EE 3025 Dr. Kieffer

4 Rec 4: Means/Variances and Applications

Directions: Your instructor will spend the the first 40 minutes of the recitation period
working some review problems and going over one or more Matlab experiments in the fol-
lowing. During the last 10 minutes of recitation, your proctor will give you a “Lab Form”
that your recitation team completes, signs, and turns in. See the last page for an indication
of what you will be asked to do on the Lab Form.

Due to time limitations, only a part of the following can be covered during the recitation
period. However, you might want in the future to try some of the uncovered experiments on
your own. They could give skills useful on some future homework problems and could lend
insight into your understanding of the course from an experimental point of view.

This Week’s Topics.

Verification of Means/Variances of Common Distributions

Application to Monte Carlo Integration

Application to Quantizer Design

Application to Text Compression

4.1 Exp 1: Verification of Means/Variances

In Recitation 2, you saw how to simulate observations from a uniform, Gaussian, binomial,
Poisson, and exponential distribution. Each of these distributions has a theoretical mean p
and variance o given in Appendix A. In this experiment, we verify that the Appendix A
expressions for yu and o2 are correct by applying the Matlab functions “mean” and “var” to
a large number of simulated observations, respectively.

e For a vector x of observations (x; : i = 1,2,---,n) from a prob distribution with mean
i, mean (x) is the arithmetic average

n
i=1 Li
n

It should provide a good estimate of y if number of observations n is large.

e The variance of the observations is var(x) and is almost' the same thing as

" (z; — mean(x))?

Y

n

Zf"_l (z4 7mean(x))2

! Actually, the variance var (x) of observations x = (z; : ¢ = 1,---,n) is instead of
dividing by n. We explain later in this course why some people d1v1de by n—1 1nstead of n. For large n, it
makes very little difference.

the average square deviation of each observation from mean(x). var(x) should be a
good estimate of 02, the variance of the probability distribution, if number of observa-
tions n is large.

Ezxample 1: The Uniform(a, b) distribution has mean and variance

B a+b
=
132
o2 — (a—b)
12

Suppose a = 3 and b = 7. Then the mean of the Uniform(a, b) distibution should be 5 and
the variance should be 16/12 = 4/3. Run the following Matlab code to verify this:

a=3; b=7;

x=(b-a)*rand(1,100000)+a; %simulated Uniform(a,b) observations
mean(x) Y%estimate mean of distribution

var(x) Y%estimate variance of distribution

Are your mean and variance estimates approximately correct?

Example 2: The Gaussian(u, o) distribution has mean g and variance o?. Run the
following Matlab script, which verifies that we do indeed have this mean and variance for
@ =4, 0 = 3 (which means the variance is 0% = 9).

mu=4; sigma=3;

x=sigma*randn(1,100000)+mu; %simulated Gaussian(mu,sigma) observations
mean(x) %estimate mean of distribution

var(x) %estimate variance of distribution

Are your mean and variance estimates approximately correct?

Ezample 3: The Binomial(n, p) distribution has mean and variance

no= np

ot = np(l—p)

We verify this with n = 6, p = 1/3, in which case the mean is np = 2 and the variance is
np(1 —p) =12/9 = 1.333. See what happens when you run the following Matlab script.

n=6; p=1/3;

x=sum(rand(n,50000)>1-p); %simulated Binomial(n,p) observations
mean(x) %estimate mean of distribution

var(x) Y%estimate variance of distribution

Are your mean and variance estimates approximately correct?

Ezxample 4: A curious property of the Poisson(«) probability distribution is that its mean
and variance are both a! In the following script you test this for a = 0.5.

clear;

alpha=0.5;

Jigenerate 10000 Poisson(alpha) samples
for 1=1:10000

t=0;
count=-1;
while t<1

t=t-log(rand(1,1))/alpha;

count=count+1;

end

x(i)=count;

end

mean(x) %estimate mean of distribution
var(x) ‘%estimate variance of distribution

Are your mean and variance estimates approximately correct?

Ezample 5: The Exponential(a) probability distribution has mean 1/a and variance 1/a?.
Let us take a = 1/70. Then the mean should be 70 and the variance should be 4900. Test
this with the following Matlab script.

clear;

a=1/70;

x=-log(rand(1,50000))/a; %simulated Exponential(a) samples
mean(x) %estimate mean of distribution

var(x) %estimate variance of distribution

Are your mean and variance estimates approximately correct?

4.2 Exp 2: Application to Monte Carlo Integration

Monte Carlo Integration is a technique via which you approximate the integral of a func-
tion over an interval by making use of pseudorandomly generated points in that interval.
Specifically, suppose we want to evaluate the integral

jgbg(x)dx.

(ba)/gbg(zj <b1a> dx.

Note that the quantity E%E in the integrand is the Uniform(a,b) probability density, and
so we can interpret this integral as E[g(X)], where X is a RV uniformly distributed in the
interval [a, b]. We have proved the formula

We can re-write this integral as

b
/ g(z)dz = (b — a)E[g(X)], X ~ Uniform(a,b). (1)
To estimate E[g(X)], you can perform the following three steps:

3

Step 1: Generate a large number of pseudorandom observations of X ~ Uniform(a,b).
Step 2: Apply function ¢g to transform the observations from Step 1.

Step 3: Applying Matlab function mean to the transformed observations, which gives the
estimate for Efg(X)].

Having found your estimate for E[g(X)], you then multiply it by b —a according to equation
(1) in order to obtain the Monte Carlo estimate of [g(z)da.

We illustrate the Monte Carlo technique in several examples.

Example 6: Evaluate the integral

/1 2 Bda
0

by hand. Then, execute the following Matlab script to get the Monte Carlo estimate:

a=0; b=1; Yenter in the limits of integration
x=(b-a)*rand(1,50000)+a; %generate Uniform(a,b) random data points
y=x."(1/3);

Monte_Carlo_estimate=(b-a)*mean(y)

Does your estimated value of the integral approximately agree with the actual value? Re-run
the script several times to see whether the fluctuations about the actual value of the integral
are small.

Example 7: Find the exact value of the integral
1
/ V1 —22dx
—1

using geometric reasoning (it’s the area of a semicircular region). Then, execute the following
Matlab script to get the Monte Carlo estimate:

a=-1; b=1;

x=(b-a)*rand(1,50000)+a; %uniform dist samples from -1 to 1
y=sqrt(1-x.72);

Monte_Carlo_estimate=(b-a)*mean(y)

Does your estimated value of the integral approximately agree with the actual value? Re-run
the script several times to see whether the fluctuations about the actual value of the integral
are small.

Example 8: Using the table on page 123 of your textbook, show that

/o1 (#) exp(—a”/2)dx = 0.3413.

Obtain a Monte Carlo estimate of this same integral by running the following Matlab script:

a=0; b=1;

x=(b-a)*rand(1,50000)+a; %uniform dist samples from O to 1
y=exp(-x.72/2)/sqrt(2*pi) ;
Monte_Carlo_estimate=(b-a)*mean(y)

Example 9: Using the Matlab scripts from the preceding Examples as a guide, obtain a
Monte Carlo estimate of the integral

5
/ sin(log, (4 + 92°°))dx
2

using 50000 pseudorandomly generated data points.

4.3 Exp 3: Application to Quantizer Design

Suppose we have a RV X which we assume for simplicity to have a PDF fx(z) which is
symmetric about & = 0 (such as a mean 0 Gaussian random variable). A two-level quantizer
for X would be a step function Q(x) of the form

—B, —x<x<0
Q(x)_{ B, 0<z<

where B is a positive constant.

The quantizer Q(x) is sometimes called a one bit quantizer because depending upon
whether Q(z) is equal to B or — B, you can send a bit (a zero or a one) to the user to indicate
which of these two cases occurs. In other words, we have a kind of primitive communication
system:

dat : bit
ara —>X%—>Q(X):j:B—> 1 — send zero or one — [user]|

source converter

Depending upon whether the user’s received bit is 0 or 1, the user will estimate X as either B
or —B. (If you are allowed to send more bits to the user, you can make a finer quantization
for greater accuracy. Using just one bit, I am considering the simplest such communication
system.)

In order to evaluate how good a particular quantizer is, you compute the so-called signal-
to-quantizing-noise ratio, called SQNR for short and defined by

[(X = Q(X))?]

The units of SQNR are called “decibels”. (Typical ranges of SQNR for two-level quantization
are in the 4 to 6 decibel range.) Our design goal is to select the value of the parameter B for
which the resulting two-level quantizer Q(x) will make the SQNR as big as possible. During
one of our EE 3025 class lectures, I will derive what the best choice of B is. For the purposes
of a Matlab demonstration, we can easily estimate the SQNR for different choices of B. For
example, via Matlab, we can easily determine which of two possibilities for Q(z) yields the
bigger SQNR. Here is how you can use Matlab to obtain a SQNR estimate:

2
SQNR 2 1010g,, (E 9x) .

Step 1: Generate a vector x consisting of a large number of pseudorandom observations of
the value of the random variable X.

Step 2: Then estimate the SQNR for a given positive B value via the following Matlab
script:

henter the value of B you are testing

y=B* (x>0) -B*(x<=0); %yields quantizer output sequence
error=mean((x-y)."2);
SQNR_estimate=10*logl0(var(x)/error)

Now you are ready to design a quantizer by seeing which quantizer yields the biggest
estimated SQNR performance.

Erample 10: Let X be a standard Gaussian random variable. Let’s quantize X with the
two-level quantizer in which B = 1. Using 50000 simulated observations of X, estimate the
resulting SQNR using the following Matlab code:

x=randn(1,50000) ;

B=1;

y=B* (x>0) -B* (x<=0) ;
error=mean((x-y)."2);
SQNR_estimate=10*logl0(var(x)/error)

Run the script several times. Did you obtain an SQNR estimate in the 3.9 to 4.0 decibel
range?

Example 11: Again, let X be the standard Gaussian RV. You are now going to use a
different B than B = 1 to see if you can improve the SQNR performance of your two-level
quantizer. To obtain the B value that we are going to use, run the following script:

x=randn(1,50000) ;
t=find (x>0) ;
B=mean (x(t))

Did you get a B value different from 17 Now estimate the SQNR performance of your new
quantizer with the following Matlab script:

x=randn(1,10000);

Jienter in the B value you just found
y=B* (x>0) -B* (x<=0) ;
error=mean((x-y)."2);
SQNR_estimate=10*logl0(var(x)/error)

Run the script a few times to see if there is not much change in the estimated SQNR. Is your
SQNR estimate around 4.4 decibels? Notice that this is an improvement over the SQNR
performance you obtained in Example 10 using the two-level quantizer in which B = 1.

Ezample 12: Now let X be a uniformly distributed RV in the interval [—3, 3]. Choose B
for your two-level quantizer design by running the following Matlab script:

a=-3;b=3;

x=(b-a)*rand(1,50000)+a; Y%generate Uniform samples in [-3,3]
t=find (x>0) ;

B=mean (x(t))

Now run the following script to see what SQNR performance you are getting for this choice
of B:

a=-3;b=3;

x=(b-a)*rand(1,50000) +a; Jgenerate Uniform samples in [-3,3]
Jienter in the B value you just found

y=B* (x>0) -B* (x<=0) ;

error=mean((x-y)."2);

SQNR_estimate=10%*logl0(var(x)/error)

Now re-run this script with B = 1 in order to convince yourself that your first choice of
B gives the bigger SQNR. What is the approximate difference in the SQNR performance
yielded by these two quantizers? Is the difference more than one decibel? (In communication
system design, a difference of one decibel or more is pretty significant. If you can achieve a
one decibel or more improvement by changing your design, then you would typically change
your design.)

In closing, think about the following: suppose you have a vector x consisting of a large
number of observations of a RV X. The following Matlab script would generate a real number

B:

t=find (x>0) ;
B=mean (x(t))

Can you see any possible relationship between the B that is generated by this script and the
real number

/Uoo xfx(x)dx
/Uoo fx(z)dx

?

4.4 Exp 4: Application to Text Compression

A text file typically consists of a long sequence of characters from the ascii alphabet of size
256. For simplicity, we suppose that we have a text file formed as a sequence of 2'% = 65536
characters from the following character alphabet of size 8:

{0,1,2,3,4,5,6,7}.
For example, the text file might start off as:

1266310557240051 - - - (2)

Suppose we randomly select a character from the sequence of characters forming our text
file; let random variable X denote this randomly selected character. Suppose X has the
following PMF:

& 0o 1 2 3 4 5 6 7
PX(z) 1/2 1/4 1/8 1/16 1/32 1/64 1/128 1/128

For example, the probability
PX(3)=1/16

means that 1/16 of the 65536 characters in the text file (a total of 4096 characters) are equal
to 3.

Suppose you wish to store the given text file on your hard disk for use at some future
time. You could just store it uncompressed as a 65536 character file. Better yet, you could
store your file by compressing it so that fewer than 65536 characters are used. Here is one
way that you might be able to do this:

Step 1: Use the following table to replace each character in the text file with a corresponding
binary codeword, where the codeword assignment is as follows:

character 0 1 2 3 4 5 6 7
codeword 00 01 100 101 110 1110 11110 11111

We require that no codeword is a prefix of any other codeword.

Step 2: Partition the stream of bits resulting from Step 1 into three-bit blocks and then
assign characters to each of these blocks as follows:

block 000 001 010 011 100 101 110 111
character 0 1 2 3 4 5 6 7

The result is a text file of possibly smaller size than 65536 characters.

To illustrate this two-step method, suppose our original text file starts as indicated in (2).
Then the bit stream resulting from Step 1 starts with:

0110011110111101010100 - - -
Performing Step 2, the compressed file then starts with:

317365 - - -

Example 13: Based upon the information given up to now, it is not hard to devise a
simple Matlab script that will compute how many characters are in the compressed file.
Here is such a script, which you should now run:

p=[1/2 1/4 1/8 1/16 1/32 1/64 1/128 1/128]; Ycharacter probs
L=[2 2 33 3 4 5 5]; %Step 1 codeword lengths
compressed_file_length=65536*sum(p.*L)/3

8

Does the compressed file consist of fewer than 65536 characters? Form the ratio

65536
number of characters in compressed file

This number is called the compression ratio. The bigger your compression ratio is, the better
the job you are doing in compressing your text file. The very best compression methods
typically achieve a compression ratio of more than 2. (The simplified compression method
we are using in this experiment is probability not going to do that well.)

In the following example, you are going to test another compression method in which we
change the code used in Step 1.

Example 14: In Step 1, use instead the following codeword assignment:

character 0 1 2 3 4 5 6 7
codeword 0 10 110 1110 11110 111110 1111110 1111111

Make the appropriate changes in the Matlab script of Example 13 so that you can compute
the length of the compressed file (the number of characters in the compressed file). (Hint:
you only have to change one line of Matlab code.) Recompute the compression ratio. Is this
a bigger compression ratio than obtained with the previous code?

4.5 Exp 5: Golomb Codes

For the vast majority of students, I believe Experiments 1-4 are enough work for Recitation
4. However, if you finished Experiments 1-4 during your recitation period, you can start on
this Experiment.

Suppose you have a sequence of binary data (i.e., 0’s and 1's) that you want to represent
in more compressed form. Run-length coding is a way to do this. You partition the data
into runs of zeroes and runs of ones. Each run of zeroes is replaced with a binary codeword
from a so-called Golomb codeword set. Each run of ones is replaced with a binary codeword
from another Golomb codeword set. Runs of zeroes and runs of ones appear randomly in
the data. The probabilities with which runs of zeroes and runs of ones appear in the data
are typically taken as follows:

P[run of n zeroes] = po(n) =p" (1 —p), n=1,2,3,---

)nfl

Plrun of nones| =py(n) =(1—=p)" 'p, n=1,2,3,---

where p is the probability that a zero appears in the data (and therefore 1—p is the probability
that a one appears in the data). The value of p determines the two codeword sets that are
used. Notice that the two runlength probability distributions are geometric distributions.
The Golomb codeword set that is chosen for coding the runs of zeroes minimizes expected
codeword length as computed according to the geometric distribution pg(n); the Golomb
codeword set that is chosen for coding the runs of ones minimizes expected codeword length
as computed according to the geometric distribution p;(n).

For simplicity, let us just concentrate on the Golomb codeword set that is chosen for the
runs of zeroes. Here are the first 10 codewords in the Golomb codeword set that should be
used when the probability of a zero satisfies p = 1/4/2 = 0.7071:

9

Golomb codewords (p = 1/v/2 = 0.7071)
runlength | codeword | runlength | codeword
1 00 6 1101
2 01 7 11100
3 100 8 11101
4 101 9 111100
5 1100 10 111101

Table 1

(The first two codewords are 0,1 preceded by 0, the next two codewords are 0,1 preceded
by 10, the next two codewords after that are 0,1 preceded by 110, etc.)

Here are the first 10 codewords in the Golomb codeword set that should be used when
the probability of a zero satisfies p = 1/v/2 = 0.8409:

Golomb codewords (p = 1/v/2 = 0.8409)
runlength | codeword | runlength | codeword
1 000 6 1001
2 001 7 1010
3 010 8 1011
4 011 9 11000
5 1000 10 11001
Table 2

(The first four codewords are 00,01,10,11 preceded by 0, the next four codewords are
00,01,10,11 preceded by 10, the next four codewords after that are 00,01, 10, 11 preceded
by 110, etc.)

Let L(n) be the length of the n-th Golomb codeword. The ratio

>~ Lin)poln)
- 3)
Z: npo(n)

E[Golomb codeword length]
Elrunlength)]

is the key figure of merit that tells us how good a particular Golomb codeword set is. This
ratio is less than or equal to 1. The smaller it is, the better. For example, if the ratio is 2/3,
this means that the codewords representing the runs of zeroes will occupy only two-thirds
as much space as the space occupied by the runs of zeroes themselves.

Now you are ready to do some analysis of Golomb codeword set performance.

e Example 15: Use Matlab to compute the ratio (3) that arises when the probability of a
zero in the data is p = 1/v/2 and when the Golomb codeword set in Table 1 is used to
encode the runs of zeroes in the data. In order to accomplish this, notice from Table 1
that the codeword lengths are 2,2,3.3,4,4,5,5,6,6,7,7,---. The line of Matlab code
“1+ceil(n/2)” will generate these codeword lengths. To verify this, run the Matlab
script:

10

n=1:12;
1+ceil(n/2)

It is now clear that you can use the following Matlab code to compute the approximate
value of the ratio (3):

n=1:10000;

p=1/sqrt(2);

L=1+ceil(n/2);

pO=p. (n-1)*(1-p);
ratio=sum(L.*p0)/sum(n.*p0)

What percentage of space is saved by encoding the runs of zeroes into Golomb code-
words?

e FEzample 16: Compute the ratio (3) that arises when the probability of a zero in the
data is p = v/2 and when the Golomb codeword set in Table 2 is used to encode the
runs of zeroes in the data. Notice that the codeword lengths are

373a373a474a474a575a575a67676a6a"'7

so your first task is a line of Matlab code that will generate these lengths. What
percentage of space is saved by encoding the runs of zeroes into Golomb codewords?

e FEzample 17: Compute the ratio (3) that arises when the probability of a zero in the
data is p = 1/4/2 and when the Golomb codeword set in Table 2 is used to encode
the runs of zeroes in the data. (The ratio should be bigger than you got in Example
15, because the Golomb codewords given by Table 1 give the smallest ratio when

p=1/v2)

e Example 18: Compute the ratio (3) that arises when the probability of a zero in the
data is p = 1/v/2 and when the Golomb codeword set in Table 1 is used to encode
the runs of zeroes in the data. (The ratio should be bigger than you got in Example
16, because the Golomb codewords given by Table 2 give the smallest ratio when

p=1/v2)

e FHzample 19: 1f you had to extend Table 1, what would be the Golomb codewords for
runs of zeroes of lengths 11,12,13,14,15,16,17, 18,19, 207 If you had to extend Table
2, what would be the Golomb codewords for runs of zeroes of these same lengths?

For any p, there is a Golomb codeword set appropriate to that choice of p. How one

constructs the appropriate Golomb codeword set for a given p is covered in the course EE
5585, Data Compression.

11

EE 3025 S2007 Recitation 4 Lab Form

Name and Student Number of Team Member 1:
Name and Student Number of Team Member 2:

Name and Student Number of Team Member 3:

>3k 3Kk Kok kosk sk sk sk sk sk sk sk sk sk sk sk sk sk skok sk skok skok sk sk sk sk sk ko skokok sk sk sk sk sk sk sk sk skoskokoskosk sk sk sk sk sk sk sk skokokoskosk sk skosk sk skoskokoskokoskokoskoskoskoskokokokoskoksk

[will give you an integral to evaluate approximately using the Monte Carlo Method in Ex-
periment 2.

12

