EE126: Probability and Random Processes Problem Set 4 — Due Feb, 15

Lecturer: Jean C. Walrand

GSI: Daniel Preda, Assane Gueye

SP'07

Problem 4.1. Suppose three fair dice are rolled. What is the probability that at most one six appears?

Problem 4.2. Suppose we are given a coin for which the probability of heads is p (0) and the probability of tails is <math>1 - p. Consider a sequence of independent flips of the coin.

- 1. Let $y \ (y = 1, 2, ...)$ be the number of flips up to and including the flip on which the first head occurs. Determine the pmf $p_y(y_0)$ for all values of y_0 .
- 2. Let x (x = 0, 1) be the number of heads that occur on any particular flip.
 - (a) Determine $E(\mathbf{x})$.
 - (b) Determine σ_x^2 .
- 3. Let $k \ (k = 0, 1, ..., N)$ be the number of heads that occur on the first N flips of the coin. Determine
 - (a) the pmf $p_k(k_0)$
 - (b) E(k) [Hint: Your results from part (b) may help you in determining E(k) and σ_k^2 .]
 - (c) σ_k^2
- 4. Given that a total of exactly six heads resulted from the first nine flips, what is the conditional probability that both the first and seventh flips were tails?
- 5. Let h be the number of heads that occur on the first twenty flips. Let C be the event that a total of exactly ten heads resulted from the first eighteen flips. Find
 - (a) E[h|C](b) $\sigma_{h|C}^2$

Problem 4.3. Let X be a random variable with density function

$$f(x) = \begin{cases} ce^{-2x}, & 0 < x < \infty \\ 0, x < 0 \end{cases}$$

1. Find c.

SP'07

- 2. What is P[X > 2]?
- 3. Compute E[X].

Problem 4.4. A marksman takes 10 shots at a target and has probability 0.2 of hitting the target with each shot. Let X be the number of hits.

- 1. Calculate and plot the PMF of X.
- 2. What is the probability of scoring no hits?
- 3. What is the probability of scoring more hits than misses?

Problem 4.5. Your probability class has 250 undergraduate students and 50 graduate students. The probability of an undergraduate (or graduate) student getting an A is 1/3 (or 1/2, respectively). Let X be the number of students that get an A in your class.

- 1. Find the PMF of X.
- 2. Calculate E[X] using the total expectation theorem, rather than the PMF of X.
- 3. Calculate E[X] and var(X) by viewing X as a sum of random variables, whose statistics are easily calculated.

Problem 4.6. Consider the random variable X with PMF

$$p_X(x) = \begin{cases} \frac{x^2}{a} & \text{if } x = -3, -2, -1, 0, 1, 2, 3, \\ 0 & \text{otherwise.} \end{cases}$$

- 1. Find a and $\mathbf{E}[X]$.
- 2. What is the PMF of the random variable $Z = (X \mathbf{E}[X])^2$?
- 3. Using part (b) compute the variance of X.

Problem 4.7. Prove that

$$E[X^2] \ge \left(E[X]\right)^2.$$

When do we have equality?

Problem 4.8. A coin having probability p of coming up heads is successively flipped until the rth head appears. Argue that X, the number if flips required, will be $n, n \ge r$, with probability

$$P[X = n] = \binom{n-1}{r-1} p^r (1-p)^{n-r}$$

Compute the expectation of X.