
EE 3025 Dr. Kie�er3 Re
 3: Common Probability DistributionsDire
tions: Your instru
tor will spend the the �rst 40 minutes of the re
itation periodworking some review problems and going over one or more Matlab experiments in the fol-lowing. During the last 10 minutes of re
itation, your pro
tor will give you a \Lab Form"that your re
itation team 
ompletes, signs, and turns in. See the last page for an indi
ationof what you will be asked to do on the Lab Form.Due to time limitations, only a part of the following 
an be 
overed during the re
itationperiod. However, you might want in the future to try some of the un
overed experiments onyour own. They 
ould give skills useful on some future homework problems and 
ould lendinsight into your understanding of the 
ourse from an experimental point of view.This Week's Topi
s.� Estimating PDF/CDF from Data� Simulating a Nonstandard Uniform Random Variable� Simulating a Nonstandard Gaussian Random Variable� Simulating a Binomial Random Variable� Simulating a Poisson Random Variable� Simulating an Exponential Random Variable3.1 Exp 1: Estimating PDF/CDF from DataSuppose you have a ve
tor of many observations from a dis
rete distribution. You have seenin Re
itations 1 and 2 how you 
an dire
tly use the histogram fun
tion to get an estimateof the PMF (probability mass fun
tion) of the dis
rete distribution. If the ve
tor instead
ontains observations from a 
ontinuous probability distribution, it is a bit more tri
ky touse the histogram fun
tion to get an estimate of the PDF (probability density fun
tion).This experiment tells you how to go about this.Suppose we have a ve
tor x of observations from a 
ontinuous probability distributionwith density fun
tion (PDF) f(x). This experiment tea
hes you how we 
an get an estimatedplot of f(x). Let's suppose that x 
onsists of n samples, n large. (We will typi
ally taken = 100000 in our experiments.) We then subdivide the range of x values into N bins ofequal width. (In our experiments, we typi
ally take N = n=100, so that if the data wereuniformly distributed, we would expe
t about 1000 samples in ea
h bin.) Let � be the binwidth. Let xi be the midpoint of the i-th bin and let ni be the number of samples in thei-th bin (whi
h 
an be found with the Matlab fun
tion \hist"). Thenni=n � f(xi)�:1



(The left side is an empiri
al estimate, based on the n observations, of the probability that adata value will fall in the given bin; the right side is the approximate area 
aptured by thisbin under the density fun
tion.) From this, we obtainf(xi) � ni=(n�)as an estimate for f(xi). We 
an implement this idea with the following Matlab 
ode:n=length(x); %n is the number of samples in xN=floor(n/100); %N is the number of binsA=min(x); B=max(x); %[A,B℄ is the range of x valuesDelta=(B-A)/N; %Delta is the bin widtht=A-Delta/2+[1:N℄*Delta; %horizontal axis of bin midpointsf=hist(x,t)/(Delta*n); %verti
al axis of density estimatesbar(t,f); %estimated density plotExample 1: In this example, you obtain estimates of the plots of the PDF and CDFof a random variable uniformly distributed in the interval [0; 1℄. (Re
all that data pointsa

ording to this distribution are generated using the Matlab fun
tion \rand.")(a) Obtain a plot on your s
reen of estimated uniform(0; 1) density (PDF) from 100000\rand" pseudorandomly generated samples by running the following 
ode:n=100000;x=rand(1,n);N=floor(n/100);A=min(x); B=max(x);Delta=(B-A)/N;t=A-Delta/2+[1:N℄*Delta;f=hist(x,t)/(Delta*n);bar(t,f)title('Estimated Uniform(0,1) PDF')Does your plot look like a \jagged" re
tangular pulse of amplitude one? One way toredu
e the jaggedness in the density estimate is to use a smoothing �lter. There is anentire theory devoted to su
h smoothing �lters, whi
h we do not tou
h upon in 3025.(b) Run the following lines of 
ode (as an add-on to the 
ode already run in Example 1(a))in order to obtain an estimated CDF for uniform(0,1) data:p=hist(x,t)/n;CDF=
umsum(p);plot(t,CDF)title('Estimated Uniform(0,1) CDF')Does the plot look like the CDF of the uniform(0,1) density? The estimated CDF plotlooks smoother than the estimated density plot|Why?2



Example 2: In this example, you obtain estimates of the plots of the PDF and CDF of arandom variable having the standard Gaussian density (PDF). This is the PDF1p2� exp(�x2=2); �1 < x <1:(Data points a

ording to this distribution are generated using the Matlab fun
tion \randn.")(a) Obtain a plot on your s
reen of estimated standard Gaussian density from 100000\randn" pseudorandomly generated samples by running the following 
ode:n=100000;x=randn(1,n);N=floor(n/100);A=min(x); B=max(x);Delta=(B-A)/N;t=A-Delta/2+[1:N℄*Delta;f=hist(x,t)/(Delta*n);bar(t,f)title('Estimated Standard Gaussian PDF')Compute 1=p2�. Is this about equal to the peak value of the estimated density 
urvethat you see on your 
omputer s
reen?(b) Run the following lines of 
ode (as an add-on to the 
ode already run in Example2(a)) in order to obtain an estimate of the plot of the CDF of a standard Gaussiandistribution:p=hist(x,t)/n;CDF=
umsum(p);plot(t,CDF)title('Estimated Gaussian(0,1) CDF')Use your standard Gaussian CDF table on page 123 of Yates-Goodman to see if thea
tual CDF values at z = 0; 0:5; 1:0; 1:5; 2:0 
onform to the estimated CDF values youget from the 
urve on your s
reen.3.2 Exp 2: Simulating a Nonstandard Uniform Random VariableWe already know that a random variable uniformly distributed in interval [0; 1℄ (\standarduniform distribution") is simulated with Matlab 
ommand \rand(1,1)". In this experiment,you will see how to simulate values of a random variable uniformly distributed over someother interval (\nonstandard uniform distribution").Example 3: Exe
ute the following lines.a=3; b=7;x=(b-a)*rand(1,50000)+a; 3



We will try to 
onvin
e you that you have stored in Matlab memory 50000 simulations ofthe value of a uniform RV distributed over the interval [3,7℄. Exe
ute the lines:max(x)min(x)Do the max and min values on your s
reen 
onvin
e you that your 50000 data points all liebetween 3 and 7? Run the following line:mean(x>2 & x<5)If RV X were uniformly distributed between 3 and 7, what would the exa
t value of theprobability P (2 < X < 5) be? (Use pen or pen
il here.) Does this 
orrespond with whatthe Matlab estimate of this probability just gave you? Run the following line:mean(x > 6)and interpret the result.This example has hopefully 
onvin
ed you that if you make the 
hange of variableX = (b� a)Z + a;where Z has the standard uniform distribution, then you obtain a random variable X uni-formly distributed in the interval [a; b℄.3.3 Exp 3: Simulating a Nonstandard Gaussian Random VariableA Gaussian density fun
tion fX(x) is spe
i�ed by two parameters, the mean � and thevarian
e �2. (Equivalently, it is determined by the mean � and the standard deviation �;the standard deviation is the square root of the varian
e.) The formula for the Gaussiandensity fX(x) is: fX(x) =  1p2��! exp �(x� �)22�2 !If you haven't done so already, then before starting this experiment you should look at �gure3.5 on page 119 of your textbook in order to see how 
hanging � and �2 a�e
ts the positionand shape of the density 
urve.The Matlab fun
tion \randn" simulates values of a standard Gaussian random variable(meaning that � = 0 and �2 = 1). By the time you �nish this experiment, you will seehow to simulate a nonstandard Gaussian RV. You will also learn ways to 
ompute Gaussianprobabilities.Example 4: In this example, you will learn how to 
ompute Gaussian probabilities usingthe Matlab fun
tion \erf". We havePfa � X � bg = (1=2)erf((b� �)=�p2)� (1=2)erf((a� �)=�p2)for a RV X whi
h is Gaussian(�; �2). The line of Matlab 
ode for this probability is(1/2)*erf((b-M)/(sqrt(2*V)))-(1/2)*erf((a-M)/(sqrt(2*V)))4



where M is the mean and V is the varian
e.� Let X be standard Gaussian. Compute P [�0:5 � X � 1℄ using the above line ofMatlab 
ode. Then, run the s
ript:x=randn(1,50000);mean(x >= -0.5 & x<=1)Do you obtain roughly the same answer?� Compute P [3:5 � Y � 5℄ for Y Gaussian with mean 4 and varian
e 4.� Compute P [Y � 3:75℄ for this same Y . (Hint: In the format P [a � Y � b℄, we want bto be in�nite. Enter \b=inf" before exe
uting the above line of Matlab 
ode; Matlabre
ognizes \inf" as 1.)Example 5: You 
an also use the Matlab symboli
 integrator to 
ompute Gaussian prob-abilities, if the symboli
 integrator 
omes with your version of Matlab. To illustrate this, seeif your ma
hine allows you to exe
ute the following 
ommands:syms zP=int((1/sqrt(2*pi))*exp(-z^2/2),0,1);eval(P)Do you see the value 0:3413 on your s
reen? This is the probability P (0 � Z � 1) for astandard Gaussian random variable Z.Example 6: In this example, you will see how to simulate the values of a Gaussian(�,�2)random variable.� Run the 
ode:x=randn(1,50000);mean(x)var(x)Are you getting good estimates of the mean and varian
e of a standard Gaussiandistribution?� Run the 
ode:M=-9; V=16;x=sqrt(V)*randn(1,50000)+M;mean(x)var(x)Are you getting good estimates of the mean and varian
e of a Gaussian distributionwith mean -9 and varian
e 16?As a result of Example 6, you have seen that the 
hange of variableX = �Z + �
onverts a standard Gaussian RV Z into a nonstandard Gaussian RV X with mean � andvarian
e �2. 5



3.4 Exp 4: Simulating a Binomial Random VariableIn this experiment, you will learn how to simulate a binomial random variable and how to
ompute binomial probabilities using Matlab.Suppose you have a random variableX whi
h has a binomial distribution with parametersn and p. Then, the PMF is given byP (X = x) =  nx!px(1� p)n�x; x = 0; 1; 2; � � � ; n; (1)where the binomial 
oeÆ
ient �nx� is 
omputed by: nx! = n!x!(n� x)! :For example, if you 
ip a 
oin with P [H℄ = p n times and add up the number of heads, youget a Binomial(n,p) random variable.Example 7: The following Matlab s
ript gives a ni
e way to simulate values of a Bino-mial(n,p) random variable.n= ; %enter the value of np= ; %enter the value of px=sum(rand(n,50000)>1-p);The entries of ve
tor x simulates values of a Binomial(n,p) random variable on 50000 inde-pendent trials. (In the pre
eding s
ript, you 
an 
hange the 50000 to any other number oftrials you want.) Run the pre
eding s
ript with n = 3 and p = 1=2. Then do the followinghistogram plot:bar(0:3,hist(x,0:3)/50000)Are the histogram heights roughly 1=8; 3=8; 3=8; 1=8? (This is the binomial PMF you obtain,for example, in tossing a fair 
oin 3 times and 
ounting the number of heads.)Example 8: This example tea
hes you about Pas
al's triangle. The following Matlab
ode generates the �rst n rows of Pas
al's triangle (you have to enter the value of n beforerunning the 
ode):S=1;for i=1:nv1=[0 S℄;v2=[S 0℄;S=v1+v2end� Run the above 
ode for n = 8. Take the bottom row you see on the s
reen and verifyby hand that these nine numbers are �8i�, i = 0; 1; 2; 3; 4; 5; 6; 7; 8.6



Example 9: This example tea
hes you a Matlab s
ript from whi
h binomial probabilities
an be 
omputed very fast. The following Matlab 
ode generates the PMF of a binomialrandom variable with parameters n and p (the values of n and p have to be entered in �rstbefore running the 
ode):S=1;for i=1:nv1=[0 S℄;v2=[S 0℄;S=p*v1+(1-p)*v2;endPMF=S� Run the above 
ode for n = 3 and p = 1=2 and see if you do get the PMF 1=8; 3=8; 3=8; 1=8that was 
onsidered in Example 7.3.5 Exp 5: Simulating a Poisson Random VariableThis experiment tea
hes you the following things 
on
erning the Poisson(�) distribution:� A ni
e way to 
ompute Poisson probabilities.� A ni
e way to simulate Poisson data.PMF values for a Poisson(�) RV X are given by the formula:pX(x) = exp(��)�kk! ; k = 0; 1; 2; 3; � � � : (2)The following Matlab 
ode generates the �rst n + 1 of these PMF values pX(x) (x =0; 1; � � � ; n):n= ; %enter the value of nalpha = ; %enter value of Poisson parameter alphaS(1)=1;for k=1:nS(k+1)=alpha*S(k)/k;endPMF=exp(-alpha)*SExample 10: Run the pre
eding Matlab 
ode with alpha=0.5 and n = 3. Examine thefour Poisson PMF probabilities that you see on your s
reen. Now try to use formula (2) todire
tly 
ompute some of these four probabilities to see if they agree with what is on yourMatlab s
reen.The following Matlab 
ode generates simulated values of a Poisson(�) random variablefor n independent trials: 7




lear;n= ; %enter the number of trials nalpha= ; %enter in the value of Poisson parameter alphafor i=1:nt=0;
ount=-1;while t<1t=t-log(rand(1,1))/alpha;
ount=
ount+1;endx(i)=
ount;end(Do not try to understand why this 
ode works now. In a future EE 3025 le
ture, I will tryto explain why it works.)Example 11: Run the pre
eding s
ript with alpha=0.5 and n = 10000. Then exe
ute theline mean(x==1)This should be an estimate of the following Poisson probability:P (X = 1) = (0:5) exp(�0:5) = 0:3033:Is the estimate pretty good? Now 
ompare the estimatesmean(x==0), mean(x==2)to P (X = 0) = exp(�0:5); P (X = 2) = (0:5)2 exp(�0:5)=2;respe
tively.3.6 Exp 6: Simulating an Exponential Random VariableThe density fun
tion for a random variable X having the Exponential(a) distribution isfX(x) = a exp(�ax)u(x):The following very simple s
ript simulates values of su
h a random variableX over 100000independent trials:
lear;a= ; %enter in value of parameter ax=-log(rand(1,100000))/a;(We will eventually prove in 
lass why this works.)Example 12: Suppose a randomly 
hosen 
itizen is expe
ted to live 70 years. Thenwe would model the lifetime of this 
itizen as an Exponential(a) random variable X witha = 1=70. Run the pre
eding s
ript with a = 1=70. Exe
ute the 
ommand8



mean(x)Is this the result you expe
ted? Also, exe
utemean(x>70)and then 
ompare this with the exa
t probabilityP (X > 70) = Z 170 a exp(�ax)dx = exp(�1)that you get for a = 1=70. If you have time, re-do Example 1 in whi
h you take the datave
tor x to be the data ve
tor you just generated. You will then obtain an estimated plot ofthe exponential fun
tion fX(x).
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EE 3025 S2007 Re
itation 3 Lab FormName and Student Number of Team Member 1:Name and Student Number of Team Member 2:Name and Student Number of Team Member 3:************************************************************************************Study Experiments 2-3 on simulating nonstandard uniform and Gaussian data. In this week'slab report, I will have you simulate some data of this type and have you estimate variousprobabilities, means, or varian
es using the data.
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