
EE 3025 Dr. Kie�er9 Re 9: Limit Theorems/Con�dene IntervalsDiretions: Your instrutor will spend the the �rst 40 minutes of the reitation periodworking some review problems and going over one or more Matlab experiments in the fol-lowing. During the last 10 minutes of reitation, your protor will give you a \Lab Form"that your reitation team ompletes, signs, and turns in. See the last page for an indiationof what you will be asked to do on the Lab Form.Due to time limitations, only a part of the following an be overed during the reitationperiod. However, you might want in the future to try some of the unovered experiments onyour own. They ould give skills useful on some future homework problems and ould lendinsight into your understanding of the ourse from an experimental point of view.This Week's Topis.� Sums of Independent RV's and Convolution� Central Limit Theorem (CLT) for a Continuous Sampling Distribution� CLT for a Disrete Sampling Distribution� Con�dene Intervals� Variane of Sum of Dependent RV's9.1 Exp 1: Sums of Independent RV's and ConvolutionLet X1 and X2 be independent disrete RV's, and letX = X1 +X2be the sum. Then pX(x) = pX1(x) � pX2(x); (1)where we are taking onvolution in the usual EE 3015 sense. I will eventually prove thisresult in the lass leture notes. In this experiment, you will verify formula (1) using Matlab.In Matlab, onvolution is performed using the funtion \onv".Example 1. In this example, you let RV's X1 and X2 be the numbers whih ome up inipping a fair die two times. We know from earlier in the ourse that the RVX = X1 +X2;whih is the total of the numbers on the two die ips, has a PMF distributed over the setf2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12gaording to ertain probabilities. First, run the following Matlab sript, whih generates ahistogram approximation of this PMF based upon 10000 simulated observations of X:1



x1=eil(6*rand(1,10000));x2=eil(6*rand(1,10000));x=x1+x2;subplot(2,1,1)bar(2:12,hist(x,2:12)/10000)Now run the following Matlab sript, whih gives the exat plot of the PMF of X usingonvolution:PMF1=[1/6 1/6 1/6 1/6 1/6 1/6℄;PMF2=[1/6 1/6 1/6 1/6 1/6 1/6℄;PMFX=onv(PMF1,PMF2);subplot(2,1,2)bar(2:12,PMFX)Compare the two plots you see on your omputer sreen. Are the two plots about the same?9.2 Exp 2: CLT for a Continuous Sampling DistributionSuppose you have a probability distribution governed by a density f(x). Let n be a largepositive integer. Independently selet n random samples X1; X2; : : : ; Xn aording to thisdistribution. Let � and �2 be the mean and variane of the density f(x), given by� = Z 1�1 xf(x)dx�2 = Z 1�1(x� �)2f(x)dxAssume that the following assumptions hold:�1 < � <1; 0 < �2 <1:The entral limit theorem (CLT) says that the random variableZ = (X1 +X2 + : : :+Xn)� n��pn (2)is approximately distributed aording to the standard Gaussian distribution, meaning thatP (a � Z � b) � Z ba 1p2� exp(�z2=2)dx:The approximation beomes better as n gets bigger. (In the limit as n ! 1, the approxi-mation beomes exat.)This is an amazing result if you onsider the fat that this approximate Gaussian behaviorwill our regardless of what the density f(x) is.In this experiment, we use Matlab to onvine you of the truth of the CLT when thedistribution we sample from is a ontinuous distribution.2



Example 2. We take samples from an exponential distribution with mean � = 1 andvariane �2 = 1. Run the following Matlab sript, whih estimates the PDF of(X1 +X2)� 2��p2 ;where X1; X2 are two random samples from our exponential distribution.n=2;x=sum(-log(rand(n,100000)));z=(x-mean(x))/std(x);N=1000;A=min(z);B=max(z);Delta=(B-A)/N;t=A-Delta/2+[1:N℄*Delta;PDFestimate=hist(z,t)/(Delta*100000);subplot(3,1,1)bar(t,PDFestimate)Your estimated PDF plot looks kind of skewed, doesn't it? (Not very Gaussian bell-shapedat all!) Now run the following sript, whih estimates the PDF of(X1 +X2 + � � �+X8)� 8��p8 ;where we have now taken 8 independent samples X1; X2; � � � ; X8 from our exponential dis-tribution.n=8;x=sum(-log(rand(n,100000)));z=(x-mean(x))/std(x);N=1000;A=min(z);B=max(z);Delta=(B-A)/N;t=A-Delta/2+[1:N℄*Delta;PDFestimate=hist(z,t)/(Delta*100000);subplot(3,1,2)bar(t,PDFestimate)Does your estimated PDF plot look more like a Gaussian bell-shaped urve? Now run thefollowing sript, whih estimates the PDF of(X1 +X2 + � � �+X32)� 32��p32 ;where we have now taken 32 independent samples X1; X2; � � � ; X32 from our exponentialdistribution. 3



n=32;x=sum(-log(rand(n,100000)));z=(x-mean(x))/std(x);N=1000;A=min(z);B=max(z);Delta=(B-A)/N;t=A-Delta/2+[1:N℄*Delta;PDFestimate=hist(z,t)/(Delta*100000);subplot(3,1,3)bar(t,PDFestimate)Of the three estimated PDF plots you plotted in this experiment, this last one should lookmost like a Gaussian bell-shaped urve.Example 3. In this example, we hoose our independent random samples from a Uniform(�1; 1)distribution. Aording to Appendix A, this distribution has mean � = 0 and variane�2 = 1=3. Run the following sript, whih estimates the CDF ofZ = (X1 +X2 + � � �+X32)� 32��p32 ;where we have taken 32 independent samples X1; X2; � � � ; X32 from our uniform distribution.n=32;number_of_experiments=100000;x=2*rand(n,number_of_experiments)-1;var_x=1/3;Sn=sum(x);% Find the PDF of y=Sn/sqrt(n*var_x)y=Sn/sqrt(n*var_x);Bins=number_of_experiments/1000;y_min=min(y);y_max=max(y);Delta=(y_max-y_min)/Bins;t=y_min+Delta/2+[0:Bins-1℄*Delta;P=umsum(hist(y,t)/number_of_experiments);u=-4:0.01:4;P_N01=df('norm',u,0,1);plot(t,P,'b--',u,P_N01,'r-')axis([-4 4 -0.1 1.1℄)title('CDF of CLT Z variable(dashed), CDF of standard Gaussian(solid)')You will see two plots on your omputer sreen on the same set of axes. One of them (thedashed plot) is the estimated CDF of the entral limit theorem Z variable, using 32 samples.The other one (the solid line plot) is the atual CDF of the Gaussian(0; 1) distribution. Dothe two plots seems pretty lose together? Now see if your terminal is powerful enough foryou to re-run the preeding sript in whih you hange the �rst line to n = 100. Sine youare now using 100 samples, the two CDF urves might look even loser now.4



9.3 Exp 3: CLT for a Disrete Sampling DistributionIn Experiment 2, we sampled from a ontinuous distribution. In this experiment, you willsample from a disrete distribution and see that the CLT is still true. Unlike Experiment 2,you will use Matlab to �nd the preise distribution of the normalized sum Z in (2) (insteadof estimating this distribution with simulated samples). This preise distribution is foundvia Matlab funtion \onv" as was done in Experiment 1 in a simpler ase.Example 4. In this example, you illustrate the CLT with the following disrete densitybeing the one from whih independent samples are summed up:f(x) = (1=2)Æ(x) + (1=2)Æ(x� 1)Run the MATLAB program whih follows in order to plot the density of the normalized sumZ given in (1) when n = 1600. (We hose this value of n beause it gave a nie spaing of:05 between the values of the normalized sum in (2).)n=1600;%generate range of values of sum X1+X2+...+Xnk=0:n;%generate prob dist of sum via onvolutionp=[.5 .5℄;q=p;for i=1:n-1q=onv(q,p);endQ=q; %Q is the prob dist of the summean_of_dist = .5;variane_of_dist = .25;mean_of_sum = n*mean_of_dist;standev_of_sum = sqrt(n*variane_of_dist);%generate range of values of normalized sumt=(k-mean_of_sum)/standev_of_sum;density=standev_of_sum*Q; %approx. values of density of normalized sumplot(t,density)axis([-3 3 0 .5℄)Run tests on the resulting plot to see if it losely approximates the standard Gaussian densityfuntion exp(�x2=2)=p2�. (Does the urve have the right peak value? Does it have theright value at x = �1?) Try to modify the ode so that you get the approximate GaussianCLT plot on the same set of axes as the atual standard Gaussian density urve.Example 5. In this example, the CLT normalized sum Z (2) is based on n = 1000 Xisamples from the disrete probability distribution in whih the values 1; 2; 3 are taken onwith probabilities 1=3; 1=3; 1=3. The following program �nds the CDF of the RV Z and thenomputes the exat value of P (Z � 1): 5



lear;n=1000;p=[1/3 1/3 1/3℄;q=p;for i=1:n-1q=onv(q,p);endCDF=umsum(q); %these are the values of CDF of Zmu = 2;sigma = sqrt(2/3); %hek that this number is rightz=((1000:3000)-n*mu)/(sqrt(n)*sigma); %these are the values of ZProbability=CDF(max(find(z<=1)))By the CLT, the distribution of Z should be approximately standard Gaussian. On page123 of your textbook, look up the probability P [Z � 1℄ for a standard Gaussian Z. Is the�gure given by last line of above program orret to two deimal plaes? Change the lastline of the program in order to obtain P [Z � 1:5℄ and then ompare to the umulative probyou get from page 123.9.4 Exp 4: Con�dene IntervalsSuppose you take n independent samples X1; X2; � � � ; Xn from a Gaussian distribution withunknown mean � and known standard deviation �; these Xi's form a so-alled \randomsample of size n". The sample mean �X based on this random sample is de�ned by�X �= X1 +X2 + � � �+Xnn :We want to take an interval entered at �X whih will be highly likely to ontain �. Forexample, we an take this interval to be[ �X � 1:645�=pn; �X + 1:645�=pn℄; (3)whih is alled a 90% on�dene interval for � beause � is inside this interval with probability0:90, that is, P [ �X � 1:645�=pn < � < �X + 1:645�=pn℄ = 0:90:This means that if we determine a large number of on�dene intervals by taking manydi�erent random samples of size n, we an expet that about 90% of these on�dene intervalswill ontain �. The interval [ �X � 1:96�=pn; �X + 1:96�=pn℄ (4)is the 95% on�dene interval for �, using this same Gaussian distribution|about 95% of alarge number of on�ene intervals should ontain �.Example 6. In this example, you use Matlab to verify that (4) indeed is the 95% on�deneinterval for the mean � when you sample from a Gaussian distribution. In the following6



Matlab sript, you an enter in on the �rst 3 lines whatever mean � and standard deviation� you want for your Gaussian sampling distribution, as well as the number of samples n thatyou want to take. The sript then omputes what perentage of 50000 on�dene intervalsontain �.mu = ; %enter in the mean that you wantsigma = ; %enter in the standard deviation that you wantn = ; %enter in the sample size that you wantx=sigma*randn(n,50000)+mu;sample_means=mean(x); %gives 50000 sample meansC=1.96;p=mean(mu<sample_means+C*sigma/sqrt(n) & mu>sample_means-C*sigma/sqrt(n));perentage=round(100*p) %gives perentage of onf intervals ontaining muRun the preeding sript with � = 0, � = 1, and n = 10 several times. Most of the time,does it appear that you are getting 95% of the on�dene intervals to ontain �? Now tryn = 15, � = 1, � = 2. Do you reah the same onlusion?Example 7. In this example, you provide a Matlab veri�ation that (3) is a 90% on�deneinterval for the mean � when you sample from a Gaussian distribution. The Matlab sriptfor verifying this is nowmu = ; %enter in the mean that you wantsigma = ; %enter in the standard deviation that you wantn = ; %enter in the sample size that you wantx=sigma*randn(n,50000)+mu;sample_means=mean(x); %gives 50000 sample meansC=1.645;p=mean(mu<sample_means+C*sigma/sqrt(n) & mu>sample_means-C*sigma/sqrt(n));perentage=round(100*p) %gives perentage of onf intervals ontaining muRun the preeding sript with � = 0, � = 1, and n = 10 several times. Most of the time,does it appear that you are getting 90% of the on�dene intervals to ontain �? Now tryn = 15, � = 1, � = 2. Do you reah the same onlusion?Example 8. Suppose you form sample means based on samples of size n = 3 from auniform distribution with mean � and variane �2. In this example, you will verify that[ �X � 0:95�; �X + 0:95�℄is an approximate 90% on�dene interval. The following Matlab sript simulates 50000sample means for samples of size 3 from a Uniform(a; b) distribution. It then omputes whatperentage of the 50000 on�dene intervals ontain �:a ; %enter in the value of ab ; %enter in the value of bmu=(a+b)/2;sigma=(b-a)/sqrt(12); 7



x=(b-a)*rand(3,50000)+a;sample_means=mean(x); %gives 50000 sample meansp=mean(mu < sample_means + .95*sigma & mu > sample_means - .95*sigma);perentage=round(100*p) %gives perentage of onf intervals ontaining muRun the above sript a few times with a = 0; b = 1. Do most of the perentages seem tobe 90%? Now run the above sript a few times with a = 1; b = 5. Again, do most of theperentages seem to be 90%? If you like, run the sript with some other hoie of a; b hosenby you.Example 9. Suppose you form sample means based on samples of size n = 5 from anexponential distribution with mean � = 1. It is laimed that[ �X � 0:602; �X + 0:602℄is an approximate 85% on�dene interval in this situation. Write a Matlab program whihwill ompute 50000 of these on�dene intervals, and will hek to see what perentage ofthem ontain � = 1. See whether you get about 85% of them to work out right. (Hint: Reallthat \-log(rand(1,n))" simulates n samples from this exponential distribution. Using thisfat, you an modify the Matlab sript in Example 8 to obtain a Matlab sript that willwork for this Example.Exerise. Here is something for you to think about. Consider again the 90% on�deneinterval (3) for the mean of a Gaussian distribution. What happens to the width2(1:645)�pnof the on�dene interval when you double the number of samples n? If n samples giveswidth w, how many samples would you need in order to squeeze the width of the on�deneinterval down to w=2? (Note that the trade-o� between the width of the on�dene intervaland the number of samples required to ahieve this width is important beause as the widthof the on�dene interval gets smaller, the on�dene interval estimate of � gets better.)9.5 Exp 5: Variane of Sum of Dependent RV'sThe variane of a sum of independent RV's is the sum of the separate varianes. However,we learned in lass a few letures ago that this property may not hold if the random variablesyou are adding up are statistially dependent. In this experiment, you use Matlab to estimatethe variane of the sum of possibly dependent RV's. You then attempt to verify the estimateby an exat omputation of the variane of the sum.Example 10. Let Z1; Z2; Z3; Z4 be independent Gaussian(0,1) RV's and let X1; X2; X3 bethe RV's X1 = Z1 + Z2X2 = Z2 + Z3X3 = Z3 + Z48



Run the following Matlab sript, whih estimates the variane of X1+X2+X3 and the sumof the varianes of the Xi's:z1=randn(1,50000);z2=randn(1,50000);z3=randn(1,50000);z4=randn(1,50000);x1=z1+z2; x2=z2+z3; x3=z3+z4;%estimate the variane of X1 + X2 + X3 as followsvar(x1+x2+x3)%now estimate the sum of the separate varianes as followsvar(x1) + var(x2) + var(x3)Look at the estimate for V ar(X1 +X2 +X3) (5)and the estimate for V ar(X1) + V ar(X2) + V ar(X3) (6)whih Matlab printed out on your omputer sreen. On the basis of these estimates, do youbelieve that V ar(X1 +X2 +X3) 6= V ar(X1) + V ar(X2) + V ar(X3) (7)is true? To �nish this example, take penil and paper and see if you an use EE 3025 theoryto ompute the exat values of (5) and (6). Are they the same? (Hint: We haveX1 +X2 +X3 = Z1 + 2Z2 + 2Z3 + Z4;and the terms on the right side are independent.)Example 11. Let Z1; Z2; Z3; Z4 be independent Gaussian(0,1) RV's and let X1; X2; X3; X4be the RV's X1 = Z1X2 = Z2 +X1=2X3 = Z3 +X2=2X4 = Z4 +X3=2Construt and run a Matlab sript to estimateV ar(X1 +X2 +X3 +X4): (8)Then try to ompute the variane (8) by hand.Final Remarks. With the �ltering operations used in this experiment, we have seeninstanes illustrating how independent RV's Zi are onverted at the �lter output into de-pendent RV's Xi. But, even though the Xi's exhibit dependene, it still might be true thatstatements like the following hold:limn!1P 24Pni=1(Xi � E[Xi℄)qV ar(Pni=1Xi) � z35 = 1p2� Z z�1 exp(�t2=2)dt (9)9



P � limn!1 X1 +X2 + � � �+Xnn = C� = 1; some onstant C: (10)P " limn!1 X21 +X22 + � � �+X2nn = D# = 1; some onstant D: (11)Statement (9) is what the CLT beomes in the dependent ase. Statements (10)-(11) arelaws of large numbers.
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EE 3025 S2007 Reitation 9 Lab FormName and Student Number of Team Member 1:Name and Student Number of Team Member 2:Name and Student Number of Team Member 3:************************************************************************************Study Experiment 5 arefully. In the examples in this experiment, you �lter independentRV's Zi to obtain dependent RV's Xi. I will have you do similar �ltering and then examinethe behavior of averages like X21 +X22 + � � �+X2n�1 +X2nnfor large n. You will see that suh averages an onverge to some �xed quantity as n beomeslarge even though the terms are dependent.
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