LECTURE 22

Markov Processes — III

Readings: Section 6.4

Lecture outline
e Review of steady-state behavior
e Probability of blocked phone calls
e Calculating absorption probabilities

e Calculating expected time to absorption

Review

e Assume a single class of recurrent states,
aperiodic. Then,
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where T does not depend on the initial
conditions
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e Assume process starts at state 1.

° P(Xl = 1, and XlOO = 1):

° P[XIOO =1 and Xq91 = 2]

The phone company problem

e Calls originate as a Poisson process,
rate A\

— Each call duration is exponentially
distributed (parameter pu)

— B lines available

e Discrete time intervals
of (small) length §
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e Balance equations: Am;_q1 = ium;
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Calculating absorption probabilities

What is the probability a; that the pro-
cess eventually settles in state 4, given
that the initial state is 7

Fori=4, a; =
Fori=>5, a; =

a; =Y pjja;, for all other i
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Expected time to absorption

e \What is the expected number of transi-

tions p; until the process reaches the ab-
sorbing state, given that the initial state
isi?

u; =0 for ¢ =

For all other i: u; =1+ Zpijﬂj
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Constructing Markov models

Many processes are Markov provided the
state is suitably defined

Let times until next bus arrival be i.i.d.,
uniform on {1, 2,3}

Let Y, = A if arrival,
Y, = N otherwise

Is Y,, Markov?

Let X: time since last arrival

i}




