Chap 2: Random Variables

Chap 2.1 : Random Variables

Let €2 be sample space of a probability model, and X a function that maps every £ € {2, to a
unique point x € R, the set of real numbers. Since the outcome £ is not certain, so is the
value X (¢) = x. Thus if B is some subset of R, we may want to determine the probability of
“X (&) € B”. To determine this probability, we can look at the set A = X~ 1(B) c Q. A
contains all that maps into B under the function X.
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Chap 2: Random Variables

Obviously, if the set A = X ~1(B) is an event, the probability of A is well defined; in this
case we can say

probability of the event “X (£) € B” = P(X '(B)) = P(A)

Random Variable (RV): A finite single valued function X (-) that maps the set of all
experimental outcomes €2 into the set of real numbers R is said to be a RV.

It is important to identify
the random variable X by the function X (£) that maps the sample outcome & to the
corresponding value of the random variable X. That is

{X =2} ={¢ € Q[X(§) = =}

Since all events have well defined probability. Thus the probability of the event
{£]|X (€) < 2} must depend on z. Denote

P{EIX(§) <z} = Fx(z) 20
(1)
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Chap 2: Random Variables

The role of the subscript X is only to identify the actual RV. F'x () is said to be the
Cumulative Distribution Function (CDF) associated with the RV X.
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Properties of CDF

Fx(—|—OO) = 1,FX(—OO) =0

If x1 < a9, then Fx($1) < Fx(QTQ)
([ J

If 1 < x2, then the subset (—oo, x1) C (—00, x3). Consequently the event
{1 X (&) <z} C {£X(€) < 22}, since X (&) < xq, implies X (€) < x5. As aresult

Fx(x1) = P(X(§) < 1) < P(X(§) < 72) = Fx(x2)

implying that the probability distribution function is nonnegative and monotone
nondecreasing.

Forall b > a, Fx(b) — Fx(a) = P(a < X <))

To prove this theorem, express the event E,;, = {a < X < b} as a part of union of
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Chap 2: Random Variables

disjoint events. Starting with the event £, = {X < b} . Note that F} can be written as
the union

Eb:{XSb}:{XSCL}U{CL<XSb}:EaUEab

Note also that F, and E,; are disjoint so that P(FEy) = P(E,) + P(E.). Since
P(Ey) = Fx(b) and P(E,) = Fx(a), we can write F'x (b) = Fx(a) + P(a < X <b),
which completes the proof.
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Additional Properties of a CDF

o If Fix(xp) = 0 for some x, then Fx (x)=0for x < x.

This follows, since F'x (xg) = P(X(£) < x9) = 0 implies { X (£) < x¢} is the null set,
and for any z < xg,{X(§) < x} will be a subset of the null set.

o P{X(6)>a)}=1- Fy(x)

We have { X (§) < z} U {X(£) > x} = (, and since the two events are mutually
exclusive, the above equation follows.

o Plr1 < X(§) < a2} = Fx(x2) — Fx(x1), 22 > 11
The events { X (§) < x1} and {1 < X (&) < 22} are mutually exclusive and their union
represents the event { X (§) < xa}.

o P{X(§) =x}=Fx(z)— Fx(z7)

Letz; =2 —¢€,¢>0,and x5 = z,

l%P{x—e<X(§) <z} :FX(x)—li_r%FX(:c—e)

P{X(§) =z} =Fx(z)— Fx(z")
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Chap 2: Random Variables

Fx (xg), the limit of Fiy(x) as © — x¢ from the right always exists and equals Fx ().
However the left limit value F'x (z; ) need not equal Fx (xg)." Fx (z) need not be
continuous from the left. At a discontinuity point of the distribution, the left and right

limits are different, and
P{X(&) =z0} = Fx(%9) — Fx(zq)

Thus the only discontinuities of a distribution function are of the jump type. The CDF is
continuous from the right. Keep in mind that the CDF always takes on the upper value at

every jump in staircase.
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Example 1 I
: X is a RV such that X (¢) = ¢, & € Q. Find Fx(x).

Solution: For z < ¢, {X(§) <z} = ¢, sothat Fix(z) =0and forz > ¢, {X(§) <z} =,
so that F'x (x) = 1. (see figure below)

t Flx)

1 desessnsy

4 3
C

Figure 1: CDF for example 1.

Example 2 I
: Toss a coin. 2 = {H,T'}. Suppose the RV X is such that X(T)=0, X(H)=1.
We know P(T)=q . Find Fx (z).

Solution:

e Forz < 0,{X(§) <z} = ¢,sothat Fx(z) = 0.
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Chap 2: Random Variables

o For0 <z < 1,{X(§) <z} ={T},sothat Fx(x) = P(T) =q.
e Forz > 1,{X(§) <z} ={H,T} =Q,sothat Fx(z) = 1.

T x)

-

: X
1

Figure 2: CDF for example 2.

e X is said to be a continuous-type RV if its distribution function Fx () is continuous. In
that case F'x (x~) = Fx(z) for all x, therefore, P{X =z} = 0.

e If F'x(x) is constant except for a finite number of jump discontinuities(piece-wise
constant; step-type), then X is said to be a discrete-type RV. If x; is such a discontinuity
point, then

pi = P{X = x;} = Fx(7;) — Fx(z;)
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Chap 2: Random Variables

For above two examples, at a point of discontinuity we get
P{X =c}=Fx(c)—Fx(c)=1-0=1

and
P{X =0} =Fx(0)—Fx(07)=q¢—-0=g¢

Example 3 I
: A fair coin is tossed twice, and let the RV X represent the number of heads.
Find Fx ().

Solution: In this case Q = {HH, HT,TH, TT?}, and
X(HH)=2,X(HT)=1,X(TH)=1,X(IT)=0
o z<0,{X({) <z}=¢— Fx(z)=0
e 0<z<1,{X(¢ <x}={IT} — Fx(z) = P{TT} = 1/4.
o 1<z <2{X(¢) <ax}y={TT,HT,TH} — Fx(z) = P{TT,HT,TH} = 3.

e r >2{X(¢) <zx}=0Q— Fx(zx)=1

10
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Chap 2: Random Variables

Figure 3: CDF for example 3.

We can also have P(X=0)=1/4
P{X =1} =Fx(1) - Fx(17) =
P(X=2)=1/4

| o
|

N

DO | —

=X

11
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Chap 2: Random Variables

Probability Density Function (pdf)

The first derivative of the distribution function F'x () is called the probability density
function fx(x) of the RV X. Thus

fX(ﬂf):d%x(x)
e (2) (x + Ax) — Fy (2)
dFx(x , Fx(x+ Azx) — Fx(x
fX(x) - dx :Aligo Az =0

it follows that fx (z) > 0 for all x.

e Discrete RV:if X is a discrete type RV, then its density function has the general form

fx(x) = Zpi5($ — ;)

where x; represent the jump-discontinuity points in F'x (x). As Fig. 4 shows, fx ()
represents a collection of positive discrete masses, and it is known as the probability
mass function (pmf) in the discrete case.

12
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Figure 4: Discrete pmf.

e If X is a continuous type RV, fx (x) will be a continuous function,

Fx(e) = [* fx(u)du I

/+OOfX(u)du:1

— 0

e We also obtain by integration

Since F'x (+00) = 1, yields

which justifies its name as the density function.

13
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e we also get (Fig. 5b)

P{xy < X < a9} = Fx(x2) — Fx(x1) = fff fx(x)dx

Thus the area under fx () in the interval (x1, x2) represents the probability in the above

equation.
}5{7) #,(%)
|~
o . _/'\_/\/m/\ .
44 X &
(@) (b)

Figure 5: Continuous pdf.

e Often, RVs are referred by their specific density functions - both in the continuous and
discrete cases - and in what follows we shall list a number of RVs in each category.
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Continuous-type Random Variables

e Normal (Gaussian): X is said to be normal or Gaussian RV, if

2)

This is a bell shaped curve, symmetric around the parameter u, and its distribution
function is given by

e = [ g |- | ar=a (7F)

where ®(z) = [
tabulated.

. ﬁ exp(—y?/2)dy is called standard normal CDF, and is often

P(a<X<b):q><bM)_q)<aM)

o o)

Qz) = :O \/127 exp <—%2) dy =1— ®(z)

()(x) is called Standard Normal complementary CDF, and Q(x) = 1 — ®(x). Since

15
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Table of the Standard Normal Cumulative Distribution Function @(2)

d(-2)=1- D(2)

| z ®z) |z Dzl | 2 @iz} | 2 izl
| 000 05000 | 05 06015 [ L00 QB4 | LS50 G933
{001 05M40 | 051 06050 | 101 DB43R | LSL 09345
|00 BS080 | 052 (6985 | 102 D481 | LS2 0S9EET
0403 05120 | 053 079 | L0E 084ES | 152 0930
004 BS1ED | D54 07054 ) 10d OBS0R | 154 DORER
008 519 | D55 0TOEE | 105 08531 | LAR 0 f9Ghs
O06 0513 | D56 07123 | 108 08554 | 156 09406
0.07 05279 | DST OTIST | 107 0857 | 1LST 09418
| 008 05319 | 0SB G710 | LOR 08599 | 158 pad4z
| O 05350 | 059 07234 | 109 086X | 159 [0944)
000 0538 | a0 07257 | 100 08643 | 160 noads?
001 05438 | D61 07291 | 111 08663 | LGI 09463
Q02 05478 | DEZ BT3RS [ 112 08686 | LE2 00474
003 05517 | Ded 07ISY [ 113 05708 | LES 00454
.04 05557 | D64 007389 | 104 08729 | L64 08495
005 05506 | 065 074E2 | 1,15 08749 | LGS 08505
006 03636 | 066 07458 | 116 0ETI0 | LES 08515
007 0567% | 0BT L74Es | 117 OEIS0 | LT 045325
B1F 05714 | DEE 07517 | LI 0EEI0 | LBE 048535
008 03753 | 060 07549 | 119 0ERID | LG9 D.0545
020 05703 | 00 0750 [ 130 0ER49 | LTD 08554
021 0883 070 061 | 121 0EREY | LT 08564
B22 08871 | 072 07642 | 122 0E8ES | LT2 0.55T3
023 08910 | 0TF 07673 [ 121 080T | 173 0.65E2
024 0548 | 074 0904 | 124 OEDIS | LT 04SN
025 05987 | 075 DT [ 125 08044 | LTS 090
het 08036 | 078 0LTTe4 | 128 .22 1,76 008
027 06064 | 077 074 | 127 OENE0 | LT 0016
028 06100 | 0RO DTERI | 128 08007 | LTE 005628
020 06141 | 079 0O7ES2 | 126 OS0LS | LT 00633
030 06179 | 080 0D7ERL | 130 G.0032 | LB0 00640
031 06217 | 081 09910 | 131 0909 | 181 00640
032 06295 | 082 07930 [ 132 QO06S | LE2 00656
033 06203 | 0E3 07967 [ 133 Q0082 | LE3 05604
034 06331 | 084 07995 | 134 00069 | LE4 05671
035 (6368 | 085S  0DB0Z3 | 133 09008 | LES 00673
036 06406 | 086 0BOSL [ 136 09031 | LBS 00686
037 06843 | 0ET  DBOTE [ 13T 09047 | LEY 05603
038 (G4BD | 08 0BIOG | 138 09162 | LER 05409
D36 (ASIT | 089 DBISI [ 139 09177 | LB 05706
nA0  (ASSE | 090 DBISE [ 140 091w | L83 05713
N4k (ASSD | 091 DEIER | 141 09T | 191 05719
N2 (GR1E | 092 0DEZIZ | 142 092 | 192 05726
[43  0esed | 093 OBZFR | 143 0023 ) 193 05732
D44 0ATD0 | 04 0264 | 144 09251 | 194 05738
045 06736 [ 098 OEZRG | 14F 09265 | 195 0574
46 06772 | 09 08315 | [46 09279 | 126 05750
047 O&R0E | 007 08340 | 147 00282 | 197 00T
D48 (GR44 | D98 08365 | 148 09305 | 198 05761
D49 06879 | 099 08385 | 149 09319 | 199 05767

|z

2.00
2.0
2.02
I
e
205
208
07
208
0%
204
11
12
13
114
115
216
217
118
1%
10
221
222
223
.24
15
236
27
228
228
.30
3
132
233
234
2,33
L6
A7
38
2349
240
ey |
242
243
2.4
245
244
247
248
249

IR

O45TTES
0578
0ETRI
0.97RE2
087832
(1.579E2
.50
0.55077
0.5 1 24
0.5% 69
0.98214
(.595157
0.598300
095341
0.9E382
(19K 22
(L5H4a]
(LSHSCE]
(LYE5EY
(L9574
LIRS L b
{19565
{L9HGHTY
{LYETLI
(LARTAS
09878
D050
(gD
0.98570
(98598
LR L
(A805G
IRIELLE
(L0
(US5036
D9E06RL
(-950RE
nasill
095134
095158
DA%16D
095202
naerd
0952435
095206
08528
08303
0495324
D.455343
049361

2.50
2.51

2,52
253
2.54
2.55
2.56
2.57
2.58
2.59
2.60
2.61

2482
2.63
2164
285
260
167
168
2.0%
30
7

2.7
17
194
Pk
176
207
LR
e

[.95957%
[ER
059413

0.65430

0.59446
0.5ud61
0.59477
0.5443
0.59506
0.59521
0.579534
0.59547
0,560
09573
0.99555
L5550
0.99608
0.99021
0.905%3
(LSS
(LS55
01540054
15074
1R
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Chap 2: Random Variables

fx (x) depends on two parameters y and o2, the notation X ~ N (u,0?) is applied. If

y =2 ~ N(0,1)

3)
Y is called normalized Gaussian RV. Furthermore,
aX +b~ N(ap+0b,a%0?)
linear transform of a Gaussian RV is still Gaussian.
e Uniform: X ~ U(a,b),a < b, if
(4)

17
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Chap 2: Random Variables

4f3(7) x (%)

1
b-¢ \

Figure 6: pdf of uniformly distributed and exponential distributed RVs.

e Exponential: X ~ e()\) if

)
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Chap 2: Random Variables

e Rayleigh X ~ R(c?)
6—:102/202 z >0

fx(@)=4 o
0 0.W.

Let X=/X? + X2 where X; and X5 ~ N(0,0?) and independent.

Then X 1s Rayleigh distributed.

19
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Chap 2: Random Variables

Discrete-type Random Variables

e Bernoulli: X takes the values of (0,1), and

P(X=0)=q, P(X=1)=p

e Binomial: X ~ B(n,p)

P(X =k) = " "k k=0,1,2,---,n
k
e Poisson: X ~ P(\)
)\k:
P(X:k)ze—kﬁ, k=0,1,2,---,00

20



Chap 2: Random Variables

$PCX = ) $FP(X =

|‘H||I I(‘HH“M,,
12 &

(&) Binomia (b) Poisson

¥ =5

Figure 7: pmf of Binomial and Poisson distributions.

e Uniform: X takes the values from [1,--- ,n], and

PX=k=>0-p)*p, k=1,

where the parameter p € (0, 1) (probability for head appear on each one toss).

21



Chap 2: Random Variables

Example of Poisson RV

Example of Poisson Distribution: the probability model of Poisson RV describes phenomena
that occur randomly in time. While the time of each occurrence is completely random, there
is a known average number of occurrences per unit time. For example, the arrival of

information requests at a WWW server, the initiation of telephone call, etc.

For example, calls arrive at random times at a telephone switching office with an average of
A = 0.25 calls/second. The pmf of the number of calls that arrive in a 7' = 2 second interval
is

—0.5

05)F.&— k=0,1,2,---
P (k) = S

0 0.W.

22



Chap 2: Random Variables

Example of Binomial RV

Example of using Binomial Distribution: To communicate one bit of information reliably, we
transmit the same binary symbol 5 times. Thus, “zero” is transmitted as 00000 and “one” is
transmitted as 11111. The receiver detects the correct information if three or more binary
symbols are received correctly. What is the information error probability P(FE), if the binary
symbol error probability is ¢ = 0.17?

In this case, we have five trials corresponding to five transmissions. On each trial, the
probability of a success is p = 1 — ¢ = 0.9 (binary symmetric channel). The error event

occurs when the number of successes is strictly less than three:
Let X denote the number of successes out of 5 trials

P(E) = P(X=0) + P(X=1) + P(X=2) = ¢° + 5pq* + 10p*¢®> = 0.0081

By increasing the number of transmissions (5 times), the probability of error is reduced from
0.1 to 0.0081.

23
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Chap 2: Random Variables

Bernoulli Trial Revisited

Bernoulli trial consists of repeated independent and identical experiments each of which has
only two outcomes A or A with P(A) = p and P(A) = q. The probability of exactly k
occurrences of A in n such trials is given by Binomial distribution.

Let
X = “exact k occurrences 1n n trials”
(6)
Since the number of occurrences of A in n trials must be an integer £ = 0, 1,2, - - - , n, either
Xo or Xq or X5 or--- or X,, must occur in such an experiment. Thus
P(XoUuXjU---UX,)=1 (7)
But X;, X; are mutually exclusive. Thus
n n n
P(XoUX;U--UX,) =) P(Xy)= prgnF (8)
k
k=0 k=0

24
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Chap 2: Random Variables

From the relation

n

(a+b)" = Z " aFprFk

k=0 k

(8) equals (p + ¢)™ = 1, and it agrees with (7).

For a given n and p what is the most likely value of £? The most probable value of £ is that

number which maximizes in Binomial distribution. To obtain this value, consider the ratio

P,(k—1) nlpk=lgn=Fk+l (n—Ek)E! k q

P, k)  (n—k+DIk—1! nlpbg*  n—k+1 p

Thus P, (k) > P,(k—1),iftk(1—p) < (n—k+ 1)pork < (n+ 1)p. Thus, P, (k) as a
function of k increases until k=k,, where

k=|(n+1)p|
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Chap 2: Random Variables

Example 4 I
: In a Bernoulli experiment with n trials, find the probability that the number of
occurrences of A is between ky and k».

Solution: with X;,72 = 0,1,2,--- ,n as defined in (6), clearly they are mutually exclusive
events. Thus

P = P(“Occurrences of Aarebetween kq and ko) 9)
kg k'2 n
= P(XkIUXk1+1UUX]€2): Z P(Xk;): Z o pkqn_k
k:Zkl k:k’l

Example 5
: Suppose 5,000 components are ordered. The probability that a part is
defective equals 0.1. What is the probability that the total number of defective parts does not
exceed 400?
Solution: Let

Y, = “k parts are detective among 5000 components”
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Chap 2: Random Variables

using (9), the desired probability is given by

400 400 5000
P(YoUY1U---UY00) = P(Yi) =) _ . (0.1)%(0.9)"*
k=0 k=0

The above equation has too many terms to compute. Clearly, we need a technique to compute
the above term in a more efficient manner.
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Binomial Random Variable Approximations

Let X represent a Binomial RV, then

kg k2
n
Py <X <hy)= > P(Xp)=»_ prq" " (10)
k:kl k:kl k
n
Since the binomial coefficient = (n_"—k:),k, grows quite rapidly with n, it is difficult to

k
compute (10) for large n. In this context, Normal approximation is extremely useful.

Normal Approximation: (Demoivre-Laplace Theorem) Suppose n — oo with p held fixed.
Then for k in the ,/npg neighborhood of np, we can approximate

p"q L p( (k_np)Q) (11)
~ ———eX —_
L \/21Nnpq 2npq

3
x
{

Thus if k1 and k5 in (10) are within or around the neighborhood of the interval

28
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(np — \/npgq,np + /npq) we can approximate the summation in (10) by an integration as

k 2
1 (w—mﬂ>
Plki < X <k = / —————— X (—— dx (12)
( ! 2) k. V2Tnpq P 2npq

/5132 1 ( y2) y
= ex —_—
e )

ky—mp _ k2—np
2

Vg - \/npg

We can express (12) in terms of the normalized integral that has been tabulated extensively.

where

Ir1 =

erf(z e~V /2 dy = —erf(—x) (13)

=7

P(r; < X < z9) =erf(xe) —erf(xy)

29
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Chap 2: Random Variables

Example 6 I
: A fair coin is tossed 5,000 times. Find the probability that the number of
heads 1s between 2,475 to 2,525.

Solution: We need P (2475 < X < 2525). Here n is large so that we can use the normal
approximation. In this case p = 1/2, so that np = 2500, and /npq ~ 35. Since

np — /npq ~ 2465 and np + /npq ~ 2535, the approximation is valid for k1 = 2475 and
ko = 2525. Thus

T2 1 yQ)
Pk < X <k = exp| —= | d 14
(1_ ~ 2) /xl \/% p( 9 Y ( )
Here
x_kl—np__§ x_kg—np_é
b Jnpg T 2 npqg T

Since x1 < 0, from Fig. 8, the above probability is given by
5
P(2475 < X < 2525) = erf(ze) —erf(xy) = erf(xs) +erf(lzi]) = 2erf (?> = 0.516

where we have used table (er f(0.7) = 0.258).

30



Chap 2: Random Variables

Ay L -rn
_/ X
R % i A ¥
(@ x>0 x>0 ) %<0 x>0

Figure 8: pdf of Gaussian approximation.
Find P(x1 < X <x2) in Figure 8 using ®(X) or erf(x) where X is a non-negative number
(a). P(x1 < X < x2) =erf(x2) — erf(x1) = ®(X2) — d(x1)

(b). P(x1 < X < x2) =erf(x2) — erf(x1) = erf(x2) + erf(|x1|)
= O(x2) — D(X1) == D(X2) — (1 = D (x1]) )= D(x2) + O (|x1|) -1

31



Chap 2: Random Variables

Chap 2.2 : Statistics of RVs

For aRV X, its pdf fx (z) represents complete information about it. Note that fx ()

represents very detailed information, and quite often it is desirable to characterize the r.v in
terms of its average behavior. In this context, we will introduce two parameters - mean and
variance - that are universally used to represent the overall properties of the RV and its pdf.

Mean (Expected Value) of a RV X is defined as

X=EX)=[""_zfx(z)dz
(15)

If X is a discrete-type RV, then we get

X = E(X):/:UZpié(:c—xi)d:c (16)
= Z%pz = Z%‘P(X = ;)

Mean represents the average (mean) value of the RV in a very large number of trials. For
example
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e X ~ Uf(a,b) (uniform distribution), then,

is the midpoint of the interval (a, b).

e X is exponential with parameter A, then

E(X):/ Ee_x/>‘al513:)\/ ye Ydy = A (17)
0o A 0

implying that the parameter represents the mean value of the exponential RV.

e X is Poisson with parameter )\, we get

o0 00 - )\k - o0 )\k
E(X) = ) kP(X=k)=) ke Aﬁ:e AZkﬁ (18)
k=0 k=0 ' k=1 '
e i A = de i & = de et = )\
(k- 1)! £ !

Thus the parameter \ also represents the mean of the Poisson RV.
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e X is binomial, then its mean is given by

B(X) =

mn n n
d kP(X =k)=> k gk (19)
k=0 k=0 k

- n! - n!
;; (n — k)k! — (n—k)l(k—1)!

n—1
(n o 1)' T n—i—1 n—1 __

np;(n_z_l) P’ =np(p+q)" ! = np

Thus np represents the mean of the binomial RV.

e For the normal RV,

B(X) =

1

V 2mo?
1

V 2mo?

VQWJ

/ ye V27 dy + p e—f/ 2 Ay = (20)

V. 2702

where the first integral in (20) is zero and the second is 1. Thus the first parameter in

X ~ N(p,o?

) is in fact the mean of the Gaussian RV X.
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Mean of a Function of a RV

Given X ~ fx(x), suppose Y = g(X) defines a new RV with pdf fy (y). Then from the
previous discussion, the new RV Y has a mean uy given by

wy = B(Y) = / y fy(y) dy 1)

— 00

From above, it appears that to determine F(Y'), we need to determine fy (y). However this is
not the case if only F(Y') is the quantity of interest. Instead, we can obtain E(Y") as

B(Y) = Blo(x) = [ Ty () dy = / " o) fx () da @2)

— 00 — 00

Discrete case

E(Y) = Zg(an)P(X = ;) (23)

Therefore, fy (y) is not required to evaluate E(Y') for Y = g(X). As an example, we
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determine the mean of Y = X2, where X is a Poisson RV.

E(X?% = i 2P(X = f: ke A A e A Z k2 (24)
k=0 k=0

e A

- GAZk(k_
k=1

— )\e/\<i73. +Zz'>_>\€)‘<2%——|—€>

1=0

o0 )\2 )\m—i—l
_ - A _ —A A
= )e (il (i—l)!+e )-)\e (mz_:o - +e )

= de et +eM) =N+ A

In general, £(X*) is known as the kth moment of RV X. Thus if X ~ P()), its second
moment is A + ).
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Variance of a RV

Mean alone cannot be able to truly represent the pdf of any RV. As an example to illustrate
this, considering two Gaussian RVs X; ~ N(0,1) and X5 ~ N(0, 10). Both of them have
the same mean. However, as Fig. 1 shows, their pdfs are quite different. One is more
concentrated around the mean, whereas the other one has a wider spread. Clearly, we need at
least an additional parameter to measure this spread around the mean!

17 () esy

(ﬂ} .'_‘,rj:l I:bjl |':J'2=1|:|

Figure 9: Two Gaussian RV with different variance.
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For a RV X with mean p, X — p represents the deviation of the RV from its mean. Since this
deviation can be either positive or negative, consider the quantity (X — )2, and its average

value E[(X — pu)?] represents the average mean square deviation of X around its mean.
Define

ox = E[(X — )% >0 (25)

With g(X) = (X — p)? and using (22) we get

o5 :/OO (z — p)?fx(z)dz >0 (26)

— 0

0% is known as the variance of the RV X, and its square root ox = \/E(X — u)? is known
as the standard deviation of X. Note that the standard deviation represents the root mean
square spread of the RV X around its mean pu.
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Expanding variance definition, and using the linearity of the integrals, we get

Var(X) = ag(:/ (22 — 2op + p?) fx(z) dx

— 0

= /OO z? fx (x)dx — QM/OO zfx(x)dx + p?

= B(X?) - =E(X?) - [EX)]P=X2-X

e For a Poisson RV, we can obtain that
0% = X2 X = (A2 4\ = A=)\
Thus for a Poisson RV, mean and variance are both equal to its parameter .

e The variance of the normal RV N (1, 0?) can be obtained as

Var(X) = B[(X = = | (@~ 0P ==

To simplify the above integral, we can make use of the identity

> > 1 2 2
/ fx(z)dx :/ e~ @=m)/207 = ]

oo V2102

e_(m_u)2/20-2 dx

27)

(28)
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which gives
/ e~ (@=m*/20% g0 — \f2r0

Differentiating both sides of above with respect to o, we get

o0 2
/ @1 —@-w?/20® gy _ o

3
— 00 U

or

> 1 2 2
(CU L M)Z 6—(3:—,u) /20 dr = 0_2
o V2mo?

which represents the Var(X) in (28). Thus for a normal RV N (u, 0?),
Var(X) = o

therefore the second parameter in N (p, 02) in fact represents the variance. As Fig. 9
shows the larger the o, the larger the spread of the pdf around its mean. Thus as the
variance of a RV tends to zero, it will begin to concentrate more and more around the
mean, ultimately behaving like a constant.
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Moments

As remarked earlier, in general
my, =X"=EX") n>1 (29)
are known as the moments of the RV X, and
pn = E[(X = p)"]

are known as the central moments of X. Clearly, the mean ;4 = mq, and the variance

02 = po. Itis easy to relate m,, and w,,. In fact

n

b = E(X - =E(Y : Xk (=) (30)
k=0
DSl I PC O ICTIRE D DY B EC i
k=0 \ ¥ k=0 \ K

Direct calculation is often a tedious procedure to compute the mean and variance, and in this
context, the notion of the characteristic function can be quite helpful.
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Characteristic Function (CF)

The characteristic function of a RV X 1is defined as

Dx(w) = B(eX) = [*_ eI fx(v) da

€
— 00

(D

Thus @ x(0) = 1 and |®x (w)| < 1 for all w. For discrete RVs the characteristic function is:

Dx(w) = 2, e/ P(X = k)
(32)

e if X ~ P(\) for poisson distribution, then its characteristic function is given by

- )\k o A jw\k i .
<I>X(w) _ Zejkwe—A AN e—/\z ( € ) P e C ) (33)

e if X is a binomial RV, its characteristic function is given by

n n

Px(w) =) e . AAEDY . (pe’)*q" ™" = (pe’” + q)"  (34)
k=0 k=0
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Chap 2: Random Variables

CF and Moment

To illustrate the usefulness of the characteristic function of a RV in computing its moments,
first it is necessary to derive the relationship between them.

. X > E
Px(w) = EE*)=E ]w ] Z i wh (35)
k=0
E(X? E(X*
— 14 EB(X)w+ 2 (2, )w2+...+jk (k' ) Wk 4

where we have used e* = >~ \*/k!. Taking the first derivative of (35) with respect to w,
and letting it to be equal to zero, we get

8<I>X (w) a(I)X (w)

1
w—0 = JEB(X E(X)=- o 36
o om0 =JB(X) o B(X) = = 0 (36)
Similarly, the second derivative of (35) gives
1 5’2(13)(((4})
EB(X?) = = —" | 37
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and repeating this procedure k£ times, we obtain the £th moment of X to be

1 8’“ P X (w)
jk; awk:
We can use (35)-(37) to compute the mean, variance and other higher order moments of any
RV X.

o if X ~ P()), then from (33),

B(X*) = =0 k=1 (38)

8@ Jw :

X(w) — 6—)\6>\e )\jejw (39)

ow
so that from (36)

E(X) =2\
which agrees with our earlier derivation in (18). Differentiating (39) one more time, we
get
82@ Jw . Jw .
8X2(W) _ e—A (e)\e ()\] ejw)Q + 6)\6 )\]2 ejw) (40)
w

so that from (37),
E(X?) =X+

which again agrees with results in (24). Notice that compared to the tedious calculations
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in (18) and (24), the efforts involved by using CF are very minimal.

e We can use the characteristic function of the binomial RV B(n, p) in (34) to obtain its

variance. Direct differentiation gives

8@){ (CL))
Oow

so that from (36), F(X) = np, which is the same as previous calculation.

= jnpe’® (pe?” + q)" ! (41)

One more differentiation of (41) yields

82(13)( (w)
Ow?

and using (37), we obtain the second moment of the binomial r.v to be

= j’np[e’ (pe? + )" + (n — V)pe?® (pe? + q)" 7] (42)

E(X*) =np(1+(n—1)p) =n’p* +npq
Therefore, we obtain the variance of the binomial r.v to be
2

% = E(x*) — [BE(X)]* =n*p* + npqg—n’p* =npq

e To obtain the characteristic function of the Gaussian r.v, we can make use of the
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definition. Thus if X ~ N(u,oc?) then

Py(w) = el T e
pIwy o—y*/20° dy = eI 1 / o W/20%y—j20%w) dy

1 /OO
V2mo? J_so V21o? J_

(Lety — jo*w =z sothaty =z +j02w)

~@=w)*/20% qp (letx — p = y) (43)

—  elnw

. . 2 . 2 2
I —(z+jo w)(z—jo w)/20 dz

1 /oo
— e
V2ro? J s

: _ 2 2 72792 .o 22
—  pJhw oW /2 /20 dz :e(j/,bw o w?/2)

1 / >
_— e
V2mo? J_
Notice that the characteristic function of a Gaussian r.v itself has the “Gaussian” bell
shape. Thus if X ~ N(0,0?), then

1 2 2 2 2
fX(x) _ et /20 (I)X(CU) — e T w /2

\V2mo?
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Chap 2: Random Variables

& mv Rt F R Y
2

=
L L

(&) (b)

Figure 10: Gaussian pdf and CF.

From Fig. 10, the reverse roles of 02 in fx (x) and ® x (w) are noteworthy (02, vs.1/0?).
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Chebychev Inequality

We conclude this section with a bound that estimates the dispersion of the r.v beyond a

2

certain interval centered around its mean. Since 0“ measures the dispersion of the RV X

2

around its mean u, we expect this bound to depend on o“ as well.

Consider an interval of width 2e symmetrically centered around its mean p shown as in Fig.
11. What is the probability that X falls outside this interval? We need

P(|X —p| >¢) =7 (44)

To compute this probability, we can start with the definition of o2

a

(| oo e

Figure 11: Chebyshev inequality.
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oo

2 = El(X-pp)= [

— o0

@@ fx@dez [ @ ixe)ds @)

|z—p|>e
> / 2 fy (z) da = 62/ Fy(z)de = EP(|X — ] > €)
ol M

From (45), we obtain the desired probability to be

P(X—pl>e <%
(46)

(46) 1s known as the chebychev inequality. Interestingly, to compute the above probability
bound, the knowledge of fx (z) is not necessary. We only need o2, the variance of the RV. In
particular with € = ko in (46) we obtain
1
P(|X —pul > ko) < 2 47)
Thus with £ = 3, we get the probability of X being outside the 30 interval around its mean to

be 0.111 for any RV. Obviously this cannot be a tight bound as it includes all RVs. For
example, in the case of a Gaussian RV, from Table (x = 0,0 = 1):

P(|X — pu| > 30) = 0.0027
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which i1s much tighter than that given by (47). Chebychev inequality always underestimates
the exact probability.

Example 7:
If the height X of a randomly chosen adult has expected value E[X| = 5.5

feet and standard deviation o x = 1 foot, use the Chebyshev inequality to find an upper
bound on P(X > 11)

Solution: Since X is nonnegative, the probability that X > 11 can be written as
PX >11]=P[X —pux > 11 — pux]| = P[|X — pux| > 5.5]

Now we use the Chebyshev inequality to obtain

Var[X]

P X >11]| = P||X — > 9.5 <

= 0.033 ~ 1/30

We can see that the Chebyshev inequality is a loose bound. In fact, P[X > 11] is orders of
magnitude lower than 1/30. Otherwise, we would expect often to see a person over 11 feet
tall in a group of 30 or more people!
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Example 8: I
If X is uniformly distributed over the interval (0, 10), then, as E[X| = 5,

Var(X)=25/3, it follows from Chebyshev’s inequality that

2 951
=2 x052

P(|X =5 >4) <
( ‘>)_e 3 16

whereas the exact result 1s
P(]X —5|>4)=0.20

Thus, although Chebyshev’s inequality is correct, the upper bound that it provides is not
particularly close to the actual probability.

Similarly, if X is a normal random variable with mean p and variance o2, Chebyshev’s
inequlity states that

P(IX —pl >20) <

AN,

whereas the actual probability is given by

P(X — y| > 20) =P (yX s 2) — 2[1 — ®(2)] ~ 0.0456

o

Chebyshev’s inequality is often used as a theoretical tool in providing results.
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Functions of a Random Variable

Let X be aRV, and suppose g(x) is a function of the variable
x. Define

Y =g(X)
Y is a derived random variable. what is its CDF Fy (y), pdf fy (y)?

Example9l
Y =aX +0

Solution: Suppose a > 0

Fy<y>=P<Y§y>=P<aX+b§y>=P(X§y_b) =Fx(y_b)

a

and

On the other hand if a < 0, then

FY(y):P(YSy)ZP(aX+b§y):p<X>y_b>:1_FX (y—b)
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and hence

Therefore, we obtain (for all a)

Example IOI
Y = X2

Fy(y) = P(Y <y) = P(X* <y) (48)
If y < 0, then the event {X? < y} = ¢, and hence
Fy(y) =0 y <0

For y > 0, from Fig. 12, the event {Y < y} = {X? < y} is equivalent to {z; < X < z5}.
Hence,

Fy(y) = P(CIZl < X< 372) = Fx(l‘g) — Fx(ilj'l) (49)
= Px(VB) - Fx(—vB) >0
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By direct differentiation, we get

=[x (VO) + fx (=) y>0

fr(y) = (50)
0 0.W.
If fx(x) represents an even function, then (50) reduces to
1
= — U 51
fy () NG Ix(Vy) Uly) (51)

Figure 12: Example Y = X2,
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In particular if X ~ N (0, 1), so that

1 2
= —z7/2 52
x e
fx () o (52)
and substituting this into (50) or (51), we obtain the pdf of Y = X2 to be
1
— —v/2y 53
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General Approach

As a general approach, given Y = g(X), first sketch the graph y = ¢g(z), and determine the

range space of y. Suppose a < y < b is the range space of y = g(x).

fory < a, Fy(y) =0
fory > b, Fy(y) =1
Fy (y) can be nonzero only ina < y < b.

Next, determine whether there are discontinuities in the range space of y. If so evaluate
P(Y (£) = y;) at these discontinuities.

In the continuous region of ¥y, use the basic approach

Fy(y) = P(g9(X) <y)

and determine appropriate events in terms of the RV X for every y. Finally, we must
have Fy (y) for —oo < y < 400 and obtain

_ dFy (y)

fy (y) 0y

m a<y<b
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However, if Y = g(X) is a continuous function, it is easy to establish a direct procedure to
obtain fy (y).

Consider a specific y on the y-axis, and a positive increment Ay as
shown in Fig. 13.

e
Figure 13: Y = g(x).
fy (y) for Y = g(X), where g(-) is of continuous type. we can write
y+Ay
Ply <Y <y+ Ay} = / fy (u) du = fy(y) - Ay (54)
Y
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But the event P{y < Y < y + Ay} can be expressed in terms of X (£) as well. To see this,
referring back to Fig. 13, we notice that the equation y = g(x) has three solutions 1, z2, T3
(for the specific y chosen there). As a result when {y < Y <y + Ay}, the RV X could be in
any one of the three mutually exclusive intervals

{1 < X <x1+ Az} {22 <X <axo+ Axs} {x3< X < x5+ Azxs}

Hence the probability of the event in (54) is the sum of the probability of the above three
events, 1.€.,

P{y<Y§y—|—Ay} = P{xl<X§a:‘1—|—A331}—|—P{a:‘2<X§x2—|—Aa:2}
‘|—P{$3 < X §$3—|—ACB3} (55)

For small Ay, Az;, making use of the approximation in (54), we get
fr (W) Ay = fx(z1)Az1 + fx(22)(—Az2) + fx(v3)Aws (56)

In this case, Ax; > 0, Azo < 0 and Axz > 0 so that (56) can be rewritten as

fr(y) = ;fx(xz) Ay (57)
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and as Ay — 0, (57) can be expressed as

Zldy/daﬁlz x (i) ng /(@) %)

The summation index 7 in (58) depends on y, and for every y the equation y = g(x;) must be
solved to obtain the total number of solutions at every y, and the actual solutions x1, xs, - - -
all in terms of y.

59



Chap 2: Random Variables

For example, if Y = X?, thenforally > 0,21 = —/y and 21 = /Yy represent the two
solutions for each y. Notice that the solutions x; are all in terms of y so that the right side of
(58) is only a function of . Referring back to the example Y = X2 here for each y > 0, there

are two solutions given by 1 = —,/y and 2 = +,/y (fy (y) = 0 for y < 0 ). Moreover
d d
% = 2z so that é . =2y

and using (58) we get

(59)

Figure 14: Y = X2,
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Example 11'
:LetY =1/X, find fy (y).

Solution: Here for every y, 1 = 1/y is the only solution, and

dy 1 dy 1 5
= = that |-~ = =
dx R vez,  L/Y? Y
and substituting this into (58), we obtain
1 1
fy(y) = —=fx (—) : (60)
Y (Y
In particular, suppose X is a Cauchy r.v with parameter « so that
frla) = 217 <r<
x) = —00 <z <00
X a2 + 12

In that case from (60), Y = 1/X has the pdf

Lo _War o
MO = E e " Waprgp 0SS
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Functions of A Discrete-type RV

Suppose X is a discrete-type RV with
P(X:xz):pza L= T1,L2, " yLjy" ",

and Y = g(X). Clearly Y is also of discrete-type, and when x = z;,y; = g(x;), and for

those v,
Example 12.
: Suppose X ~ P()), so that
)\kz
P(X =k) :e_Aﬁ k=0,1,2,--

Define Y = X? + 1. Find the pmf of Y.
Solution: X takes the values 0,1,2,--- ,k,---, so that Y only takes the values
1,2,5, -+ k> 4+1,---,

PY =k’+1)=P(X =k)
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so that for j = k% + 1

j:172757°"7k2+17"'
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