
EE 3025 Dr. Kie�er4 Re 4: Means/Varianes and AppliationsDiretions: Your instrutor will spend the the �rst 40 minutes of the reitation periodworking some review problems and going over one or more Matlab experiments in the fol-lowing. During the last 10 minutes of reitation, your protor will give you a \Lab Form"that your reitation team ompletes, signs, and turns in. See the last page for an indiationof what you will be asked to do on the Lab Form.Due to time limitations, only a part of the following an be overed during the reitationperiod. However, you might want in the future to try some of the unovered experiments onyour own. They ould give skills useful on some future homework problems and ould lendinsight into your understanding of the ourse from an experimental point of view.This Week's Topis.� Veri�ation of Means/Varianes of Common Distributions� Appliation to Monte Carlo Integration� Appliation to Quantizer Design� Appliation to Text Compression4.1 Exp 1: Veri�ation of Means/VarianesIn Reitation 2, you saw how to simulate observations from a uniform, Gaussian, binomial,Poisson, and exponential distribution. Eah of these distributions has a theoretial mean �and variane �2 given in Appendix A. In this experiment, we verify that the Appendix Aexpressions for � and �2 are orret by applying the Matlab funtions \mean" and \var" toa large number of simulated observations, respetively.� For a vetor x of observations (xi : i = 1; 2; � � � ; n) from a prob distribution with mean�, mean(x) is the arithmeti average Pni=1 xin :It should provide a good estimate of � if number of observations n is large.� The variane of the observations is var(x) and is almost1 the same thing asPni=1(xi �mean(x))2n ;1Atually, the variane var(x) of observations x = (xi : i = 1; � � � ; n) is Pni=1(xi�mean(x))2n�1 instead ofdividing by n. We explain later in this ourse why some people divide by n� 1 instead of n. For large n, itmakes very little di�erene. 1



the average square deviation of eah observation from mean(x). var(x) should be agood estimate of �2, the variane of the probability distribution, if number of observa-tions n is large.Example 1: The Uniform(a; b) distribution has mean and variane� = a + b2�2 = (a� b)212Suppose a = 3 and b = 7. Then the mean of the Uniform(a; b) distibution should be 5 andthe variane should be 16=12 = 4=3. Run the following Matlab ode to verify this:a=3; b=7;x=(b-a)*rand(1,100000)+a; %simulated Uniform(a,b) observationsmean(x) %estimate mean of distributionvar(x) %estimate variane of distributionAre your mean and variane estimates approximately orret?Example 2: The Gaussian(�; �) distribution has mean � and variane �2. Run thefollowing Matlab sript, whih veri�es that we do indeed have this mean and variane for� = 4, � = 3 (whih means the variane is �2 = 9).mu=4; sigma=3;x=sigma*randn(1,100000)+mu; %simulated Gaussian(mu,sigma) observationsmean(x) %estimate mean of distributionvar(x) %estimate variane of distributionAre your mean and variane estimates approximately orret?Example 3: The Binomial(n; p) distribution has mean and variane� = np�2 = np(1� p)We verify this with n = 6, p = 1=3, in whih ase the mean is np = 2 and the variane isnp(1� p) = 12=9 = 1:333. See what happens when you run the following Matlab sript.n=6; p=1/3;x=sum(rand(n,50000)>1-p); %simulated Binomial(n,p) observationsmean(x) %estimate mean of distributionvar(x) %estimate variane of distributionAre your mean and variane estimates approximately orret?Example 4: A urious property of the Poisson(�) probability distribution is that its meanand variane are both �! In the following sript you test this for � = 0:5.2



lear;alpha=0.5;%generate 10000 Poisson(alpha) samplesfor i=1:10000t=0;ount=-1;while t<1t=t-log(rand(1,1))/alpha;ount=ount+1;endx(i)=ount;endmean(x) %estimate mean of distributionvar(x) %estimate variane of distributionAre your mean and variane estimates approximately orret?Example 5: The Exponential(a) probability distribution has mean 1=a and variane 1=a2.Let us take a = 1=70. Then the mean should be 70 and the variane should be 4900. Testthis with the following Matlab sript.lear;a=1/70;x=-log(rand(1,50000))/a; %simulated Exponential(a) samplesmean(x) %estimate mean of distributionvar(x) %estimate variane of distributionAre your mean and variane estimates approximately orret?4.2 Exp 2: Appliation to Monte Carlo IntegrationMonte Carlo Integration is a tehnique via whih you approximate the integral of a fun-tion over an interval by making use of pseudorandomly generated points in that interval.Spei�ally, suppose we want to evaluate the integralZ ba g(x)dx:We an re-write this integral as (b� a) Z ba g(x)� 1b� a� dx:Note that the quantity 1b�a in the integrand is the Uniform(a; b) probability density, andso we an interpret this integral as E[g(X)℄, where X is a RV uniformly distributed in theinterval [a; b℄. We have proved the formulaZ ba g(x)dx = (b� a)E[g(X)℄; X � Uniform(a; b): (1)To estimate E[g(X)℄, you an perform the following three steps:3



Step 1: Generate a large number of pseudorandom observations of X � Uniform(a; b).Step 2: Apply funtion g to transform the observations from Step 1.Step 3: Applying Matlab funtion mean to the transformed observations, whih gives theestimate for E[g(X)℄.Having found your estimate for E[g(X)℄, you then multiply it by b�a aording to equation(1) in order to obtain the Monte Carlo estimate of R ba g(x)dx.We illustrate the Monte Carlo tehnique in several examples.Example 6: Evaluate the integral Z 10 x1=3dxby hand. Then, exeute the following Matlab sript to get the Monte Carlo estimate:a=0; b=1; %enter in the limits of integrationx=(b-a)*rand(1,50000)+a; %generate Uniform(a,b) random data pointsy=x.^(1/3);Monte_Carlo_estimate=(b-a)*mean(y)Does your estimated value of the integral approximately agree with the atual value? Re-runthe sript several times to see whether the utuations about the atual value of the integralare small.Example 7: Find the exat value of the integralZ 1�1p1� x2dxusing geometri reasoning (it's the area of a semiirular region). Then, exeute the followingMatlab sript to get the Monte Carlo estimate:a=-1; b=1;x=(b-a)*rand(1,50000)+a; %uniform dist samples from -1 to 1y=sqrt(1-x.^2);Monte_Carlo_estimate=(b-a)*mean(y)Does your estimated value of the integral approximately agree with the atual value? Re-runthe sript several times to see whether the utuations about the atual value of the integralare small.Example 8: Using the table on page 123 of your textbook, show thatZ 10  1p2�! exp(�x2=2)dx = 0:3413:Obtain a Monte Carlo estimate of this same integral by running the following Matlab sript:4



a=0; b=1;x=(b-a)*rand(1,50000)+a; %uniform dist samples from 0 to 1y=exp(-x.^2/2)/sqrt(2*pi);Monte_Carlo_estimate=(b-a)*mean(y)Example 9: Using the Matlab sripts from the preeding Examples as a guide, obtain aMonte Carlo estimate of the integralZ 52 sin(loge(4 + 9x3:5))dxusing 50000 pseudorandomly generated data points.4.3 Exp 3: Appliation to Quantizer DesignSuppose we have a RV X whih we assume for simpliity to have a PDF fX(x) whih issymmetri about x = 0 (suh as a mean 0 Gaussian random variable). A two-level quantizerfor X would be a step funtion Q(x) of the formQ(x) = ( �B; �1 < x � 0B; 0 < x <1where B is a positive onstant.The quantizer Q(x) is sometimes alled a one bit quantizer beause depending uponwhether Q(x) is equal to B or �B, you an send a bit (a zero or a one) to the user to indiatewhih of these two ases ours. In other words, we have a kind of primitive ommuniationsystem:datasoure ! X ! quantizer ! Q(X) = �B ! bitonverter ! send zero or one! userDepending upon whether the user's reeived bit is 0 or 1, the user will estimate X as either Bor �B. (If you are allowed to send more bits to the user, you an make a �ner quantizationfor greater auray. Using just one bit, I am onsidering the simplest suh ommuniationsystem.)In order to evaluate how good a partiular quantizer is, you ompute the so-alled signal-to-quantizing-noise ratio, alled SQNR for short and de�ned bySQNR �= 10 log10  �2XE[(X �Q(X))2℄! :The units of SQNR are alled \deibels". (Typial ranges of SQNR for two-level quantizationare in the 4 to 6 deibel range.) Our design goal is to selet the value of the parameter B forwhih the resulting two-level quantizer Q(x) will make the SQNR as big as possible. Duringone of our EE 3025 lass letures, I will derive what the best hoie of B is. For the purposesof a Matlab demonstration, we an easily estimate the SQNR for di�erent hoies of B. Forexample, via Matlab, we an easily determine whih of two possibilities for Q(x) yields thebigger SQNR. Here is how you an use Matlab to obtain a SQNR estimate:5



Step 1: Generate a vetor x onsisting of a large number of pseudorandom observations ofthe value of the random variable X.Step 2: Then estimate the SQNR for a given positive B value via the following Matlabsript:%enter the value of B you are testingy=B*(x>0)-B*(x<=0); %yields quantizer output sequeneerror=mean((x-y).^2);SQNR_estimate=10*log10(var(x)/error)Now you are ready to design a quantizer by seeing whih quantizer yields the biggestestimated SQNR performane.Example 10: Let X be a standard Gaussian random variable. Let's quantize X with thetwo-level quantizer in whih B = 1. Using 50000 simulated observations of X, estimate theresulting SQNR using the following Matlab ode:x=randn(1,50000);B=1;y=B*(x>0)-B*(x<=0);error=mean((x-y).^2);SQNR_estimate=10*log10(var(x)/error)Run the sript several times. Did you obtain an SQNR estimate in the 3:9 to 4:0 deibelrange?Example 11: Again, let X be the standard Gaussian RV. You are now going to use adi�erent B than B = 1 to see if you an improve the SQNR performane of your two-levelquantizer. To obtain the B value that we are going to use, run the following sript:x=randn(1,50000);t=find(x>0);B=mean(x(t))Did you get a B value di�erent from 1? Now estimate the SQNR performane of your newquantizer with the following Matlab sript:x=randn(1,10000);%enter in the B value you just foundy=B*(x>0)-B*(x<=0);error=mean((x-y).^2);SQNR_estimate=10*log10(var(x)/error)Run the sript a few times to see if there is not muh hange in the estimated SQNR. Is yourSQNR estimate around 4.4 deibels? Notie that this is an improvement over the SQNRperformane you obtained in Example 10 using the two-level quantizer in whih B = 1.Example 12: Now let X be a uniformly distributed RV in the interval [�3; 3℄. Choose Bfor your two-level quantizer design by running the following Matlab sript:6



a=-3;b=3;x=(b-a)*rand(1,50000)+a; %generate Uniform samples in [-3,3℄t=find(x>0);B=mean(x(t))Now run the following sript to see what SQNR performane you are getting for this hoieof B:a=-3;b=3;x=(b-a)*rand(1,50000)+a; %generate Uniform samples in [-3,3℄%enter in the B value you just foundy=B*(x>0)-B*(x<=0);error=mean((x-y).^2);SQNR_estimate=10*log10(var(x)/error)Now re-run this sript with B = 1 in order to onvine yourself that your �rst hoie ofB gives the bigger SQNR. What is the approximate di�erene in the SQNR performaneyielded by these two quantizers? Is the di�erene more than one deibel? (In ommuniationsystem design, a di�erene of one deibel or more is pretty signi�ant. If you an ahieve aone deibel or more improvement by hanging your design, then you would typially hangeyour design.)In losing, think about the following: suppose you have a vetor x onsisting of a largenumber of observations of a RVX. The following Matlab sript would generate a real numberB:t=find(x>0);B=mean(x(t))Can you see any possible relationship between the B that is generated by this sript and thereal number Z 10 xfX(x)dxZ 10 fX(x)dx ?4.4 Exp 4: Appliation to Text CompressionA text �le typially onsists of a long sequene of haraters from the asii alphabet of size256. For simpliity, we suppose that we have a text �le formed as a sequene of 216 = 65536haraters from the following harater alphabet of size 8:f0; 1; 2; 3; 4; 5; 6; 7g:For example, the text �le might start o� as:1266310557240051 � � � (2)7



Suppose we randomly selet a harater from the sequene of haraters forming our text�le; let random variable X denote this randomly seleted harater. Suppose X has thefollowing PMF: x 0 1 2 3 4 5 6 7PX(x) 1=2 1=4 1=8 1=16 1=32 1=64 1=128 1=128For example, the probability PX(3) = 1=16means that 1=16 of the 65536 haraters in the text �le (a total of 4096 haraters) are equalto 3.Suppose you wish to store the given text �le on your hard disk for use at some futuretime. You ould just store it unompressed as a 65536 harater �le. Better yet, you ouldstore your �le by ompressing it so that fewer than 65536 haraters are used. Here is oneway that you might be able to do this:Step 1: Use the following table to replae eah harater in the text �le with a orrespondingbinary odeword, where the odeword assignment is as follows:harater 0 1 2 3 4 5 6 7odeword 00 01 100 101 110 1110 11110 11111We require that no odeword is a pre�x of any other odeword.Step 2: Partition the stream of bits resulting from Step 1 into three-bit bloks and thenassign haraters to eah of these bloks as follows:blok 000 001 010 011 100 101 110 111harater 0 1 2 3 4 5 6 7The result is a text �le of possibly smaller size than 65536 haraters.To illustrate this two-step method, suppose our original text �le starts as indiated in (2).Then the bit stream resulting from Step 1 starts with:0110011110111101010100 � � �Performing Step 2, the ompressed �le then starts with:317365 � � �Example 13: Based upon the information given up to now, it is not hard to devise asimple Matlab sript that will ompute how many haraters are in the ompressed �le.Here is suh a sript, whih you should now run:p=[1/2 1/4 1/8 1/16 1/32 1/64 1/128 1/128℄; %harater probsL=[2 2 3 3 3 4 5 5℄; %Step 1 odeword lengthsompressed_file_length=65536*sum(p.*L)/38



Does the ompressed �le onsist of fewer than 65536 haraters? Form the ratio65536number of haraters in ompressed file:This number is alled the ompression ratio. The bigger your ompression ratio is, the betterthe job you are doing in ompressing your text �le. The very best ompression methodstypially ahieve a ompression ratio of more than 2. (The simpli�ed ompression methodwe are using in this experiment is probability not going to do that well.)In the following example, you are going to test another ompression method in whih wehange the ode used in Step 1.Example 14: In Step 1, use instead the following odeword assignment:harater 0 1 2 3 4 5 6 7odeword 0 10 110 1110 11110 111110 1111110 1111111Make the appropriate hanges in the Matlab sript of Example 13 so that you an omputethe length of the ompressed �le (the number of haraters in the ompressed �le). (Hint:you only have to hange one line of Matlab ode.) Reompute the ompression ratio. Is thisa bigger ompression ratio than obtained with the previous ode?4.5 Exp 5: Golomb CodesFor the vast majority of students, I believe Experiments 1-4 are enough work for Reitation4. However, if you �nished Experiments 1-4 during your reitation period, you an start onthis Experiment.Suppose you have a sequene of binary data (i.e., 0's and 1's) that you want to representin more ompressed form. Run-length oding is a way to do this. You partition the datainto runs of zeroes and runs of ones. Eah run of zeroes is replaed with a binary odewordfrom a so-alled Golomb odeword set. Eah run of ones is replaed with a binary odewordfrom another Golomb odeword set. Runs of zeroes and runs of ones appear randomly inthe data. The probabilities with whih runs of zeroes and runs of ones appear in the dataare typially taken as follows:P [run of n zeroes℄ = p0(n) = pn�1(1� p); n = 1; 2; 3; � � �P [run of n ones℄ = p1(n) = (1� p)n�1p; n = 1; 2; 3; � � �where p is the probability that a zero appears in the data (and therefore 1�p is the probabilitythat a one appears in the data). The value of p determines the two odeword sets that areused. Notie that the two runlength probability distributions are geometri distributions.The Golomb odeword set that is hosen for oding the runs of zeroes minimizes expetedodeword length as omputed aording to the geometri distribution p0(n); the Golombodeword set that is hosen for oding the runs of ones minimizes expeted odeword lengthas omputed aording to the geometri distribution p1(n).For simpliity, let us just onentrate on the Golomb odeword set that is hosen for theruns of zeroes. Here are the �rst 10 odewords in the Golomb odeword set that should beused when the probability of a zero satis�es p = 1=p2 = 0:7071:9



Golomb odewords (p = 1=p2 = 0:7071)runlength odeword runlength odeword1 00 6 11012 01 7 111003 100 8 111014 101 9 1111005 1100 10 111101Table 1(The �rst two odewords are 0; 1 preeded by 0, the next two odewords are 0; 1 preededby 10, the next two odewords after that are 0; 1 preeded by 110, et.)Here are the �rst 10 odewords in the Golomb odeword set that should be used whenthe probability of a zero satis�es p = 1= 4p2 = 0:8409:Golomb odewords (p = 1= 4p2 = 0:8409)runlength odeword runlength odeword1 000 6 10012 001 7 10103 010 8 10114 011 9 110005 1000 10 11001Table 2(The �rst four odewords are 00; 01; 10; 11 preeded by 0, the next four odewords are00; 01; 10; 11 preeded by 10, the next four odewords after that are 00; 01; 10; 11 preededby 110, et.)Let L(n) be the length of the n-th Golomb odeword. The ratioE[Golomb odeword length℄E[runlength℄ = 1Xi=1L(n)p0(n)1Xi=1 np0(n) (3)is the key �gure of merit that tells us how good a partiular Golomb odeword set is. Thisratio is less than or equal to 1. The smaller it is, the better. For example, if the ratio is 2=3,this means that the odewords representing the runs of zeroes will oupy only two-thirdsas muh spae as the spae oupied by the runs of zeroes themselves.Now you are ready to do some analysis of Golomb odeword set performane.� Example 15: Use Matlab to ompute the ratio (3) that arises when the probability of azero in the data is p = 1=p2 and when the Golomb odeword set in Table 1 is used toenode the runs of zeroes in the data. In order to aomplish this, notie from Table 1that the odeword lengths are 2; 2; 3; 3; 4; 4; 5; 5; 6; 6; 7; 7; � � �. The line of Matlab ode\1+eil(n/2)" will generate these odeword lengths. To verify this, run the Matlabsript: 10



n=1:12;1+eil(n/2)It is now lear that you an use the following Matlab ode to ompute the approximatevalue of the ratio (3):n=1:10000;p=1/sqrt(2);L=1+eil(n/2);p0=p.^(n-1)*(1-p);ratio=sum(L.*p0)/sum(n.*p0)What perentage of spae is saved by enoding the runs of zeroes into Golomb ode-words?� Example 16: Compute the ratio (3) that arises when the probability of a zero in thedata is p = 4p2 and when the Golomb odeword set in Table 2 is used to enode theruns of zeroes in the data. Notie that the odeword lengths are3; 3; 3; 3; 4; 4; 4; 4; 5; 5; 5; 5; 6; 6; 6; 6; � � � ;so your �rst task is a line of Matlab ode that will generate these lengths. Whatperentage of spae is saved by enoding the runs of zeroes into Golomb odewords?� Example 17: Compute the ratio (3) that arises when the probability of a zero in thedata is p = 1=p2 and when the Golomb odeword set in Table 2 is used to enodethe runs of zeroes in the data. (The ratio should be bigger than you got in Example15, beause the Golomb odewords given by Table 1 give the smallest ratio whenp = 1=p2.)� Example 18: Compute the ratio (3) that arises when the probability of a zero in thedata is p = 1= 4p2 and when the Golomb odeword set in Table 1 is used to enodethe runs of zeroes in the data. (The ratio should be bigger than you got in Example16, beause the Golomb odewords given by Table 2 give the smallest ratio whenp = 1= 4p2.)� Example 19: If you had to extend Table 1, what would be the Golomb odewords forruns of zeroes of lengths 11; 12; 13; 14; 15; 16; 17; 18; 19; 20? If you had to extend Table2, what would be the Golomb odewords for runs of zeroes of these same lengths?For any p, there is a Golomb odeword set appropriate to that hoie of p. How oneonstruts the appropriate Golomb odeword set for a given p is overed in the ourse EE5585, Data Compression.
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EE 3025 S2007 Reitation 4 Lab FormName and Student Number of Team Member 1:Name and Student Number of Team Member 2:Name and Student Number of Team Member 3:************************************************************************************I will give you an integral to evaluate approximately using the Monte Carlo Method in Ex-periment 2.
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