LECTURE 27 Entropy

e Entropy is a measure of the average un-
certainty associated with a random vari-
able

Introduction to information theory

e Theentropy of a discreter.v. Xis H(X) =
— Ywex Px(x)loga (Px(x))

e entropy is always non-negative

Lecture outline e Joint entropy: the entropy of two dis-
e Entropy: definitions and properties icsr.ete rv.s X, ¥ with joint PMF Py v (2,y)
e Mutual information: definitions and prop- .
erties H(X,Y) = = Yoexyey Pxy (@ v)logz (Pxy(2,y))
e How do we achieve entropy mutual in- e Conditional entropy: expected value of
formation? entropies calculated according to condi-
e Where to now? tional distributions H(Y|X) = Ez[H(Y|X =

Z)] for r.v. Z independent of X and
identically distributed with X. Intuitively,
this is the average of the entropy of Y
given X over all possible values of X.

Conditional entropy: chain rule Mutual information

Mutual Information: let X,Y be r.v.s with

H(Y|X) = Ez[H(Y|X = 2)] jfc))int PMZ ;’X,y(x,y) and marginal PMFs
= =Y Px(z) Y Pyjx(la)logalPyx (yl2)] x () and Py (y)
reX yey
= — Y Pxy(=zy logo [Py x (ylz)] Definition:
zeX yey Xy
Compare with joint entropy: (X;Y) Py (z.y)
X,y (z,
H(X Y) = Z PX,Y (:L‘,y) log <,>
’ xEX,yey PX(JJ)PY(’LI/)
= — Y Pxy(z,y)logs[Pxy(z,y)] intuitively: measure of how dependent the
reX ,yeY
r.v.s are
= — > Pxy(z,y)1092[Pyx(ylz)Px ()]
zeX,yey
= - ). Pxy(z,y)1092[Pyx(yla)] Useful expression for mutual information:
X
retyey I(X:Y) = H(X)+ H(Y) — H(X,Y)
- Y Pxy(=z,y)logz[Px(z)] _
TEX yEY = H(Y)-HY|X)
= HYI[X)+ H(X) = H(X)-HXIY)
This is the Chain Rule for entropy: = I(Y;X)
H(Xq,..., Xn) = Zjiog H(Xi[ X1 ... Xj—1). Ques- Question: what is I(X; X)?

tion: H(Y|X) = H(X|Y)?




How do we achieve entropy and
mutual information?

Source coding (compression): we can com-
press a probabilistic source to rid ourselves
of redundancy

Error-free encoding: variable length with
average length no better than H(X) + 1,
but no worse than H(X)

Almost error-free encoding: for the typical
set, fixed length of H(X) for long enough
codewords

How do we achieve entropy and
mutual information?

Channel coding theorem (Shannon 1948):
we can achieve a rate of information trans-
mission that is arbitrarily close (error-free)
to the average mutual information between
the input and output of channel

Essence of the proof: the WLLN!

With more patience, we can show strong
coding theorem:

P(message error) < aen(Capacity —Rate)

Converse: we can do no better!

Where to now?
Header course for signal processing, com-
munications, control: 6.011 (you want it

all and you want it now)

Communications: 6.450 (you want to see
how it's really done)

Data networks: 6.263 (Markov buffs, this
is for you!)

Discrete stochastic processes: 6.262 (you
like Markov and the SLLN, too)

Detection and estimation: 6.432 (you keep
a pet Gaussian pdf in jar under your bed)

Transmission of information (information

theory): 6.441 (you use logarithms as stock-

ing stuffers for your friends and family)




