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The Z-Transform
Introduction

A linear system can be represented in the complex frequency domain (s-domain where s = ( + j() using the LaPlace Transform.
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Where the direct transform is:
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And x(t) is assumed zero for t ≤ 0

The Inversion integral is a contour integral in the complex plane (seldom used, tables are used instead)
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Where ( is chosen such that the contour integral converges.
If we now assume that x(t) is ideally sampled as in:


Where:
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and
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Analyzing this equivalent system using standard analog tools will establish the z-Transform.

Sampling

Substituting the Sampled version of x(t) into the definition of the LaPlace Transform we get
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But
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(For x(t) = 0 when t < 0 )

Therefore
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Now interchanging the order of integration and summation and using the sifting property of (-functions
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(We are assuming that the first sample occurs at t = 0+)

if we now adjust our nomenclature by letting:

z = (sT , x(n*Ts) = xn , and 
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Which is the direct z-transform (one-sided; it assumes xn = 0 for n < 0).

The inversion integral is:
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(This is a contour integral in the complex z-plane)

(The use of this integral can be avoided as tables can be used to invert the transform.)
To prove that these form a transform pair we can substitute one into the other.
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Now interchanging the order of summation and integration (valid if the contour followed stays in the region of convergence):
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If “C” encloses the origin (that’s where the pole is), the Cauchy Integral theorem says:
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And we get xk = xk

Q.E.D

An Example

Find the z-transform of 
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This is the “Unit Pulse” at n = k (assume k > 0)


[image: image18.wmf](

)

n

n

k

n

z

z

-

¥

=

-

å

=

D

0

d



[image: image19.wmf](

)

k

z

z

-

=

D


(Note: dividing by z is equivalent to a delay of one sample time)
A Short Table of z-Transforms

	f(t)
(sampled)
	F(z)
	Region of
Convergence

	U(t)
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	sin((t)
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	|z| > 1

	cos((t)
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	|z| > 1


Properties of the z-Transform

The z-transform has properties that are analogous to those of the LaPlace Transform.  The following table has some of the more useful ones listed.
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where C is a closed contour that includes z=0

	
	Signal
	 
	z-Transform
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	Superposition
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	
	[image: image32.png]aX(z)+b¥(z)





	Time Shifting
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	Time inversion
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	
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	Time Convolution
	[image: image43.png]



	(convolution)
	[image: image44.png]




	Frequency Differentiation
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	
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	Summation
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	
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You should familiarize yourself with these as they will be used, along with the table of transforms to move between time series and the z-domain.

Finding the Inverse z-Transform

There are three common ways to find the time series, xn when X(z) is given:
1. Infinite Series – done by dividing out the rational polynomial in z

2. Partial Fraction Expansion – Same as in LaPlace

3. The Inversion Integral – a contour integral in the complex z-plane

Example:  
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, determine fn
A. By Infinite Series
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Now divide (long division) with the polynomials written in descending powers of z

           2z-2+8z-3+22z-4+52z-5+114z-6+…
Z3-4z2+5z-2|2z
           2z-8+10z-1-4z-2
              8-10z-1+04z-2
                     8-32z-1+40z-2-16z-3

                22z-1-36z-2+016z-3

                22z-1-88z-2+110z-3-44z-4

                      52z-2-094z-3+044z-4
                      52z-2-208z-3+260z-4-104z-5

                           114z-3-216z-4+104z-5
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And the time sequence for fn is
	n
	0
	1
	2
	3
	4
	5
	6
	…

	fn
	0
	0
	2
	8
	22
	52
	114
	…


Note that this method does NOT give a closed form for the answer, but it is a good method for finding the first few sample values or to check out that the closed form given by another method at least starts out correctly.

B. By Partial Fraction Expansion
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To find k1 multiply both sides of the equation by (z-2), divide by z, and let z(2
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or

k1 = 2

Similarly to find k3 multiply both sides by (z-1)2, divide by z, and let z(1
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Equation A

And

k3 = -2
Finding k2 requires going back to Equation A above and taking the derivative of both sides
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Now again let z(1

k2 = -2
( 
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C. Using the Inversion Integral

TBD

H.W. Find the inverse z-Transform of
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We can check the answer by putting the three terms over the common denominator
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 It checks out!
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 y(t) = x(t) * h(t)   
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x(t)





y(t)





x(t, Ts)









































J. N. Denenberg
Copyright DTS
June 14, 2005
J. N. Denenberg
Copyright DTS
June 14, 2005

_1179649242.unknown

_1179650371.unknown

_1180243417.unknown

_1180244272.unknown

_1180245004.unknown

_1180245239.unknown

_1180247539.unknown

_1180245325.unknown

_1180245076.unknown

_1180244664.unknown

_1180243948.unknown

_1180244006.unknown

_1180243932.unknown

_1180241529.unknown

_1180243043.unknown

_1180241371.unknown

_1179650069.unknown

_1179650159.unknown

_1179650276.unknown

_1179650078.unknown

_1179649627.unknown

_1179649853.unknown

_1179649301.unknown

_1179508966.unknown

_1179648432.unknown

_1179648870.unknown

_1179649098.unknown

_1179648591.unknown

_1179648133.unknown

_1179648422.unknown

_1179509158.unknown

_1179508221.unknown

_1179508936.unknown

_1179508956.unknown

_1179508279.unknown

_1179507496.unknown

_1179507602.unknown

_1062489078.unknown

_1062489233.unknown

