LECTURE 22

Markov Processes - III

Readings: Section 6.4

Lecture outline

- Review of steady-state behavior
- Probability of blocked phone calls
- Calculating absorption probabilities
- Calculating expected time to absorption

Review

- Assume a single class of recurrent states, aperiodic. Then,

$$
\lim _{n \rightarrow \infty} r_{i j}(n)=\pi_{j}
$$

where π_{j} does not depend on the initial conditions

$$
\lim _{n \rightarrow \infty} \mathbf{P}\left(X_{n}=j \mid X_{0}\right)=\pi_{j}
$$

- π_{1}, \ldots, π_{m} can be found as the unique solution of the balance equations

$$
\pi_{j}=\sum_{k} \pi_{k} p_{k j}
$$

together with

$$
\sum_{j} \pi_{j}=1
$$

Example

$\pi_{1}=2 / 7, \pi_{2}=5 / 7$

- Assume process starts at state 1 .
- $\mathbf{P}\left(X_{1}=1\right.$, and $\left.X_{100}=1\right)=$
- $\mathrm{P}\left[X_{100}=1\right.$ and $\left.X_{101}=2\right]$

The phone company problem

- Calls originate as a Poisson process, rate λ
- Each call duration is exponentially distributed (parameter μ)
- B lines available
- Discrete time intervals of (small) length δ

- Balance equations: $\lambda \pi_{i-1}=i \mu \pi_{i}$

$$
\text { - } \pi_{i}=\pi_{0} \frac{\lambda^{i}}{\mu^{i} i!} \quad \pi_{0}=1 / \sum_{i=0}^{B} \frac{\lambda^{i}}{\mu^{i} i!}
$$

Calculating absorption probabilities

- What is the probability a_{i} that the process eventually settles in state 4, given that the initial state is i ?

For $i=4, a_{i}=$
For $i=5, a_{i}=$

$$
a_{i}=\sum_{j} p_{i j} a_{j}, \quad \text { for all other } i
$$

Expected time to absorption

- What is the expected number of transitions μ_{i} until the process reaches the absorbing state, given that the initial state is i ?
$\mu_{i}=0$ for $i=$

For all other $i: \mu_{i}=1+\sum_{j} p_{i j} \mu_{j}$

Constructing Markov models

- Many processes are Markov provided the state is suitably defined
- Let times until next bus arrival be i.i.d., uniform on $\{1,2,3\}$
- Let $Y_{n}=A$ if arrival, $Y_{n}=N$ otherwise
- Is Y_{n} Markov?
- Let X : time since last arrival

