
EE 3025 Dr. Kie�er3 Re 3: Common Probability DistributionsDiretions: Your instrutor will spend the the �rst 40 minutes of the reitation periodworking some review problems and going over one or more Matlab experiments in the fol-lowing. During the last 10 minutes of reitation, your protor will give you a \Lab Form"that your reitation team ompletes, signs, and turns in. See the last page for an indiationof what you will be asked to do on the Lab Form.Due to time limitations, only a part of the following an be overed during the reitationperiod. However, you might want in the future to try some of the unovered experiments onyour own. They ould give skills useful on some future homework problems and ould lendinsight into your understanding of the ourse from an experimental point of view.This Week's Topis.� Estimating PDF/CDF from Data� Simulating a Nonstandard Uniform Random Variable� Simulating a Nonstandard Gaussian Random Variable� Simulating a Binomial Random Variable� Simulating a Poisson Random Variable� Simulating an Exponential Random Variable3.1 Exp 1: Estimating PDF/CDF from DataSuppose you have a vetor of many observations from a disrete distribution. You have seenin Reitations 1 and 2 how you an diretly use the histogram funtion to get an estimateof the PMF (probability mass funtion) of the disrete distribution. If the vetor insteadontains observations from a ontinuous probability distribution, it is a bit more triky touse the histogram funtion to get an estimate of the PDF (probability density funtion).This experiment tells you how to go about this.Suppose we have a vetor x of observations from a ontinuous probability distributionwith density funtion (PDF) f(x). This experiment teahes you how we an get an estimatedplot of f(x). Let's suppose that x onsists of n samples, n large. (We will typially taken = 100000 in our experiments.) We then subdivide the range of x values into N bins ofequal width. (In our experiments, we typially take N = n=100, so that if the data wereuniformly distributed, we would expet about 1000 samples in eah bin.) Let � be the binwidth. Let xi be the midpoint of the i-th bin and let ni be the number of samples in thei-th bin (whih an be found with the Matlab funtion \hist"). Thenni=n � f(xi)�:1



(The left side is an empirial estimate, based on the n observations, of the probability that adata value will fall in the given bin; the right side is the approximate area aptured by thisbin under the density funtion.) From this, we obtainf(xi) � ni=(n�)as an estimate for f(xi). We an implement this idea with the following Matlab ode:n=length(x); %n is the number of samples in xN=floor(n/100); %N is the number of binsA=min(x); B=max(x); %[A,B℄ is the range of x valuesDelta=(B-A)/N; %Delta is the bin widtht=A-Delta/2+[1:N℄*Delta; %horizontal axis of bin midpointsf=hist(x,t)/(Delta*n); %vertial axis of density estimatesbar(t,f); %estimated density plotExample 1: In this example, you obtain estimates of the plots of the PDF and CDFof a random variable uniformly distributed in the interval [0; 1℄. (Reall that data pointsaording to this distribution are generated using the Matlab funtion \rand.")(a) Obtain a plot on your sreen of estimated uniform(0; 1) density (PDF) from 100000\rand" pseudorandomly generated samples by running the following ode:n=100000;x=rand(1,n);N=floor(n/100);A=min(x); B=max(x);Delta=(B-A)/N;t=A-Delta/2+[1:N℄*Delta;f=hist(x,t)/(Delta*n);bar(t,f)title('Estimated Uniform(0,1) PDF')Does your plot look like a \jagged" retangular pulse of amplitude one? One way toredue the jaggedness in the density estimate is to use a smoothing �lter. There is anentire theory devoted to suh smoothing �lters, whih we do not touh upon in 3025.(b) Run the following lines of ode (as an add-on to the ode already run in Example 1(a))in order to obtain an estimated CDF for uniform(0,1) data:p=hist(x,t)/n;CDF=umsum(p);plot(t,CDF)title('Estimated Uniform(0,1) CDF')Does the plot look like the CDF of the uniform(0,1) density? The estimated CDF plotlooks smoother than the estimated density plot|Why?2



Example 2: In this example, you obtain estimates of the plots of the PDF and CDF of arandom variable having the standard Gaussian density (PDF). This is the PDF1p2� exp(�x2=2); �1 < x <1:(Data points aording to this distribution are generated using the Matlab funtion \randn.")(a) Obtain a plot on your sreen of estimated standard Gaussian density from 100000\randn" pseudorandomly generated samples by running the following ode:n=100000;x=randn(1,n);N=floor(n/100);A=min(x); B=max(x);Delta=(B-A)/N;t=A-Delta/2+[1:N℄*Delta;f=hist(x,t)/(Delta*n);bar(t,f)title('Estimated Standard Gaussian PDF')Compute 1=p2�. Is this about equal to the peak value of the estimated density urvethat you see on your omputer sreen?(b) Run the following lines of ode (as an add-on to the ode already run in Example2(a)) in order to obtain an estimate of the plot of the CDF of a standard Gaussiandistribution:p=hist(x,t)/n;CDF=umsum(p);plot(t,CDF)title('Estimated Gaussian(0,1) CDF')Use your standard Gaussian CDF table on page 123 of Yates-Goodman to see if theatual CDF values at z = 0; 0:5; 1:0; 1:5; 2:0 onform to the estimated CDF values youget from the urve on your sreen.3.2 Exp 2: Simulating a Nonstandard Uniform Random VariableWe already know that a random variable uniformly distributed in interval [0; 1℄ (\standarduniform distribution") is simulated with Matlab ommand \rand(1,1)". In this experiment,you will see how to simulate values of a random variable uniformly distributed over someother interval (\nonstandard uniform distribution").Example 3: Exeute the following lines.a=3; b=7;x=(b-a)*rand(1,50000)+a; 3



We will try to onvine you that you have stored in Matlab memory 50000 simulations ofthe value of a uniform RV distributed over the interval [3,7℄. Exeute the lines:max(x)min(x)Do the max and min values on your sreen onvine you that your 50000 data points all liebetween 3 and 7? Run the following line:mean(x>2 & x<5)If RV X were uniformly distributed between 3 and 7, what would the exat value of theprobability P (2 < X < 5) be? (Use pen or penil here.) Does this orrespond with whatthe Matlab estimate of this probability just gave you? Run the following line:mean(x > 6)and interpret the result.This example has hopefully onvined you that if you make the hange of variableX = (b� a)Z + a;where Z has the standard uniform distribution, then you obtain a random variable X uni-formly distributed in the interval [a; b℄.3.3 Exp 3: Simulating a Nonstandard Gaussian Random VariableA Gaussian density funtion fX(x) is spei�ed by two parameters, the mean � and thevariane �2. (Equivalently, it is determined by the mean � and the standard deviation �;the standard deviation is the square root of the variane.) The formula for the Gaussiandensity fX(x) is: fX(x) =  1p2��! exp �(x� �)22�2 !If you haven't done so already, then before starting this experiment you should look at �gure3.5 on page 119 of your textbook in order to see how hanging � and �2 a�ets the positionand shape of the density urve.The Matlab funtion \randn" simulates values of a standard Gaussian random variable(meaning that � = 0 and �2 = 1). By the time you �nish this experiment, you will seehow to simulate a nonstandard Gaussian RV. You will also learn ways to ompute Gaussianprobabilities.Example 4: In this example, you will learn how to ompute Gaussian probabilities usingthe Matlab funtion \erf". We havePfa � X � bg = (1=2)erf((b� �)=�p2)� (1=2)erf((a� �)=�p2)for a RV X whih is Gaussian(�; �2). The line of Matlab ode for this probability is(1/2)*erf((b-M)/(sqrt(2*V)))-(1/2)*erf((a-M)/(sqrt(2*V)))4



where M is the mean and V is the variane.� Let X be standard Gaussian. Compute P [�0:5 � X � 1℄ using the above line ofMatlab ode. Then, run the sript:x=randn(1,50000);mean(x >= -0.5 & x<=1)Do you obtain roughly the same answer?� Compute P [3:5 � Y � 5℄ for Y Gaussian with mean 4 and variane 4.� Compute P [Y � 3:75℄ for this same Y . (Hint: In the format P [a � Y � b℄, we want bto be in�nite. Enter \b=inf" before exeuting the above line of Matlab ode; Matlabreognizes \inf" as 1.)Example 5: You an also use the Matlab symboli integrator to ompute Gaussian prob-abilities, if the symboli integrator omes with your version of Matlab. To illustrate this, seeif your mahine allows you to exeute the following ommands:syms zP=int((1/sqrt(2*pi))*exp(-z^2/2),0,1);eval(P)Do you see the value 0:3413 on your sreen? This is the probability P (0 � Z � 1) for astandard Gaussian random variable Z.Example 6: In this example, you will see how to simulate the values of a Gaussian(�,�2)random variable.� Run the ode:x=randn(1,50000);mean(x)var(x)Are you getting good estimates of the mean and variane of a standard Gaussiandistribution?� Run the ode:M=-9; V=16;x=sqrt(V)*randn(1,50000)+M;mean(x)var(x)Are you getting good estimates of the mean and variane of a Gaussian distributionwith mean -9 and variane 16?As a result of Example 6, you have seen that the hange of variableX = �Z + �onverts a standard Gaussian RV Z into a nonstandard Gaussian RV X with mean � andvariane �2. 5



3.4 Exp 4: Simulating a Binomial Random VariableIn this experiment, you will learn how to simulate a binomial random variable and how toompute binomial probabilities using Matlab.Suppose you have a random variableX whih has a binomial distribution with parametersn and p. Then, the PMF is given byP (X = x) =  nx!px(1� p)n�x; x = 0; 1; 2; � � � ; n; (1)where the binomial oeÆient �nx� is omputed by: nx! = n!x!(n� x)! :For example, if you ip a oin with P [H℄ = p n times and add up the number of heads, youget a Binomial(n,p) random variable.Example 7: The following Matlab sript gives a nie way to simulate values of a Bino-mial(n,p) random variable.n= ; %enter the value of np= ; %enter the value of px=sum(rand(n,50000)>1-p);The entries of vetor x simulates values of a Binomial(n,p) random variable on 50000 inde-pendent trials. (In the preeding sript, you an hange the 50000 to any other number oftrials you want.) Run the preeding sript with n = 3 and p = 1=2. Then do the followinghistogram plot:bar(0:3,hist(x,0:3)/50000)Are the histogram heights roughly 1=8; 3=8; 3=8; 1=8? (This is the binomial PMF you obtain,for example, in tossing a fair oin 3 times and ounting the number of heads.)Example 8: This example teahes you about Pasal's triangle. The following Matlabode generates the �rst n rows of Pasal's triangle (you have to enter the value of n beforerunning the ode):S=1;for i=1:nv1=[0 S℄;v2=[S 0℄;S=v1+v2end� Run the above ode for n = 8. Take the bottom row you see on the sreen and verifyby hand that these nine numbers are �8i�, i = 0; 1; 2; 3; 4; 5; 6; 7; 8.6



Example 9: This example teahes you a Matlab sript from whih binomial probabilitiesan be omputed very fast. The following Matlab ode generates the PMF of a binomialrandom variable with parameters n and p (the values of n and p have to be entered in �rstbefore running the ode):S=1;for i=1:nv1=[0 S℄;v2=[S 0℄;S=p*v1+(1-p)*v2;endPMF=S� Run the above ode for n = 3 and p = 1=2 and see if you do get the PMF 1=8; 3=8; 3=8; 1=8that was onsidered in Example 7.3.5 Exp 5: Simulating a Poisson Random VariableThis experiment teahes you the following things onerning the Poisson(�) distribution:� A nie way to ompute Poisson probabilities.� A nie way to simulate Poisson data.PMF values for a Poisson(�) RV X are given by the formula:pX(x) = exp(��)�kk! ; k = 0; 1; 2; 3; � � � : (2)The following Matlab ode generates the �rst n + 1 of these PMF values pX(x) (x =0; 1; � � � ; n):n= ; %enter the value of nalpha = ; %enter value of Poisson parameter alphaS(1)=1;for k=1:nS(k+1)=alpha*S(k)/k;endPMF=exp(-alpha)*SExample 10: Run the preeding Matlab ode with alpha=0.5 and n = 3. Examine thefour Poisson PMF probabilities that you see on your sreen. Now try to use formula (2) todiretly ompute some of these four probabilities to see if they agree with what is on yourMatlab sreen.The following Matlab ode generates simulated values of a Poisson(�) random variablefor n independent trials: 7



lear;n= ; %enter the number of trials nalpha= ; %enter in the value of Poisson parameter alphafor i=1:nt=0;ount=-1;while t<1t=t-log(rand(1,1))/alpha;ount=ount+1;endx(i)=ount;end(Do not try to understand why this ode works now. In a future EE 3025 leture, I will tryto explain why it works.)Example 11: Run the preeding sript with alpha=0.5 and n = 10000. Then exeute theline mean(x==1)This should be an estimate of the following Poisson probability:P (X = 1) = (0:5) exp(�0:5) = 0:3033:Is the estimate pretty good? Now ompare the estimatesmean(x==0), mean(x==2)to P (X = 0) = exp(�0:5); P (X = 2) = (0:5)2 exp(�0:5)=2;respetively.3.6 Exp 6: Simulating an Exponential Random VariableThe density funtion for a random variable X having the Exponential(a) distribution isfX(x) = a exp(�ax)u(x):The following very simple sript simulates values of suh a random variableX over 100000independent trials:lear;a= ; %enter in value of parameter ax=-log(rand(1,100000))/a;(We will eventually prove in lass why this works.)Example 12: Suppose a randomly hosen itizen is expeted to live 70 years. Thenwe would model the lifetime of this itizen as an Exponential(a) random variable X witha = 1=70. Run the preeding sript with a = 1=70. Exeute the ommand8



mean(x)Is this the result you expeted? Also, exeutemean(x>70)and then ompare this with the exat probabilityP (X > 70) = Z 170 a exp(�ax)dx = exp(�1)that you get for a = 1=70. If you have time, re-do Example 1 in whih you take the datavetor x to be the data vetor you just generated. You will then obtain an estimated plot ofthe exponential funtion fX(x).
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EE 3025 S2007 Reitation 3 Lab FormName and Student Number of Team Member 1:Name and Student Number of Team Member 2:Name and Student Number of Team Member 3:************************************************************************************Study Experiments 2-3 on simulating nonstandard uniform and Gaussian data. In this week'slab report, I will have you simulate some data of this type and have you estimate variousprobabilities, means, or varianes using the data.
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