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The Fourier Transform 

Derivation 

Assume that we have a generalized, time-limited pulse centered at t = 0 as shown below. 
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The Fourier Transform of this pulse can be developed by starting with a periodic version of this pulse 

where the original pulse now repeats every T seconds. 
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fT(t) is periodic with period T so we can express it by its exponential Fourier series as 
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Now let’s make a small change in notation 

1. n = n*0 

2. F(n) = T*Fn 

We now have 
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The sum can be rewritten as 
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Taking the limit as T              
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But 0 = 2/T so for large T let 0          and the limit becomes 
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or since T             implies that            0 and the sum, in the limit, becomes an integral 
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This pair of equations defines the Fourier Transform  

1. F() is the Fourier Transform of f(t) 

2. f(t) is the inverse Fourier Transform of F() 

3. F() is also called the Spectral Density of f(t) as it describes how the energy of the original 

pulse is distributed as a function of frequency (in radians per second) 

I use a backwards upper case script “F” to denote taking the Fourier Transform of a function and the 

same symbol with a “-1” superscript to denote taking the inverse Fourier Transform. 
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Example 1 

Take the Fourier Transform of the single-sided exponential 

f(t)=U(t)*exp(-at)
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Note that the Fourier Transform is complex.  It has a magnitude and a phase.  The magnitude is found by 

multiplying it by its complex conjugate and taking the square root. 
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 This is the magnitude 



Fourier Transform  Page 5 

J. N. Denenberg  February 4, 2013 

Now find the phase.  First, find the real and imaginary parts. 
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Therefore the real part is 
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and the imaginary part is  
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The phase is then given by 
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Note: The ArcTan function of your calculator can lie!  Its answers always fall 

between ±90 (±π/2) and the real answer can be in one of the other two 
quadrants.  You should draw a picture to adjust your result as required.
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Singularity Functions 

We run into special functions when taking the Fourier Transform of functions that have infinite energy.  

The first of these special functions is the Delta Function 
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Where G(t) is any function from the set of all functions having the properties 

1. 





1)( dttG

 

2. 
0)(lim 



tG

  For all t  0 

Sifting Property of the Delta Function 

Integrating the product of the Delta Function with a “well-behaved” function results in “sampling” the 

“well-behaved” function at the time that the Delta Function goes to infinity.  Or 
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Proof 

Use Integration by parts 
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Let U(t) = f(t) and dV(t) = (t-t0)dt 
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Case 1:  a < t0 < b 
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Case 2:  t0 < a or t0 > b 
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Example 2 

Take the Fourier Transform of a constant 
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Here the integral can’t be directly computed, we have to approach it as a limiting case.  Let’s replace the 

constant with a parameterized function that equals the constant as its parameter approaches zero, the 

double-sided exponential function: 
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Now the Transform becomes: 
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Let u = - in the first integral 
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From our first example this is: 
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Now we need to take the limit as a          0 to get F() 
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so this is a -function that goes to  at  = 0 if its integral is a constant. 
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Exercises: 

1: Find the Fourier Transforms for each of the two pulses 
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2: Find the transfer function for the simple RC low-pass filter 

 

 

3: Determine the Fourier Transform of the RC low-pass filter output due to each of the pulses in 

part 1 

 

4: Find the limit of each of the results in part 3 as t             0 
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Properties of the Fourier Transform 

Symmetry Property 

If f(t)           F() 

Then F(t)             2 f(-) 

Proof: 
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Let u =  and v = t 
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Now let  = v and t = u 
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Therefore  F(t)           2 f(-)  

And if f(t) is an even function 

  F(t)           2 f() 

Linearity Property 

If f1(t)             F1() 

And f2(t)             F2() 

Then [a*f1(t) + b*f1(t)]               [a*F1() + b*F2()] 

Proof: 

Results due to the linearity of integration 
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Scaling Property 

If f(t)            F() 

Then for a real 
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case 1:  a > 0   Let x = a*t 
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case 2:  a < 0   Again let x = a*t 
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Therefore including both cases 
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Q. E. D. 

Note: The compression of a function in the time domain results in an expansion in the frequency 

domain and vice versa. 
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Frequency Shifting 
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Q. E. D. 

Note: The Modulation Theorem (very important in communications) 

Remember Euler’s Identities 
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Time Shifting 

If     Ftf   

Then     0*00

tj
Fttf

 
             

Proof: 

   




 


 dFtf tj*
2

1

 

     






 




dFttf

ttj 0*
2

1
0

 

    





 




dFttf tjtj

**
2

1
0

0

 

    0*0

tj
Fttf

 
  

Q. E. D. 
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Time Differentiation and Integration 
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Proof: 

First for differentiation (part 1) 
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  Q. E. D. for part 1 
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Now for integration (part 2) 
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Interchanging the order of integration 
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  Q. E. D. for part 2 



Fourier Transform  Page 17 

J. N. Denenberg  February 4, 2013 

Frequency Differentiation 
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The Convolution Theorem 

 Definition: the convolution of two functions    tfandtf 21  is defined as: 
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Let u = t -  in the inner integral 
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Since the inner integral is no longer a function of , it can be brought out as a constant and this leaves 
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Fourier Transform  Page 19 

J. N. Denenberg  February 4, 2013 

Frequency Convolution 

If     11 Ftf   

And    22 Ftf   

Then 
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Proof: Same method as for time convolution 

 


