
EE 3025 Dr. Kie�er4 Re
 4: Means/Varian
es and Appli
ationsDire
tions: Your instru
tor will spend the the �rst 40 minutes of the re
itation periodworking some review problems and going over one or more Matlab experiments in the fol-lowing. During the last 10 minutes of re
itation, your pro
tor will give you a \Lab Form"that your re
itation team 
ompletes, signs, and turns in. See the last page for an indi
ationof what you will be asked to do on the Lab Form.Due to time limitations, only a part of the following 
an be 
overed during the re
itationperiod. However, you might want in the future to try some of the un
overed experiments onyour own. They 
ould give skills useful on some future homework problems and 
ould lendinsight into your understanding of the 
ourse from an experimental point of view.This Week's Topi
s.� Veri�
ation of Means/Varian
es of Common Distributions� Appli
ation to Monte Carlo Integration� Appli
ation to Quantizer Design� Appli
ation to Text Compression4.1 Exp 1: Veri�
ation of Means/Varian
esIn Re
itation 2, you saw how to simulate observations from a uniform, Gaussian, binomial,Poisson, and exponential distribution. Ea
h of these distributions has a theoreti
al mean �and varian
e �2 given in Appendix A. In this experiment, we verify that the Appendix Aexpressions for � and �2 are 
orre
t by applying the Matlab fun
tions \mean" and \var" toa large number of simulated observations, respe
tively.� For a ve
tor x of observations (xi : i = 1; 2; � � � ; n) from a prob distribution with mean�, mean(x) is the arithmeti
 average Pni=1 xin :It should provide a good estimate of � if number of observations n is large.� The varian
e of the observations is var(x) and is almost1 the same thing asPni=1(xi �mean(x))2n ;1A
tually, the varian
e var(x) of observations x = (xi : i = 1; � � � ; n) is Pni=1(xi�mean(x))2n�1 instead ofdividing by n. We explain later in this 
ourse why some people divide by n� 1 instead of n. For large n, itmakes very little di�eren
e. 1



the average square deviation of ea
h observation from mean(x). var(x) should be agood estimate of �2, the varian
e of the probability distribution, if number of observa-tions n is large.Example 1: The Uniform(a; b) distribution has mean and varian
e� = a + b2�2 = (a� b)212Suppose a = 3 and b = 7. Then the mean of the Uniform(a; b) distibution should be 5 andthe varian
e should be 16=12 = 4=3. Run the following Matlab 
ode to verify this:a=3; b=7;x=(b-a)*rand(1,100000)+a; %simulated Uniform(a,b) observationsmean(x) %estimate mean of distributionvar(x) %estimate varian
e of distributionAre your mean and varian
e estimates approximately 
orre
t?Example 2: The Gaussian(�; �) distribution has mean � and varian
e �2. Run thefollowing Matlab s
ript, whi
h veri�es that we do indeed have this mean and varian
e for� = 4, � = 3 (whi
h means the varian
e is �2 = 9).mu=4; sigma=3;x=sigma*randn(1,100000)+mu; %simulated Gaussian(mu,sigma) observationsmean(x) %estimate mean of distributionvar(x) %estimate varian
e of distributionAre your mean and varian
e estimates approximately 
orre
t?Example 3: The Binomial(n; p) distribution has mean and varian
e� = np�2 = np(1� p)We verify this with n = 6, p = 1=3, in whi
h 
ase the mean is np = 2 and the varian
e isnp(1� p) = 12=9 = 1:333. See what happens when you run the following Matlab s
ript.n=6; p=1/3;x=sum(rand(n,50000)>1-p); %simulated Binomial(n,p) observationsmean(x) %estimate mean of distributionvar(x) %estimate varian
e of distributionAre your mean and varian
e estimates approximately 
orre
t?Example 4: A 
urious property of the Poisson(�) probability distribution is that its meanand varian
e are both �! In the following s
ript you test this for � = 0:5.2




lear;alpha=0.5;%generate 10000 Poisson(alpha) samplesfor i=1:10000t=0;
ount=-1;while t<1t=t-log(rand(1,1))/alpha;
ount=
ount+1;endx(i)=
ount;endmean(x) %estimate mean of distributionvar(x) %estimate varian
e of distributionAre your mean and varian
e estimates approximately 
orre
t?Example 5: The Exponential(a) probability distribution has mean 1=a and varian
e 1=a2.Let us take a = 1=70. Then the mean should be 70 and the varian
e should be 4900. Testthis with the following Matlab s
ript.
lear;a=1/70;x=-log(rand(1,50000))/a; %simulated Exponential(a) samplesmean(x) %estimate mean of distributionvar(x) %estimate varian
e of distributionAre your mean and varian
e estimates approximately 
orre
t?4.2 Exp 2: Appli
ation to Monte Carlo IntegrationMonte Carlo Integration is a te
hnique via whi
h you approximate the integral of a fun
-tion over an interval by making use of pseudorandomly generated points in that interval.Spe
i�
ally, suppose we want to evaluate the integralZ ba g(x)dx:We 
an re-write this integral as (b� a) Z ba g(x)� 1b� a� dx:Note that the quantity 1b�a in the integrand is the Uniform(a; b) probability density, andso we 
an interpret this integral as E[g(X)℄, where X is a RV uniformly distributed in theinterval [a; b℄. We have proved the formulaZ ba g(x)dx = (b� a)E[g(X)℄; X � Uniform(a; b): (1)To estimate E[g(X)℄, you 
an perform the following three steps:3



Step 1: Generate a large number of pseudorandom observations of X � Uniform(a; b).Step 2: Apply fun
tion g to transform the observations from Step 1.Step 3: Applying Matlab fun
tion mean to the transformed observations, whi
h gives theestimate for E[g(X)℄.Having found your estimate for E[g(X)℄, you then multiply it by b�a a

ording to equation(1) in order to obtain the Monte Carlo estimate of R ba g(x)dx.We illustrate the Monte Carlo te
hnique in several examples.Example 6: Evaluate the integral Z 10 x1=3dxby hand. Then, exe
ute the following Matlab s
ript to get the Monte Carlo estimate:a=0; b=1; %enter in the limits of integrationx=(b-a)*rand(1,50000)+a; %generate Uniform(a,b) random data pointsy=x.^(1/3);Monte_Carlo_estimate=(b-a)*mean(y)Does your estimated value of the integral approximately agree with the a
tual value? Re-runthe s
ript several times to see whether the 
u
tuations about the a
tual value of the integralare small.Example 7: Find the exa
t value of the integralZ 1�1p1� x2dxusing geometri
 reasoning (it's the area of a semi
ir
ular region). Then, exe
ute the followingMatlab s
ript to get the Monte Carlo estimate:a=-1; b=1;x=(b-a)*rand(1,50000)+a; %uniform dist samples from -1 to 1y=sqrt(1-x.^2);Monte_Carlo_estimate=(b-a)*mean(y)Does your estimated value of the integral approximately agree with the a
tual value? Re-runthe s
ript several times to see whether the 
u
tuations about the a
tual value of the integralare small.Example 8: Using the table on page 123 of your textbook, show thatZ 10  1p2�! exp(�x2=2)dx = 0:3413:Obtain a Monte Carlo estimate of this same integral by running the following Matlab s
ript:4



a=0; b=1;x=(b-a)*rand(1,50000)+a; %uniform dist samples from 0 to 1y=exp(-x.^2/2)/sqrt(2*pi);Monte_Carlo_estimate=(b-a)*mean(y)Example 9: Using the Matlab s
ripts from the pre
eding Examples as a guide, obtain aMonte Carlo estimate of the integralZ 52 sin(loge(4 + 9x3:5))dxusing 50000 pseudorandomly generated data points.4.3 Exp 3: Appli
ation to Quantizer DesignSuppose we have a RV X whi
h we assume for simpli
ity to have a PDF fX(x) whi
h issymmetri
 about x = 0 (su
h as a mean 0 Gaussian random variable). A two-level quantizerfor X would be a step fun
tion Q(x) of the formQ(x) = ( �B; �1 < x � 0B; 0 < x <1where B is a positive 
onstant.The quantizer Q(x) is sometimes 
alled a one bit quantizer be
ause depending uponwhether Q(x) is equal to B or �B, you 
an send a bit (a zero or a one) to the user to indi
atewhi
h of these two 
ases o

urs. In other words, we have a kind of primitive 
ommuni
ationsystem:datasour
e ! X ! quantizer ! Q(X) = �B ! bit
onverter ! send zero or one! userDepending upon whether the user's re
eived bit is 0 or 1, the user will estimate X as either Bor �B. (If you are allowed to send more bits to the user, you 
an make a �ner quantizationfor greater a

ura
y. Using just one bit, I am 
onsidering the simplest su
h 
ommuni
ationsystem.)In order to evaluate how good a parti
ular quantizer is, you 
ompute the so-
alled signal-to-quantizing-noise ratio, 
alled SQNR for short and de�ned bySQNR �= 10 log10  �2XE[(X �Q(X))2℄! :The units of SQNR are 
alled \de
ibels". (Typi
al ranges of SQNR for two-level quantizationare in the 4 to 6 de
ibel range.) Our design goal is to sele
t the value of the parameter B forwhi
h the resulting two-level quantizer Q(x) will make the SQNR as big as possible. Duringone of our EE 3025 
lass le
tures, I will derive what the best 
hoi
e of B is. For the purposesof a Matlab demonstration, we 
an easily estimate the SQNR for di�erent 
hoi
es of B. Forexample, via Matlab, we 
an easily determine whi
h of two possibilities for Q(x) yields thebigger SQNR. Here is how you 
an use Matlab to obtain a SQNR estimate:5



Step 1: Generate a ve
tor x 
onsisting of a large number of pseudorandom observations ofthe value of the random variable X.Step 2: Then estimate the SQNR for a given positive B value via the following Matlabs
ript:%enter the value of B you are testingy=B*(x>0)-B*(x<=0); %yields quantizer output sequen
eerror=mean((x-y).^2);SQNR_estimate=10*log10(var(x)/error)Now you are ready to design a quantizer by seeing whi
h quantizer yields the biggestestimated SQNR performan
e.Example 10: Let X be a standard Gaussian random variable. Let's quantize X with thetwo-level quantizer in whi
h B = 1. Using 50000 simulated observations of X, estimate theresulting SQNR using the following Matlab 
ode:x=randn(1,50000);B=1;y=B*(x>0)-B*(x<=0);error=mean((x-y).^2);SQNR_estimate=10*log10(var(x)/error)Run the s
ript several times. Did you obtain an SQNR estimate in the 3:9 to 4:0 de
ibelrange?Example 11: Again, let X be the standard Gaussian RV. You are now going to use adi�erent B than B = 1 to see if you 
an improve the SQNR performan
e of your two-levelquantizer. To obtain the B value that we are going to use, run the following s
ript:x=randn(1,50000);t=find(x>0);B=mean(x(t))Did you get a B value di�erent from 1? Now estimate the SQNR performan
e of your newquantizer with the following Matlab s
ript:x=randn(1,10000);%enter in the B value you just foundy=B*(x>0)-B*(x<=0);error=mean((x-y).^2);SQNR_estimate=10*log10(var(x)/error)Run the s
ript a few times to see if there is not mu
h 
hange in the estimated SQNR. Is yourSQNR estimate around 4.4 de
ibels? Noti
e that this is an improvement over the SQNRperforman
e you obtained in Example 10 using the two-level quantizer in whi
h B = 1.Example 12: Now let X be a uniformly distributed RV in the interval [�3; 3℄. Choose Bfor your two-level quantizer design by running the following Matlab s
ript:6



a=-3;b=3;x=(b-a)*rand(1,50000)+a; %generate Uniform samples in [-3,3℄t=find(x>0);B=mean(x(t))Now run the following s
ript to see what SQNR performan
e you are getting for this 
hoi
eof B:a=-3;b=3;x=(b-a)*rand(1,50000)+a; %generate Uniform samples in [-3,3℄%enter in the B value you just foundy=B*(x>0)-B*(x<=0);error=mean((x-y).^2);SQNR_estimate=10*log10(var(x)/error)Now re-run this s
ript with B = 1 in order to 
onvin
e yourself that your �rst 
hoi
e ofB gives the bigger SQNR. What is the approximate di�eren
e in the SQNR performan
eyielded by these two quantizers? Is the di�eren
e more than one de
ibel? (In 
ommuni
ationsystem design, a di�eren
e of one de
ibel or more is pretty signi�
ant. If you 
an a
hieve aone de
ibel or more improvement by 
hanging your design, then you would typi
ally 
hangeyour design.)In 
losing, think about the following: suppose you have a ve
tor x 
onsisting of a largenumber of observations of a RVX. The following Matlab s
ript would generate a real numberB:t=find(x>0);B=mean(x(t))Can you see any possible relationship between the B that is generated by this s
ript and thereal number Z 10 xfX(x)dxZ 10 fX(x)dx ?4.4 Exp 4: Appli
ation to Text CompressionA text �le typi
ally 
onsists of a long sequen
e of 
hara
ters from the as
ii alphabet of size256. For simpli
ity, we suppose that we have a text �le formed as a sequen
e of 216 = 65536
hara
ters from the following 
hara
ter alphabet of size 8:f0; 1; 2; 3; 4; 5; 6; 7g:For example, the text �le might start o� as:1266310557240051 � � � (2)7



Suppose we randomly sele
t a 
hara
ter from the sequen
e of 
hara
ters forming our text�le; let random variable X denote this randomly sele
ted 
hara
ter. Suppose X has thefollowing PMF: x 0 1 2 3 4 5 6 7PX(x) 1=2 1=4 1=8 1=16 1=32 1=64 1=128 1=128For example, the probability PX(3) = 1=16means that 1=16 of the 65536 
hara
ters in the text �le (a total of 4096 
hara
ters) are equalto 3.Suppose you wish to store the given text �le on your hard disk for use at some futuretime. You 
ould just store it un
ompressed as a 65536 
hara
ter �le. Better yet, you 
ouldstore your �le by 
ompressing it so that fewer than 65536 
hara
ters are used. Here is oneway that you might be able to do this:Step 1: Use the following table to repla
e ea
h 
hara
ter in the text �le with a 
orrespondingbinary 
odeword, where the 
odeword assignment is as follows:
hara
ter 0 1 2 3 4 5 6 7
odeword 00 01 100 101 110 1110 11110 11111We require that no 
odeword is a pre�x of any other 
odeword.Step 2: Partition the stream of bits resulting from Step 1 into three-bit blo
ks and thenassign 
hara
ters to ea
h of these blo
ks as follows:blo
k 000 001 010 011 100 101 110 111
hara
ter 0 1 2 3 4 5 6 7The result is a text �le of possibly smaller size than 65536 
hara
ters.To illustrate this two-step method, suppose our original text �le starts as indi
ated in (2).Then the bit stream resulting from Step 1 starts with:0110011110111101010100 � � �Performing Step 2, the 
ompressed �le then starts with:317365 � � �Example 13: Based upon the information given up to now, it is not hard to devise asimple Matlab s
ript that will 
ompute how many 
hara
ters are in the 
ompressed �le.Here is su
h a s
ript, whi
h you should now run:p=[1/2 1/4 1/8 1/16 1/32 1/64 1/128 1/128℄; %
hara
ter probsL=[2 2 3 3 3 4 5 5℄; %Step 1 
odeword lengths
ompressed_file_length=65536*sum(p.*L)/38



Does the 
ompressed �le 
onsist of fewer than 65536 
hara
ters? Form the ratio65536number of 
hara
ters in 
ompressed file:This number is 
alled the 
ompression ratio. The bigger your 
ompression ratio is, the betterthe job you are doing in 
ompressing your text �le. The very best 
ompression methodstypi
ally a
hieve a 
ompression ratio of more than 2. (The simpli�ed 
ompression methodwe are using in this experiment is probability not going to do that well.)In the following example, you are going to test another 
ompression method in whi
h we
hange the 
ode used in Step 1.Example 14: In Step 1, use instead the following 
odeword assignment:
hara
ter 0 1 2 3 4 5 6 7
odeword 0 10 110 1110 11110 111110 1111110 1111111Make the appropriate 
hanges in the Matlab s
ript of Example 13 so that you 
an 
omputethe length of the 
ompressed �le (the number of 
hara
ters in the 
ompressed �le). (Hint:you only have to 
hange one line of Matlab 
ode.) Re
ompute the 
ompression ratio. Is thisa bigger 
ompression ratio than obtained with the previous 
ode?4.5 Exp 5: Golomb CodesFor the vast majority of students, I believe Experiments 1-4 are enough work for Re
itation4. However, if you �nished Experiments 1-4 during your re
itation period, you 
an start onthis Experiment.Suppose you have a sequen
e of binary data (i.e., 0's and 1's) that you want to representin more 
ompressed form. Run-length 
oding is a way to do this. You partition the datainto runs of zeroes and runs of ones. Ea
h run of zeroes is repla
ed with a binary 
odewordfrom a so-
alled Golomb 
odeword set. Ea
h run of ones is repla
ed with a binary 
odewordfrom another Golomb 
odeword set. Runs of zeroes and runs of ones appear randomly inthe data. The probabilities with whi
h runs of zeroes and runs of ones appear in the dataare typi
ally taken as follows:P [run of n zeroes℄ = p0(n) = pn�1(1� p); n = 1; 2; 3; � � �P [run of n ones℄ = p1(n) = (1� p)n�1p; n = 1; 2; 3; � � �where p is the probability that a zero appears in the data (and therefore 1�p is the probabilitythat a one appears in the data). The value of p determines the two 
odeword sets that areused. Noti
e that the two runlength probability distributions are geometri
 distributions.The Golomb 
odeword set that is 
hosen for 
oding the runs of zeroes minimizes expe
ted
odeword length as 
omputed a

ording to the geometri
 distribution p0(n); the Golomb
odeword set that is 
hosen for 
oding the runs of ones minimizes expe
ted 
odeword lengthas 
omputed a

ording to the geometri
 distribution p1(n).For simpli
ity, let us just 
on
entrate on the Golomb 
odeword set that is 
hosen for theruns of zeroes. Here are the �rst 10 
odewords in the Golomb 
odeword set that should beused when the probability of a zero satis�es p = 1=p2 = 0:7071:9



Golomb 
odewords (p = 1=p2 = 0:7071)runlength 
odeword runlength 
odeword1 00 6 11012 01 7 111003 100 8 111014 101 9 1111005 1100 10 111101Table 1(The �rst two 
odewords are 0; 1 pre
eded by 0, the next two 
odewords are 0; 1 pre
ededby 10, the next two 
odewords after that are 0; 1 pre
eded by 110, et
.)Here are the �rst 10 
odewords in the Golomb 
odeword set that should be used whenthe probability of a zero satis�es p = 1= 4p2 = 0:8409:Golomb 
odewords (p = 1= 4p2 = 0:8409)runlength 
odeword runlength 
odeword1 000 6 10012 001 7 10103 010 8 10114 011 9 110005 1000 10 11001Table 2(The �rst four 
odewords are 00; 01; 10; 11 pre
eded by 0, the next four 
odewords are00; 01; 10; 11 pre
eded by 10, the next four 
odewords after that are 00; 01; 10; 11 pre
ededby 110, et
.)Let L(n) be the length of the n-th Golomb 
odeword. The ratioE[Golomb 
odeword length℄E[runlength℄ = 1Xi=1L(n)p0(n)1Xi=1 np0(n) (3)is the key �gure of merit that tells us how good a parti
ular Golomb 
odeword set is. Thisratio is less than or equal to 1. The smaller it is, the better. For example, if the ratio is 2=3,this means that the 
odewords representing the runs of zeroes will o

upy only two-thirdsas mu
h spa
e as the spa
e o

upied by the runs of zeroes themselves.Now you are ready to do some analysis of Golomb 
odeword set performan
e.� Example 15: Use Matlab to 
ompute the ratio (3) that arises when the probability of azero in the data is p = 1=p2 and when the Golomb 
odeword set in Table 1 is used toen
ode the runs of zeroes in the data. In order to a

omplish this, noti
e from Table 1that the 
odeword lengths are 2; 2; 3; 3; 4; 4; 5; 5; 6; 6; 7; 7; � � �. The line of Matlab 
ode\1+
eil(n/2)" will generate these 
odeword lengths. To verify this, run the Matlabs
ript: 10



n=1:12;1+
eil(n/2)It is now 
lear that you 
an use the following Matlab 
ode to 
ompute the approximatevalue of the ratio (3):n=1:10000;p=1/sqrt(2);L=1+
eil(n/2);p0=p.^(n-1)*(1-p);ratio=sum(L.*p0)/sum(n.*p0)What per
entage of spa
e is saved by en
oding the runs of zeroes into Golomb 
ode-words?� Example 16: Compute the ratio (3) that arises when the probability of a zero in thedata is p = 4p2 and when the Golomb 
odeword set in Table 2 is used to en
ode theruns of zeroes in the data. Noti
e that the 
odeword lengths are3; 3; 3; 3; 4; 4; 4; 4; 5; 5; 5; 5; 6; 6; 6; 6; � � � ;so your �rst task is a line of Matlab 
ode that will generate these lengths. Whatper
entage of spa
e is saved by en
oding the runs of zeroes into Golomb 
odewords?� Example 17: Compute the ratio (3) that arises when the probability of a zero in thedata is p = 1=p2 and when the Golomb 
odeword set in Table 2 is used to en
odethe runs of zeroes in the data. (The ratio should be bigger than you got in Example15, be
ause the Golomb 
odewords given by Table 1 give the smallest ratio whenp = 1=p2.)� Example 18: Compute the ratio (3) that arises when the probability of a zero in thedata is p = 1= 4p2 and when the Golomb 
odeword set in Table 1 is used to en
odethe runs of zeroes in the data. (The ratio should be bigger than you got in Example16, be
ause the Golomb 
odewords given by Table 2 give the smallest ratio whenp = 1= 4p2.)� Example 19: If you had to extend Table 1, what would be the Golomb 
odewords forruns of zeroes of lengths 11; 12; 13; 14; 15; 16; 17; 18; 19; 20? If you had to extend Table2, what would be the Golomb 
odewords for runs of zeroes of these same lengths?For any p, there is a Golomb 
odeword set appropriate to that 
hoi
e of p. How one
onstru
ts the appropriate Golomb 
odeword set for a given p is 
overed in the 
ourse EE5585, Data Compression.
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EE 3025 S2007 Re
itation 4 Lab FormName and Student Number of Team Member 1:Name and Student Number of Team Member 2:Name and Student Number of Team Member 3:************************************************************************************I will give you an integral to evaluate approximately using the Monte Carlo Method in Ex-periment 2.
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