# **The Fourier Transform**

### Derivation

Assume that we have a generalized, time-limited pulse centered at t = 0 as shown below.



The Fourier Transform of this pulse can be developed by starting with a periodic version of this pulse where the original pulse now repeats every T seconds.



 $f_T(t)$  is periodic with period T so we can express it by its exponential Fourier series as

$$f_T(t) = \sum_{n=-\infty}^{\infty} F_n * \varepsilon^{jn\omega_0 t}$$

where

$$F_{n} = \frac{1}{T} \int_{-T/2}^{T/2} f_{T}(t) * \varepsilon^{-jn\omega_{0}t} dt$$

and

$$\omega_0 = \frac{2\pi}{T}$$

Now let's make a small change in notation

1. 
$$\omega_n = n^* \omega_0$$

2. 
$$F(\omega_n) = T^*F_n$$

We now have

$$f_T(t) = \frac{1}{T} \sum_{n=-\infty}^{\infty} F(\omega_n) * \varepsilon^{j\omega_n t} \qquad \qquad F_n = \int_{-T/2}^{T/2} f_T(t) * \varepsilon^{-j\omega_n t} dt$$

The sum can be rewritten as

$$f_T(t) = \frac{\omega_0}{2\pi} \sum_{n=-\infty}^{\infty} F(\omega_n) * \varepsilon^{j\omega_n t}$$

or

$$f_T(t) = \frac{1}{2\pi} \sum_{n=-\infty}^{\infty} F(\omega_n) * \varepsilon^{j\omega_n t} \omega_0$$

Taking the limit as  $T \longrightarrow \infty$ 

$$\lim_{T \longrightarrow \infty} f_T(t) = f(t) = \frac{1}{2\pi} \lim_{T \longrightarrow \infty} \left[ \sum_{n = -\infty}^{\infty} F(\omega_n) * \varepsilon^{j\omega_n t} \omega_0 \right]$$

But  $\omega_0 = 2\pi/T$  so for large T let  $\omega_0 \longrightarrow \Delta \omega$  and the limit becomes

$$f(t) = \frac{1}{2\pi} \lim_{T \longrightarrow \infty} \left[ \sum_{n=-\infty}^{\infty} F(\omega_n) * \varepsilon^{j\omega_n t} \Delta \omega \right]$$

or since  $T \longrightarrow \infty$  implies that  $\Delta \omega \longrightarrow 0$  and the sum, in the limit, becomes an integral

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) * \varepsilon^{j\omega t} d\omega \qquad F(\omega) = \int_{-\infty}^{\infty} f_T(t) * \varepsilon^{-j\omega t} dt$$

This pair of equations defines the Fourier Transform

- 1.  $F(\omega)$  is the **Fourier Transform** of f(t)
- 2. f(t) is the inverse Fourier Transform of  $F(\omega)$
- 3.  $F(\omega)$  is also called the **Spectral Density** of f(t) as it describes how the energy of the original pulse is distributed as a function of frequency (in radians per second)

I use a backwards upper case script "F" to denote taking the Fourier Transform of a function and the same symbol with a "-1" superscript to denote taking the inverse Fourier Transform.

### Example 1

Take the Fourier Transform of the single-sided exponential



$$F(\omega) = \int_{-\infty}^{\infty} U(t) * \varepsilon^{-at} \varepsilon^{j\omega t} dt$$
$$F(\omega) = \int_{0}^{\infty} \varepsilon^{-at} \varepsilon^{-j\omega t} dt$$
$$F(\omega) = \int_{0}^{\infty} \varepsilon^{-(a+j\omega)t} dt$$
$$F(\omega) = \frac{-1}{a+j\omega} * \varepsilon^{-(a+j\omega)t} \Big|_{0}^{\infty}$$
$$F(\omega) = \frac{1}{a+j\omega}$$

Note that the Fourier Transform is complex. It has a magnitude and a phase. The magnitude is found by multiplying it by its complex conjugate and taking the square root.

$$|F(\omega)|^{2} = \frac{1}{a+j\omega} * \frac{1}{a-j\omega}$$
$$|F(\omega)|^{2} = \frac{1}{a^{2}+\omega^{2}}$$
$$|F(\omega)| = \frac{1}{\sqrt{a^{2}+\omega^{2}}}$$
This is the magnitude

Now find the phase. First, find the real and imaginary parts.

$$F(\omega) = \frac{1}{a + j\omega}$$
$$F(\omega) = \frac{1}{a + j\omega} * \frac{a - j\omega}{a - j\omega}$$
$$F(\omega) = \frac{a - j\omega}{a^2 + \omega^2} = \frac{a}{a^2 + \omega^2} - \frac{j\omega}{a^2 + \omega^2}$$

Therefore the real part is

$$\operatorname{Re}[F(\omega)] = \frac{a}{a^2 + \omega^2}$$

and the imaginary part is

$$\operatorname{Im}[F(\omega)] = \frac{-\omega}{a^2 + \omega^2}$$

The phase is then given by

$$\theta = \tan^{-1} \left[ \frac{\operatorname{Im}[F(\omega)]}{\operatorname{Re}[F(\omega)]} \right] = -\tan^{-1} \left[ \frac{\omega}{a} \right]$$

**Note:** The ArcTan function of your calculator can lie! Its answers always fall between  $\pm 90^{\circ}$  ( $\pm \pi/2$ ) and the real answer can be in one of the other two quadrants. You should draw a picture to adjust your result as required.

## Singularity Functions

We run into special functions when taking the Fourier Transform of functions that have infinite energy. The first of these special functions is the **Delta Function** 

$$\partial(t) = \lim_{\varepsilon \longrightarrow \infty} G_{\varepsilon}(t)$$

Where  $G_{\epsilon}(t)$  is any function from the set of all functions having the properties

$$\int_{-\infty}^{\infty} G_{\varepsilon}(t) dt = 1$$
1. 
$$\lim_{\varepsilon \longrightarrow \infty} G_{\varepsilon}(t) = 0$$
2. 
$$\varepsilon \longrightarrow \infty$$
For all  $t \neq 0$ 

### Sifting Property of the Delta Function

Integrating the product of the Delta Function with a "well-behaved" function results in "sampling" the "well-behaved" function at the time that the Delta Function goes to infinity. Or

$$\int_{a}^{b} f(t) * \partial(t - t_{0}) dt = \begin{pmatrix} f(t_{0}) & \text{if } a < t_{0} < b \\ 0 & \text{eleswhere} \end{pmatrix}$$
Proof

Use Integration by parts

$$\int_{a}^{b} U(t)dV(t) = U(t)V(t)\Big|_{a}^{b} - \int_{a}^{b} V(t)dU(t)$$
Let U(t) = f(t) and dV(t) =  $\delta(t-t_{0})dt$ 

$$\int_{a}^{b} f(t) * \partial(t-t_{0})dt = f(t)U(t-t_{0})\Big|_{a}^{b} - \int_{a}^{b} f'(t) * U(t)dt$$
Case 1: a < t<sub>0</sub> < b
$$\int_{a}^{b} f(t) * \partial(t-t_{0})dt = f(b) - 0 - \int_{t_{0}}^{b} f'(t) * U(t)dt$$

$$\int_{a}^{b} f(t) * \partial(t-t_{0})dt = f(b) - f(t)\Big|_{t_{0}}^{b}$$

$$\int_{a}^{b} f(t) * \partial(t-t_{0})dt = f(b) - f(b) + f(t_{0})$$
Case 2: t<sub>0</sub> < a or t<sub>0</sub> > b
$$\int_{a}^{b} f(t) * \partial(t-t_{0})dt = 0 - 0 - \int_{a}^{b} 0dt = 0$$
Q.E.D

### Example 2

Take the Fourier Transform of a constant



 $F(\omega) = \int_{-\infty}^{\infty} A \varepsilon^{j\omega t} dt$ 

Here the integral can't be directly computed, we have to approach it as a limiting case. Let's replace the constant with a parameterized function that equals the constant as its parameter approaches zero, the double-sided exponential function:

$$f(t) = A\varepsilon^{-a|t|}$$

Now the Transform becomes:

$$F_{a}(\omega) = \int_{-\infty}^{\infty} A \varepsilon^{-a|t|} \varepsilon^{j\omega t} dt = \int_{-\infty}^{0} A \varepsilon^{-at} \varepsilon^{j\omega t} dt + \int_{0}^{\infty} A \varepsilon^{-at} \varepsilon^{j\omega t} dt$$

Let  $u = -\omega$  in the first integral

$$F_{a}(\omega) = \int_{\infty}^{0} A\varepsilon^{-at} \varepsilon^{j(-u)t} dt + \int_{0}^{\infty} A\varepsilon^{-at} \varepsilon^{j\omega t} dt$$

From our first example this is:

$$F_a(\omega) = \frac{A}{a - j\omega} + \frac{A}{a + j\omega} = \frac{2Aa}{a^2 + \omega^2}$$

Now we need to take the limit as a  $\longrightarrow 0$  to get  $F(\omega)$ 

$$F(\omega) = \lim_{a \to 0} F_a(\omega)$$
$$F(\omega) = \lim_{a \to 0} \frac{2Aa}{a^2 + \omega^2} = \begin{pmatrix} 0 & \text{if } \omega \neq 0 \\ \\ \infty & \text{if } \omega = 0 \end{pmatrix}$$

so this is a  $\delta$ -function that goes to  $\infty$  at  $\omega = 0$  if its integral is a constant.

$$I = \int_{-\infty}^{\infty} 2A \frac{a}{a^2 + \omega^2} d\omega$$
  
Let  $a^*x = \omega$   
$$I = 2A \int_{-\infty}^{\infty} \frac{a}{a^2(1 + x^2)} a dx$$
  
$$I = 2A \int_{-\infty}^{\infty} \frac{1}{1 + x^2} dx$$
  
$$I = 2A^* \tan^{-1} x \Big|_{-\infty}^{\infty}$$
  
$$I = 2A^* \Big[ \frac{\pi}{2} - \left( -\frac{\pi}{2} \right) \Big]$$

$$I = 2\pi A$$

Therefore

$$F(\omega) = 2\pi A * \partial(\omega)$$





2: Find the transfer function for the simple RC low-pass filter



- 3: Determine the Fourier Transform of the RC low-pass filter output due to each of the pulses in part 1
- 4: Find the limit of each of the results in part 3 as  $\Delta t \longrightarrow 0$

## Properties of the Fourier Transform

#### **Symmetry Property**

If  $f(t) \leftrightarrow F(\omega)$ Then  $F(t) \leftarrow 2\pi f(-\omega)$ *Proof:* 

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) * \varepsilon^{j\omega t} d\omega$$

Therefore

$$2\pi * f(-t) = \int_{-\infty}^{\infty} F(\omega) \varepsilon^{-j\omega t} d\omega$$

Let  $u = \omega$  and v = t

$$2\pi * f(-v) = \int_{-\infty}^{\infty} F(u) \varepsilon^{-juv} du$$

Now let  $\omega = v$  and t = u

$$2\pi * f(-\omega) = \int_{-\infty}^{\infty} F(t) \varepsilon^{-j\omega t} dt$$

Therefore  $F(t) \iff 2\pi f(-\omega)$ 

And if f(t) is an even function

 $F(t) \iff 2\pi f(\omega)$ 

### **Linearity Property**

If  $f_1(t) \longleftrightarrow F_1(\omega)$ And  $f_2(t) \longleftrightarrow F_2(\omega)$ Then  $[a^*f_1(t) + b^*f_1(t)] \longleftrightarrow [a^*F_1(\omega) + b^*F_2(\omega)]$ *Proof:* 

Results due to the linearity of integration

#### **Scaling Property**

If  $f(t) \longleftrightarrow F(\omega)$ 

Then for a real

$$\underbrace{\mathbf{f}(\mathbf{a}^*\mathbf{t})}_{\mathbf{f}(\mathbf{a}^*\mathbf{t})} \underbrace{\mathbf{f}(\frac{\omega}{a})}_{\mathbf{f}(\mathbf{a}^*\mathbf{t})} = \underbrace{\mathbf{f}(\frac{\omega}{a})}_{\mathbf{f}(\mathbf{a}^*\mathbf{t})}$$

Proof:

$$\Im\{f(a*t)\} = \int_{-\infty}^{\infty} f(a*t)\varepsilon^{-j\omega t} dt$$

**case 1:** a > 0 Let  $x = a^*t$ 

$$\Im\{f(a*t)\} = \int_{-\infty}^{\infty} f(x) \varepsilon^{-j\frac{\omega}{a}x} \frac{1}{a} dx$$
$$\Im\{f(a*t)\} = \frac{1}{a} \int_{-\infty}^{\infty} f(x) \varepsilon^{-j\frac{\omega}{a}x} dx$$

or

$$\Im\{f(a*t)\} = \frac{1}{a}F\left(\frac{\omega}{a}\right)$$

case 2: a < 0 Again let  $x = a^*t$ 

$$\Im\{f(a*t)\} = \int_{\infty}^{\infty} f(x) \varepsilon^{-j\frac{\omega}{a}x} \frac{1}{a} dx$$

(Note the limits are now backwards)

$$\Im\{f(a*t)\} = -\frac{1}{a}\int_{-\infty}^{\infty}f(x)\varepsilon^{-j\frac{\omega}{a}x}dx$$

or

$$\Im\{f(a*t)\} = -\frac{1}{a}F\left(\frac{\omega}{a}\right)$$

Therefore including both cases

$$f(a^*t) \longleftrightarrow \frac{1}{|a|} F\left(\frac{\omega}{a}\right)$$

Q. E. D.

Note: The compression of a function in the time domain results in an expansion in the frequency domain and vice versa.

#### **Frequency Shifting**

If  $f(t) \leftrightarrow F(\omega)$ Then  $f(t) * \varepsilon^{j\omega_0 t} \leftrightarrow F(\omega - \omega_0)$ Proof:  $F(\omega) = \int_{-\infty}^{\infty} f(t) * \varepsilon^{-j\omega t} dt$   $F(\omega - \omega_0) = \int_{-\infty}^{\infty} f(t) * \varepsilon^{-j(\omega - \omega_0)t} dt$  $F(\omega - \omega_0) = \int_{-\infty}^{\infty} [f(t) * \varepsilon^{j\omega_0 t}] * \varepsilon^{-j\omega t} dt$ 

or

$$F(\omega - \omega_0) = \Im \{ f(t) * \varepsilon^{j\omega_0 t} \}$$
  
Q. E. D.

**Note:** The Modulation Theorem (very important in communications) Remember Euler's Identities

$$\cos(x) = \frac{\varepsilon^{jx} + \varepsilon^{-jx}}{2}$$
 and  $\sin(x) = \frac{\varepsilon^{jx} - \varepsilon^{-jx}}{2j}$ 

therefore

$$f(t)\cos(x) = \frac{f(t) * \varepsilon^{jx} + f(t) * \varepsilon^{-jx}}{2}$$

or

$$f(t)\cos(x) \longleftrightarrow \frac{F(\omega + \omega_0) + F(\omega - \omega_0)}{2}$$

similarly

$$f(t)\sin(x) = \frac{f(t) * \varepsilon^{jx} - f(t) * \varepsilon^{-jx}}{2j}$$

or

$$f(t)\sin(x) \longleftrightarrow j \frac{F(\omega + \omega_0) - F(\omega - \omega_0)}{2}$$

#### **Time Shifting**

If  $f(t) \leftrightarrow F(\omega)$ Then  $f(t-t_0) \leftrightarrow F(\omega_0)^* \varepsilon^{-j\omega t_0}$ Proof:  $f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega)^* \varepsilon^{j\omega t} d\omega$   $f(t-t_0) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega)^* \varepsilon^{j\omega (t-t_0)} d\omega$   $f(t-t_0) = \frac{1}{2\pi} \int_{-\infty}^{\infty} [F(\omega)^* \varepsilon^{-j\omega t_0}]^* \varepsilon^{j\omega t} d\omega$   $f(t-t_0) \leftrightarrow F(\omega)^* \varepsilon^{-j\omega t_0}$ Q. E. D.

### **Time Differentiation and Integration**

If

$$\frac{d}{dt}[f(t)] \leftrightarrow (j\omega)F(\omega)$$

 $f(t) \leftrightarrow F(\omega)$ 

 $\int_{-\infty}^{t} f(\tau) d\tau \leftrightarrow \frac{1}{j\omega} F(\omega)$ 

And *Proof:* 

Then

First for differentiation (part 1)

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) * \varepsilon^{j\omega t} d\omega$$
  

$$\frac{d}{dt} [f(t)] = \frac{d}{dt} \left[ \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) * \varepsilon^{j\omega t} d\omega \right]$$
  

$$\frac{d}{dt} [f(t)] = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) * \frac{d}{dt} [\varepsilon^{j\omega t}] d\omega$$
  

$$\frac{d}{dt} [f(t)] = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) * j\omega * \varepsilon^{j\omega t} d\omega$$
  

$$\frac{d}{dt} [f(t)] = \frac{1}{2\pi} \int_{-\infty}^{\infty} [(j\omega)F(\omega)] * \varepsilon^{j\omega t} d\omega$$
  
or  

$$\frac{d}{dt} [f(t)] \leftrightarrow (j\omega)F(\omega)$$
  
Q. E. D

Q. E. D. for part 1

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) * \varepsilon^{j\omega t} d\omega$$
$$\int_{-\infty}^{t} f(\tau) d\tau = \int_{-\infty}^{t} \left[ \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) * \varepsilon^{j\omega \tau} d\omega \right] d\tau$$

Interchanging the order of integration

$$\int_{-\infty}^{t} f(\tau) d\tau = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) * \left[ \int_{-\infty}^{t} \varepsilon^{j\omega\tau} d\tau \right] d\omega$$
$$\int_{-\infty}^{t} f(\tau) d\tau = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) * \left[ \frac{1}{j\omega} \varepsilon^{j\omega\tau} \right] d\omega$$
$$\int_{-\infty}^{t} f(\tau) d\tau = \frac{1}{2\pi} \int_{-\infty}^{\infty} \left[ \frac{1}{j\omega} F(\omega) \right] * \varepsilon^{j\omega\tau} d\omega$$

or

$$\int_{-\infty}^{t} f(\tau) d\tau \leftrightarrow \frac{1}{j\omega} F(\omega)$$
 Q. E. D. for part 2

# **Frequency Differentiation** $f(t) \leftrightarrow F(\omega)$

If

Then 
$$(-jt)^n f(t) \leftrightarrow \frac{d^n}{dt^n} F(\omega)$$

Proof:

$$F(\omega) = \int_{-\infty}^{\infty} f(t) * \varepsilon^{-j\omega t} dt$$

$$\frac{d^{n}}{dt^{n}} F(\omega) = \frac{d^{n}}{dt^{n}} \left[ \int_{-\infty}^{\infty} f(t) * \varepsilon^{-j\omega t} dt \right]$$

$$\frac{d^{n}}{dt^{n}} F(\omega) = \int_{-\infty}^{\infty} f(t) * \frac{d^{n}}{dt^{n}} \left[ \varepsilon^{-j\omega t} \right] dt$$

$$\frac{d^{n}}{dt^{n}} F(\omega) = \int_{-\infty}^{\infty} f(t) * (-jt)^{n} \varepsilon^{-j\omega t} dt$$

$$\frac{d^{n}}{dt^{n}} F(\omega) = \int_{-\infty}^{\infty} \left[ (-jt)^{n} * f(t) \right] * \varepsilon^{-j\omega t} dt$$
or

$$(-jt)^n f(t) \leftrightarrow \frac{d^n}{dt^n} F(\omega)$$
 Q. E. D.

#### The Convolution Theorem

**Definition:** the convolution of two functions  $f_1(t)$  and  $f_2(t)$  is defined as:

$$f_1(t) \otimes f_2(t) \equiv \int_{-\infty}^{\infty} f_1(\tau) * f_2(t-\tau) d\tau = \int_{-\infty}^{\infty} f_2(\tau) * f_1(t-\tau) d\tau$$

#### **Time Convolution**

If 
$$f_1(t) \leftrightarrow F_1(\omega)$$
  
And  $f_2(t) \leftrightarrow F_2(\omega)$   
Then  $\Im\{f_1(t) \otimes f_2(t)\} \leftrightarrow F_1(\omega) * F_2(\omega)$   
*Proof:*

$$F(\omega) = \int_{-\infty}^{\infty} f(t) * \varepsilon^{-j\omega t} dt$$

Therefore

$$\Im\{f_1(t) \otimes f_2(t)\} = \int_{t=-\infty}^{\infty} \varepsilon^{-j\omega t} \left[ \int_{\tau=-\infty}^{\infty} f_1(\tau) * f_2(t-\tau) d\tau \right] dt$$
$$\Im\{f_1(t) \otimes f_2(t)\} = \int_{\tau=-\infty}^{\infty} f_1(\tau) \left[ \int_{t=-\infty}^{\infty} f_2(t-\tau) * \varepsilon^{-j\omega t} dt \right] d\tau$$

Let  $u = t - \tau$  in the inner integral

$$\Im\{f_1(t) \otimes f_2(t)\} = \int_{t=-\infty}^{\infty} f_1(\tau) \Biggl[ \int_{u=-\infty}^{\infty} f_2(u) * \varepsilon^{-j\omega(u+\tau)} du \Biggr] d\tau$$
$$\Im\{f_1(t) \otimes f_2(t)\} = \int_{t=-\infty}^{\infty} f_1(\tau) \varepsilon^{-j\omega\tau} \Biggl[ \int_{u=-\infty}^{\infty} f_2(u) * \varepsilon^{-j\omega u} du \Biggr] d\tau$$

Since the inner integral is no longer a function of  $\tau$ , it can be brought out as a constant and this leaves

$$\Im\{f_1(t)\otimes f_2(t)\} = \int_{t=-\infty}^{\infty} f_1(\tau)\varepsilon^{-j\omega\tau}d\tau * \int_{u=-\infty}^{\infty} f_2(u) * \varepsilon^{-j\omega u} du$$

or

$$\Im{f_1(t) \otimes f_2(t)} = \Im{f_1(\tau)} \cong \Im{f_2(u)} Q. E. D$$

#### **Frequency Convolution**

If  $f_1(t) \leftrightarrow F_1(\omega)$ And  $f_2(t) \leftrightarrow F_2(\omega)$ 

n 
$$f_1(t) * f_2(t) \leftrightarrow \frac{1}{2\pi} F_1(\omega) \otimes F_2(\omega)$$

Then

Proof: Same method as for time convolution