Noise: An Introduction

Adapted from a presentation in: <u>Transmission Systems for Communications</u>, Bell Telephone Laboratories, 1970, Chapter 7

Noise: An Introduction

- What is noise?
- Waveforms with incomplete information
 - Analysis: how?
 - What can we determine?
- Example: sine waves of unknown phase
 - Energy Spectral Density
 - Probability distribution function: P(v)
 - Probability density function: p(v)
 - Averages
- Common probability density functions
 - Gaussian
 - Exponential
- Noise in the real-world
- Noise Measurement
- Energy and Power Spectral densities

Background Material

- Probability
 - Discrete
 - Continuous
- The Frequency Domain
 - Fourier Series
 - Fourier Transform

Noise

• Definition

Any undesired signal that interferes with the reproduction of a desired signal

- Categories
 - Deterministic: predictable, often periodic, noise often generated by machines
 - Random: unpredictable noise, generated by a "stochastic" process in nature or by machines

Random Noise

- Unpredictable
 - "Distribution" of values
 - Frequency spectrum: distribution of energy (as a function of frequency)
- We cannot know the details of the waveform only its "average" behavior

Noise analysis Introduction: a sine wave of unknown phase

- Single-frequency interference $n(t) = A \sin(\omega_n t + \phi)$ A and ω_n are known, but ϕ is not known
- We cannot know its value at time "t"

Energy Spectral Density

Here the "Energy Spectral Density" is just the magnitude squared of the Fourier transform of n(t)

$$|N(\omega)|^2 = \frac{A^2}{4} [\delta(\omega - \omega_n) + \delta(\omega + \omega_n)]$$

since all of the energy is concentrated at ω_n and each half of the energy is at $\pm \omega$ since the Fourier transform is based on the complex exponential not sine and cosine.

11/24/2002

Noise: An Introduction

Probability Distribution

- The "distribution" of the 'noise" values
 - Consider the probability that at any time t the voltage is less than or equal to a particular value "v" $P(v_n) \equiv P[n(t) \le v]$
- The probabilities at some values are easy
 - P(-A) = 0
 - P(A) = 1
 - $P(0) = \frac{1}{2}$

• The actual equation is: $P(v_n) = \frac{1}{2} + (1/\pi) \arcsin(v_n/A)$

Probability Distribution continued

• The actual equation is: $P(v_n) = \frac{1}{2} + (1/\pi) \arcsin(v/A)$

- Note that the noise spends more time near the extremes and less time near zero. Think of a pendulum:
 - It stops at the extremes and is moving slowly near them
 - It move fastest at the bottom and therefore spends less time there.
- Another useful function is the derivative of $P(v_n)$: the "Probability Density Function", $p(v_n)$ (note the lower case p)

Probability Density Function

- The area under a portion of this curve is the probability that the voltage lies in that region.
- This PDF is zero for $|v_n| > A$

$$p(v_n) = \frac{d}{dv} [P(v_n)]$$

$$p(v_n) = \frac{1}{\pi \sqrt{A^2 - v_n^2}}$$

Noise: An Introduction

Averages

• Time Average of signals

$$\overline{n} = \frac{1}{T} \int_{\frac{T}{2}}^{\frac{T}{2}} n(t) dt$$

- "Ensemble" Average
 - Assemble a large number of examples of the noise signal.
 (the set of all examples is the "ensemble")
 - At any particular time (t₀) average the set of values of $v_n(t_0)$ $\overline{v_n} = E(v) = \frac{1}{K} \sum_{l=1}^{K} v_l$ or $E(v_n) = \int_{-\infty}^{\infty} p(v) dv$ for the infinite set

to get the "Expected Value" of v_n

• When the time and ensemble averages give the same value (they usually do), the noise process is said to be "Ergodic"

• Now calculate the ensemble average of our sinusoidal "noise"

$$E(v_n) = \int_{-\infty}^{\infty} v^* p(v) dv$$

$$E(v_n) = \int_{-\infty}^{\infty} \frac{v}{\pi \left(A^2 - v^2\right)^{0.5}} dv$$

Which is obviously zero

 (odd symmetry, balance point, etc.
 as it should since this noise the has no DC component.)

Averages (3)

• $E[v_n]$ is also known as the "First Moment" of $p(v_n)$

$$E(v_n) = \int_{-\infty}^{\infty} v * p(v) dv$$

• We can also calculate other important moments of $p(v_n)$. The "Second Central Moment" or "Variance" (σ^2) is:

$$\sigma^2 = E\left[\left(v - \overline{v_n}\right)^2\right] = \int_{-\infty}^{\infty} \left(v - \overline{v_n}\right)^2 * p(v)dv$$

Which for our sinusoidal noise is:

$$\sigma^2 = \int_{-\infty}^{\infty} \frac{v^2}{\pi \left(A^2 - v^2\right)^{0.5}} dv$$

Averages (4)

Integrating this requires "Integration by parts

$$\int U^* dV = U^* V - \int V dU$$

$$\sigma^2 = \int_{-\infty}^{\infty} \frac{v^2}{\pi (A^2 - v^2)^{0.5}} dv$$
let $U = v$ and $dV = \frac{v}{\pi (A^2 - v^2)^{0.5}}$
Then $dU = dv$ and $V = -\frac{1}{\pi} (A^2 - v^2)^{0.5}$ and
$$\sigma^2 = -\frac{v}{\pi} (A^2 - v^2)^{0.5} \Big|_{-A}^{A} + \int_{-A}^{A} \frac{1}{\pi} (A^2 - v^2)^{0.5} dv$$

11/24/2002

Noise: An Introduction

Averages (5)

Continuing

$$\sigma^{2} = \int_{-A}^{A} \frac{1}{\pi} \left(A^{2} - v^{2}\right)^{0.5} dv$$
$$= \frac{A^{2}}{2\pi} \sin^{-1} \left(\frac{v}{A}\right)\Big|_{-A}^{A}$$
$$= \frac{A^{2}}{2\pi} \left[\frac{\pi}{2} - \left(-\frac{\pi}{2}\right)\right]$$
$$= \frac{A^{2}}{2}$$

Which corresponds to the power of our sine wave noise

Note: σ (without the "squared") is called the "Standard Deviation" of the noise and corresponds to the RMS value of the noise

Common Probability Density Functions: The Gaussian Distribution

Gaussian Disrtibution σ = 0.5, Mean = 0.5

• Central Limit Theorem

The probability density function for a random variable that is the result of adding the effects of many small contributors tends to be Gaussian as the number of contributors gets large.

Common Probability Density Functions: The Exponential Distribution

 $p(v) = \lambda * \varepsilon^{-\lambda v}$ for $v \ge 0$, 0 for v < 0

- Occurs naturally in discrete "Poison Processes"
 - Time between occurrences
 - Telephone calls
 - Packets

Common Noise Signals

- Thermal Noise
- Shot Noise
- 1/f Noise
- Impulse Noise

Thermal Noise

- From the Brownian motion of electrons in a resistive material.
 - $p_n(f) = kT$ is the power spectrum where: $k = 1.3805 * 10^{-23}$ (Boltzmann's constant) and T is the absolute temperature (°Kelvin)
- This is a "white" noise ("flat" spectrum)
 - From a color analogy
 - White light has all colors at equal energy
- The probability distribution is Gaussian

Thermal Noise (2)

• A more accurate model (Quantum Theory)

$$p_n(f) = \frac{h^* f}{\varepsilon^{\binom{h^* f}{kT}} - 1}$$

Which corrects for the high frequency roll off (above 4000 GHz at room temperature)

• The power in the noise is simply

 $P_n = k^*T^*BW$ Watts or

 $P_n = -174 + 10*\log_{10}(BW)$ in dBm (decibels relative to a milliwatt)

Note: $dB = 10*\log_{10}(P/P_{ref}) = 20*\log_{10}(V/V_{ref})$

Shot Noise

• From the irregular flow of electrons

 $I_{rms} = 2*q*I*f$ where: $q = 1.6 * 10^{-19}$ the charge on an electron

- This noise is proportional to the signal level (not temperature)
- It is also white (flat spectrum) and Gaussian

1/f Noise

- Generated by:
 - irregularities in semiconductor doping
 - contact noise
 - Models many naturally occurring signals
 - "speech"
 - Textured silhouettes (Mountains, clouds, rocky walls, forests, etc.)
- $p_n(f) = A / f^{\alpha} (0.8 < \alpha < 1.5)$

Impulse Noise

- Random energy spikes, clicks and pops
 - Common sources
 - Lightning
 - Vehicle ignition systems
 - This is a white noise, but NOT Gaussian
 - Adding multiple sources more impulse noise
 - An exception to the "Central Limit Theorem"

Noise Measurement

- The Human Ear
 - Average Performance
 - The Cochlea
 - Hearing Loss
- Noise Level
 - A-Weighted
 - C-Weighted

Hearing Performance (an average, good, ear)

- Frequency response is a function of sound level
- 0 dB here is the threshold of hearing
- Higher intensities yield flatter response

The Cochlea

- A fluid-filled spiral vibration sensor
 - Spatial filter:
 - Low frequencies travel the full length
 - High frequencies only affect the near end
 - Cillia: hairs put out signals when moved
 - Hearing damage occurs when these are injured
 - Those at the near end are easily damaged (high frequency hearing loss)

Alec N. Salt., Washington University

Noise Intensity Levels: The A- Weighted Filter

• Corresponds to the sensitivity of the ear at the threshold of hearing; used to specify OSHA safety levels (dBA)

An A-Weighting Filter

• Below is an active filter that will accurately perform A-Weighting for sound measurements Thanks to: Rod Elliott at http://sound.westhost.com/project17.htm

Noise Intensity Levels: The C- Weighted Filter

• Corresponds to the sensitivity of the ear at normal listening levels; used to specify noise in telephone systems (dBC)

Energy Spectral Density (ESD)

 $E = \int_{-\infty}^{\infty} f^2(t) dt$ is the Energy in a time waveform,

but $f(t) = \frac{1}{2\pi} \int_{\omega=-\infty}^{\infty} F(\omega) \varepsilon^{-j\omega t} d\omega$ is the Inverse Fourier Transform $E = \int_{=-\infty}^{\infty} f(t) \left[\frac{1}{2\pi} \int_{\omega=-\infty}^{\infty} F(\omega) \varepsilon^{-j\omega t} d\omega \right] dt$ Substituting for one f(t) $E = \frac{1}{2\pi} \int_{\omega=-\infty}^{\infty} F(\omega) \left[\int_{=-\infty}^{\infty} f(t) \varepsilon^{-j\omega t} dt \right] d\omega$ Interchanging the order of integration but the inner integral is almost the Fourier Transform (except for the "-" j ωt)

$$E = \frac{1}{2\pi} \int_{\omega = -\infty}^{\infty} F(\omega)F(-\omega)d\omega \text{ but } F(-\omega) = F^*(\omega) \text{ the complex conjugate}$$
$$E = \frac{1}{2\pi} \int_{\omega = -\infty}^{\infty} |F(\omega)|^2 d\omega \text{ so } |F(\omega)|^2 \text{ is the "Energy Spectral Density"}$$

11/24/2002

Energy Spectral Density (ESD) and Linear Systems $\begin{array}{c|c} X(\omega) \\ \hline \end{array} H(\omega) \end{array} \begin{array}{c|c} Y(\omega) = X(\omega) H(\omega) \\ \hline \end{array}$ $E_y = \int_{f=-\infty}^{\infty} |Y(\omega)|^2 df$ changing to f eliminates the $\frac{1}{2\pi}$ $E_y = \int_{f=-\infty}^{\infty} |H(\omega)^* X(\omega)|^2 df$ so if $H(\omega)$ and $X(\omega)$ are uncorrelated $E_{y} = \int_{f=-\infty}^{\infty} |H(\omega)|^{2} * |X(\omega)|^{2} df$

Therefore the ESD of the output of a linear system is obtained by multiplying the ESD of the input by $|\mathbf{H}(\boldsymbol{\omega})|^2$

Power Spectral Density (PSD)

• Functions that exist for all time have an infinite energy so we define power as:

$$P = \lim_{t \to \infty} \left[\frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f^{2}(t) dt \right] \text{ this is energy/time}$$

Define $f_{T}(t) \equiv f(t)$ for $-\frac{T}{2} < t < \frac{T}{2}$ and zero elsewhere
 $E_{T} = \int_{-\infty}^{\infty} |F_{T}(\omega)|^{2} df$ which does exist and the Power is :
 $P = \lim_{t \to \infty} \left[\frac{1}{T} E_{T} \right] = \int_{-\infty}^{\infty} \left[\lim_{t \to \infty} \left(\frac{|F_{T}(\omega)|^{2}}{T} \right) \right] df$

11/24/2002

Noise: An Introduction

Power Spectral Density (PSD-2)

• As before, the function in the integral is a density. This time it's the PSD

$$PSD = \lim_{t \to \infty} \left(\frac{\left| F_T(\omega) \right|^2}{T} \right)$$

• Both the ESD and PSD functions are real and even functions