Exp 1: Periodogram Method to Estimate Power Spectrum

Let (X,,) be a discrete-time ergodic WSS process whose power spectral density Sx (f) is not
known. In order to estimate Sx(f), one can use samples of the process z[1],2[2],...,z[N]
measured at times n = 1 through n = N along a realization z[n| of the X process, where N
is large. There are quite a number of effective spectrum estimation procedures that can be
based upon these N samples. We discuss the periodogram estimate in this first experiment.
In Experiment 2, you will look at Bartlett’s estimate of the power spectrum (which typically
gives a better estimate than the periodogram does).
The periodogram estimate Sy (f) of Sx(f) is given by the formula:
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The periodogram estimate can be easﬂy found using the MATLAB function “fft”. Just

form a vector x = [z[1],x[2], ..., x[N]] consisting of the NV samples of the process. Then the
MATLARB operation

abs(fft(x)) . 2/N



computes the right hand side of (1).

Ezxample 1. Let (Z,) be Gaussian white noise with unit variance. Let (X,,) be the process
defined by filtering the white noise as follows:

X, = (0.5)X, 1 4 (0.5) 2, (2)

The power spectral density Sx (f) of the X process was derived in Experiment 3 of Recitation

13. It is
1

= _ 3
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Suppose we do not know the filtering mechanism given by (2), and therefore we do not know

the expression for Sx(f) given in (3). Instead, we are simply handed a series of consecutive
samples of process X,,, and must then estimate Sx(f) based on these samples.

Sx(f)

Step 1: In this step, we ran the following MATLAB script to generate the periodogram
estimate of Sx(f) based on the samples z[1], z[2],...,2[4096] from a realization x[n]
of (X,):

N=4096;

z=randn(1,N);

x(1)=0;

for i=2:N
x(1)=.5*%x(i-1)+.5%z(i);

end

periodogram = abs(fft(x)). 2/N;
freq = (0:N-1)/N;
plot(freq,periodogram)

axis([ 0, 1, 0, 61)

xlabel (’frequency f’)

ylabel (’periodogram power spectrum estimate’)

The following plot resulted:
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Step 2: In this step, we ran the following script in order to obtain a plot of the actual Sx(f)
(3) and its periodogram estimate on the same set of coordinate axes:

PSD = (5-4x*cos(2*pixfreq)) . (-1);

plot (freq,periodogram,freq,PSD)

axis([ 0, 1, 0, 6])

xlabel (’frequency f’)

ylabel (’power spectrum value (actual vs. estimated)’)

title(’solid curve=actual power spectrum, spiky curve=periodogram estimate’)

The following plot resulted:
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The periodogram looks “spiky”; as a consequence, the periodogram provides a poor estimate
of Sx(f) in certain frequency ranges. The Bartlett estimate in Experiment 2 “smooths out”
the spikiness in the periodogram estimate in a clever way, thereby providing better estimation
of the power spectrum.

14.2 Exp 2: Bartlett’s Method to Estimate Power Spectrum

Let (X,) be a DT ergodic WSS process. In this experiment, you will try two different ways
to get an estimate Sx(f) of the PSD Sx(f) of the X process which will hopefully improve
upon the periodogram estimate obtained in Experiment 1.

(i)Space-Averaging Method: For some large positive integer N, you average up N peri-
odograms, each periodogram computed from a different realization of process X.

(ii)Bartlett’s Method: For some large positive integer N, you average up N periodograms
computed from disjoint segments of the same realization of process X.

Here are more details concerning Bartlett’s method. Given N consecutive samples of a real-
ization of the X process, Bartlett’s method partitions these N samples into N2 segments, each
segment consisting of N1 consecutive samples (of course, N=N1*N2 must hold); a periodogram
for each segment is computed, and then the N2 periodograms are averaged to get Bartlett’s
PSD estimate.

In the examples which follow, to see how good the power spectrum estimates are, you
will do scatter plots of them versus the actual PSD plot.



e Ezample 2. Let (Z,) be Gaussian white noise with unit variance. Let (X,,) be the
process obtained by filtering the white noise as follows:

X, = (0.5) X1 + (0.5)7,

In this example, you use the space-averaging method. The estimate of Sx(f) will
be obtained by averaging up 32 periodograms from 32 different realizations of the X
process. (Each periodogram is computed from 256 samples.) Run the following Matlab
code, which plots the resulting PSD estimate as a scatter plot on the same set of axes
as the actual PSD Sx(f):

clear

N=256;

s=zeros(1,N);

for j=1:32

z=randn(1,N);

x(1)=0;

for i=2:N
x(1)=.5*%x(i-1)+.5%z(i);

end
periodogram=abs (fft(x)) . 2/N;
s=s+periodogram;

end

SXhat=s/32;

freq=(0:N-1)/N;

SX = (b-4xcos(2xpixfreq)) . (-1);
subplot(2,1,1)
plot(freq,SXhat,’+’,freq,SX, *’)
title(’Plot of SX(f) and its space-averaging estimate’)

Examine your plot. Does the space-averaging estimate given by the scatter plot seem
to be fairly close to the actual Sx(f)?

e Fxample 3. Let X be the same process used in Example 2. In this example, you use
Bartlett’s method. You average up 32 periodograms, each periodogram computed from
256 points on the same realization. Your goal is to see whether you get comparable
(or better) performance than in Example 2. Run the code:

clear

N1=256;

N2=32;

N=N1*N2;

z=randn(1,N);

x(1)=0;

for i=2:N
x(1)=.5%x(i-1)+.5*%z(1);



end

s=zeros(1,N1);

for j=1:N2

segment=x ((j-1)*N1+1:j*N1) ;
periodogram=abs (fft (segment)) . 2/N1;
s=s+periodogram;

end

SXhat=s/N2;

t=0:N1-1;

freq=t/Ni;

SX = (b-4xcos(2xpixfreq)) . (-1);
subplot(2,1,2)
plot(freq,SXhat,’+’,freq,SX,’*’)
title(’Plot of SX(f) and its Bartlett estimate’)

Compare your plot with the plot in Example 2. Do the two scatter plots seem to give
comparable estimates? The two estimation methods use the same number of points
to form their estimates, and give comparable performance. The difference between
the two methods resides in the fact that Bartlett’s method uses just one realization.
Therefore, Bartlett’s method is the superior of the two methods.

14.3 Exp 3: Application to Stock Market Investment

Let X, be the price of a stock (in dollars per share) on day n. We suppose that the X,,’s
are independent, identically distributed random variables. At the beginning of each day, the
investor invests in this stock and in this stock only as follows:

(i) The investor sells all of his shares of the stock and adds the proceeds to his capital.

(ii) The investor invests 100p% of his capital in the stock. (p is a fixed parameter that is
kept fixed from day to day.)

If the investor’s initial capital is one dollar, then his/her capital C,, after n days of investment
(i.e., at the beginning of day n + 1) is given by the formula:
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If n is large, then with probability close to 1,

Cn ~ exp(ng(p)),

where
o) = Ellos, (52 +1- )] ()



The best choice of p is the one for which ¢(p) is a maximum, which, setting equal to zero
the derivative of the right side of (4), yields:

[pX;f(l i(;)XI] =0 (5)

Let the “Louis Rukeyser strategy” be the best investment strategy which uses the choice of
p satisfying equation (5). In this experiment, you simulate the return on your capital from
investment using the Louis Rukeyser strategy as compared to the return obtained from more
simple-minded strategies. For simplicity, we take the stock price X,, on day n to be either
1,2, or 3 dollars (equidistributed).

Example 4. You will model stock prices for n consecutive days as:
x = ceil(3*rand(1,n));

Let the initial capital be 1 dollar. You will see what your final return will be over 100
consecutive days. In this example, you test the “let it ride” strategy in which the re-invested
fraction of day-to-day capital is close to one. Run the script:

p=.99; %Re-investment fraction of daily capital
C(1)=1; % initial capital

for j=1:100

X = ceil(3*rand(1,101));

for i=1:100

C(i+1)=C(1)*(px(x(i+1)/x(i))+1-p);

end

capital(j)=C(101);

end

mean (capital)

You have estimated the return on your capital over a 100 day period, averaged over 100
runs. Do you get something on the order of $1.50 or $1.60 for the return on your investment?
If so, you have earned about 50 — 60 cents over the 100 days. (Remember: you only invested
one dollar!)

Example 5. You now test the “play it safe” strategy in which the re-investment fraction
is taken to be close to zero:

p=.01; %Re-investment fraction of daily capital
C(1)=1; % initial capital

for j=1:100

x = ceil(3*rand(1,101));

for 1i=1:100

C(i+1)=C(i)*x(px(x(i+1)/x(i))+1-p);

end

capital(j)=C(101);

end

mean (capital)



Is your return on the order of $1.257 If so, you have earned about 25 cents over the 100
days.

Example 6. In this example, you test the effect of using the Louis Rukeyser investment
strategy. First, you verify that p = 1/2 is the best re-investment fraction of capital, by
verifying that it satisfies equation (5):

p=1/2;

n=10001;

x=ceil (3*rand(1,n));
y=x(2:1length(x))-x(1:1length(x)-1);
x=x(1:length(x)-1);

mean (y./(p*y+x))

Did you get nearly zero?

Ezxample 7. Run the following code, to test the return you get from the Louis Rukeyser
investment strategy:

p=.5; %Re-investment fraction of daily capital
C(1)=1; % initial capital

for j=1:100

x = ceil(3*rand(1,101));

for 1i=1:100

C(i+1)=C(i)*(px(x(i+1)/x(i))+1-p);

end

capital(j)=C(101);

end

mean (capital)

Are you surprised by your result? This just goes to show you what an accurate model of the
stock market could do for investors, potentially.!

14.4 Exp 4: More on Single Server Queue

In Recitation 13, we showed you how to simulate a single server queue with arrival rate A
and service rate . You learned that such a queue is stable if and only if ¢ > A. For a stable
queue, you did a simulation to verify that the length of the queue does not blow up with
time. For an unstable queue, you did a simulation to verify that the length of the queue
does blow up with time. Instead of looking at the behavior of the length of the queue as
time goes to infinity, the present experiment examines the behavior of the waiting time of
the i-th arriving packet as 1 — oo. Specifically, you will do the following:

e For a stable queue (u > \), you investigate the behavior of the waiting time of the i-th
arriving packet as 7+ — oc. In this case, the expected waiting time of the i-th packet
converges to a finite limit as i — oo, and you do simulation to verify a theoretical
formula that tells us what this limit is.

LOf course, the IID pricing model we used is unrealistic. A more complicated pricing model would be
used in practice.



e For a unstable queue (u < A), you investigate the behavior of the waiting time of the
i-th arriving packet as i — oco. In this case, the expected waiting time of the i-th
packet blows up as i — oo, and you do a simulation to verify this.

The purpose of the following Matlab examples is to provide elucidation of asymptotic
properties of single server queues discussed in Section 42.2 of Lecture Notes 42.

Example 8. In this example, we let the arrival rate be A = 1 and the service rate be
i = 2. This will be a stable queue. Let W; be the waiting time of the i-th arriving packet.
We expect to see E[W;] leveling off as i — oc. Run the following Matlab script, which
simulates the waiting times of each of the first 100 arriving packets:

lambda=1;

mu=2;

w(1)=0;

for 1i=2:100;
w(i)=max(0,log(rand(1,1))/lambda-log(rand(1,1))/mu+w(i-1));
end

Execute the line of code w(1:15). You will see the waiting times for each of the first 15
packets printed out on your computer screen.

Now run the following Matlab script to generate the waiting times of the first 20000
packets:

n=20000;

lambda=1;

mu=2;

w(1)=0;

for i=2:n
w(i)=max(0,log(rand(1,1))/lambda-log(rand(1,1))/mu+w(i-1));
end

t=1:n;

plot (t,cumsum(w) ./t)

xlabel (’number of packets’)
ylabel (’average waiting time’)

What you see is the plot of each 7 versus the average waiting time for packets 1 through 1,

for 1 =1,2,---,20000. Do these average waiting times appear to be “settling down” as the

number of packets gets large? In the optional section of notes to be posted next week, it will
be shown that

EW,] ~ ———, ilarge. (6)
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For A =1 and p = 2, compute
A

— (7)
il —A)
and compare this theoretical value with the asymptotic average waiting time you see at the
right end of your plot. Are these about the same? Re-run the preceding script a few times



to see if the resulting plot’s asymptotic average waiting time fluctuates closely about the
value (7).

Ezxample 9. In this example, you simulate the waiting times of packets for another stable
single server queue, this time with 4 =2 and A = 1.5. Run the Matlab script:

n=20000;

lambda=1.5;

mu=2;

w(1)=0;

for i=2:n;
w(i)=max(0,log(rand(1,1))/lambda-log(rand(1,1))/mu+w(i-1));
end

t=1:n;

plot (t,cumsum(w)./t)

lambda/ (mu* (mu-lambda))

Compare the asymptotic average waiting time you see at the right end of your plot with the
number (7) computed for p = 2 and A = 1.5. Do you get close agreement? Run your Matlab
script again to be sure.

Erample 10. Now we simulate what happens to the waiting times for an unstable queue.
We will take p =1 and A = 2. Run the Matlab script

n=20000;

lambda=2;

mu=1;

w(1)=0;

for i=2:n;
w(i)=max(0,log(rand(1,1))/lambda-log(rand(1,1))/mu+w(i-1));
end

t=1:n;

plot(t,cumsum(w)./t)

Do the average waiting times appear to be growing linearly as the number of packets gets
large? If so, this is the earmark of an unstable system. Run the script at least one more
time to be sure that this behavior keeps occuring. (There is a theory giving the slope of this
asymptotic straight line curve as a function of g and A, which one can read about in any
good textbook on queueing systems.)

14.5 Exp 5: Review of Bayes Method

Bayes Method will be one of the review topics for the final exam. The purpose of this
experiment is to remind you how to implement the different steps of Bayes Method in
Matlab.

Let X, Y be discrete random variables. It is helpful to view X as the input to a channel
and to view Y as the corresponding output from the channel. We suppose that there are
N, values of X and N, values of Y, that the values of X have been ordered in some way,
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and that the values of Y have been ordered in some way. We let PX, PY, PXY, PY_X, PX_Y
denote the matrices given below.

e PX = the vector of channel input probabilities. This means that PX is the N,-dimensional
row vector whose i-th component is P{X = z;}, where x; is the i-th value of X in the
ordering of the values of X.

e PY = the vector of channel output probabilities. This means that PY is the N,-
dimensional row vector whose j-th component is P{Y = y;}, where y; is the j-th
value of Y.

e PXY = the matrix of joint input-output probabilities. This means that PXY is the
N, x N, matrix such that the element in row ¢ and column j is P{X = z;,Y =y, }.

e PY_X = the channel matrix. This means that PY_X is the NV, x N, matrix such that
the element in row i and column j is P{Y = y;|X = x;}.

e PX_Y = the matrix of posterior probabilities. This means that PX_Y is the N, x N,
matrix such that element in row ¢ and column j is P{X =z;|Y = y,}.

14.5.1 Computing PY From PX and PY_X
The following MATLAB command will do this:
PY = PX*PY_X
Example 11. Let the vector of input probabilities and the channel matrix be given by:
PX =[1/3,1/3,1/3]

1/3 1/3 1/3
PY X=|1/2 1/2 0
1/4 1/4 1/2

Then PY is computed by the three line MATLAB program
PX = [1/3 1/3 1/3];
PY X = [1/3 1/3 1/3; 1/2 1/2 0; 1/4 1/4 1/2];
PY = PX*PY_X
PY =
0.3611 0.3611 0.2778

14.5.2 Computing PX and PY From PXY

The following two MATLAB commands will do this:

PX = sum(PXY?)
PY = sum(PXY)

11



Erample 12. Let the matrix of input-output probabilities by given by

1 .2 .05
PXY=|0 1 .2
05 2 1

Then PX and PY are computed by the following MATLAB program

PXY = [.1 .2 .05; 0 .1 .2; .06 .2 .1];
PX = sum(PXY?’)
PY sum (PXY)

PX

0.3500 0.3000 0.3500

PY =
0.1500 0.5000 0.3500

14.5.3 Computing PXY From PX and PY_X
The following MATLAB command will do this:
PXY = diag(PX)*PY_X
Ezample 13. Let PX and PY_X be as given in Example 11. Then the following MATLAB

program computes PXY.

PX = [1/3 1/3 1/3];
PY X = [1/3 1/3 1/3; 1/2 1/2 0; 1/4 1/4 1/2];

PXY = diag(PX)*PY_X

PXY =
0.1111  0.1111  0.1111
0.1667  0.1667 0
0.0833  0.0833  0.1667

14.5.4 Computing PY_X From PXY
The following MATLAB command will do this:
PY_X = PXY./(diag(sum(PXY’))*ones(size(PXY)))

Example 1/. Let PXY be as given in Example 12. Then the following MATLAB program
computes PY_X.
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PXY = [.1 .2 .05; 0 .1 .2; .05 .2 .1];
PY_X = PXY./(diag(sum(PXY’))*ones(size(PXY)))

PY X =

0.2857 0.5714 0.1429

0 0.3333 0.6667

0.1429 0.5714 0.2857
14.5.5 Computing PX_Y From PXY

The following MATLAB command will do this:
PX_Y = PXY./(ones(size(PXY))*diag(sum(PXY)))

Example 15. Let PXY be as given in Example 12. Then the following MATLAB program
computes PX_Y.

PXYy = [.1 .2 .05; 0 .1 .2; .05 .2 .1];
PX_Y = PXY./(ones(size(PXY))*diag(sum(PXY)))

PX_Y =

0.6667 0.4000 0.1429
0 0.2000 0.5714
0.3333 0.4000 0.2857

Final Remark. Bayes Method is used to perform the following two tasks:
e Given PX and PY_X, compute PY.
e Given PX and PY_X, compute PX_Y.

The first task is accomplished according to Section 14.5.1 and the second task is accomplished
according to Sections 14.5.3 and 14.5.5.

13



EE 3025 S2007 Recitation 14 Lab Form

Name and Student Number of Team Member 1:
Name and Student Number of Team Member 2:

Name and Student Number of Team Member 3:

>k 3k 3Kk Kok kosk sk sk sk sk sk sk sk sk sk sk sk sk sk skok sk skok skosk sk sk sk sk sk ko skokok sk sk sk sk sk sk sk sk skokokoskosk sk sk sk sk sk sk sk skokok sk sk sk skosk sk skoskokoskokoskok sk skoskoskokokokoskoksk

Study Experiment 3 on stock market investment carefully. I will have you do something
with this on the lab reports. For more about this, read Section 42.6 of the Lecture 42 Notes.
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