Filter Approximation Theory

Butterworth, Chebyshev, and Elliptic Filters

Approximation Polynomials

- Every physically realizable circuit has a transfer function that is a rational polynomial in s
- We want to determine classes of rational polynomials that approximate the "Ideal" low-pass filter response (high-pass band-pass and band-stop filters can be derived from a low pass design)
- Four well known approximations are discussed here:
 - Butterworth: Steven Butterworth,"On the Theory of Filter Amplifiers", Wireless Engineer (also called Experimental Wireless and the Radio Engineer), vol. 7, 1930, pp. 536-541
 - Chebyshev: Pafnuty Lvovich Chebyshev (1821-1894) Russia
 Cyrillic alphabet Spelled many ways
 Чебышёв
 - Elliptic Function: Wilhelm Cauer (1900-1945) Germany
 U.S. patents 1,958,742 (1934), 1,989,545 (1935), 2,048,426 (1936)
 - Bessel: Friedrich Wilhelm Bessel, 1784 1846

Definitions

• Let $|H(\omega)|^2$ be the approximation to the ideal low-pass filter response $|I(\omega)|^2$

Where ω_c is the ideal filter cutoff frequency (it is normalized to one for convenience)

Definitions - 2

• $|H(\omega)|^2$ can be written as

 $|H(\omega)|^2 = \frac{1}{1 + \varepsilon^2 F^2(\omega)}$ Where F(ω) is the "Characteristic Function" which attempts to approximate:

- This cannot be done with a finite order polynomial
- $-\epsilon$ provides flexibility for the degree of error in the passband or stopband.

Filter Specification

• $|H(\omega)|^2$ must stay within the shaded region $|H(\omega)|^2$

• Note that this is an incomplete specification. The phase response and transient response are also important and need to be appropriate for the filter application

Butterworth

• $F(\omega) = \omega^n$ and $\varepsilon = 1$ and

- Characteristics
 - Smooth transfer function (no ripple)
 - Maximally flat and Linear phase (in the pass-band)
 - Slow cutoff \otimes

Butterworth Continued

• Pole locations in the s-plane at: $|H(\omega)|^2 = \frac{1}{1 + \omega^{2n}}$ $\omega^{2n} = -1$ or $\omega = (-1)^{(1/2n)}$

- Poles are equally spaced on the unit circle at $\theta = k\pi/2n$.
- H(s) only uses the n poles in the left half plane for stability.
- There are no zeros

Butterworth Filter |H(s)| for n=4

Filter Approximation Theory

- Controlled equiripple in the pass-band
- Sharper cutoff than Butterworth
- Non-linear phase (Group delay distortion) \otimes

Chebyshev |H(s)| for n=4, r=1 (Type 1)

 $H(s) = 0.2457/(s^4 + 0.9528s^3 + 1.4539s^2 + 0.7426s + 0.2756)$

Filter Approximation Theory

Elliptic Function

• $F(\omega) = U_n(\omega)$ – the Jacobian elliptic function

- S-Plane
 - Poles approximately on an ellipse
 - Zeros on the j ω -axis
- Characteristics
 - Separately controlled equiripple in the pass-band and stop-band
 - Sharper cutoff than Chebyshev (optimal transition band)
 - Non-linear phase (Group delay distortion) \otimes

 $H(s) = (0.0032s^4 + 0.0595s^2 + 0.1554)/(s^4 + 0.5769s^3 + 1.2227s^2 + 0.4369s + 0.2195)$

Filter Approximation Theory

Bessel Filter

- Butterworth and Chebyshev filters with sharp cutoffs (high order) carry a penalty that is evident from the positions of their poles in the s plane. Bringing the poles closer to the jω axis increases their Q, which degrades the filter's transient response. Overshoot or ringing at the response edges can result.
- The Bessel filter represents a trade-off in the opposite direction from the Butterworth. The Bessel's poles lie on a locus further from the $j\omega$ axis. Transient response is improved, but at the expense of a less steep cutoff in the stop-band.

Practical Filter Design

- Use a tool to establish a prototype design
 - MatLab is a great choice
 - See http://doctord.webhop.net/courses/Topics/Matlab/index.htm for a Matlab tutorial by Dr. Bouzid Aliane; Chapter 5 is on filter design.
- Check your design for ringing/overshoot.
 - If detrimental, increase the filter order and redesign to exceed the frequency response specifications
 - Move poles near the $j\omega$ -axis to the left to reduce their Q
 - Check the resulting filter against your specifications
 - Moving poles to the left will reduce ringing/overshoot, but degrade the transition region.