Table of Laplace Transforms

Table Notes

1. This list is not a complete listing of Laplace transforms and only contains some of the more commonly used Laplace transforms and formulas.
2. Recall the definition of hyperbolic functions.

$$
\cosh (t)=\frac{\mathbf{e}^{t}+\mathbf{e}^{-t}}{2} \quad \sinh (t)=\frac{\mathbf{e}^{t}-\mathbf{e}^{-t}}{2}
$$

3. Be careful when using "normal" trig function vs. hyperbolic functions. The only difference in the formulas is the " $+\mathrm{a}^{2 "}$ for the "normal" trig functions becomes a "- $\mathrm{a}^{2 "}$ for the hyperbolic functions!
4. Formula \#4 uses the Gamma function which is defined as

$$
\Gamma(t)=\int_{0}^{\infty} \mathbf{e}^{-x} x^{t-1} d x
$$

If n is a positive integer then,

$$
\Gamma(n+1)=n!
$$

The Gamma function is an extension of the normal factorial function. Here are a couple of quick facts for the Gamma function

$$
\begin{gathered}
\Gamma(p+1)=p \Gamma(p) \\
p(p+1)(p+2) \cdots(p+n-1)=\frac{\Gamma(p+n)}{\Gamma(p)} \\
\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}
\end{gathered}
$$

