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EEL 5544 Noise in Linear Systems Lecture 17

FUNCTIONS OF ONE RV

• Let’s consider the basic ways in which a function can transform a random variable:

• In what follows, we will only consider the case where the input random variable is continuous

• We use the exponential random variable to illustrate the effects of different transformations

• Let X be an exponential random variable with parameter 1 and fX(x) = e−xu(x)
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1. Functions of the form Y = X + b

– Then FY (y)

– Thus FY (y) = and fY (y) =

– Note that the exponential density FX(x) is first nonzero at x = 0, so FY (y) is first
nonzero at y − b = 0 ⇒ y = b

– Example: b = 2
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– So, adding a constant just the density

2. Functions of the form Y = aX , where 0 < a < 1

Let’s start with a graphical approach:
Example: a = 0.5
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So the probability is concentrated over a smaller range
⇒ the density is
FY (y) =

Thus FY (y) = and fY (y) =

Since a < 1, then 1/a > 1

The overall effect is that the density is

Example: a = 0.5

fY (y) = 2e−2y (Y is also exponential)
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3. Functions of the form Y = aX , where a > 1

Again, start with a graphical approach:
Example: a = 2
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So the probability is now spread out over a larger range

⇒ the density is
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As before, FY (y) = FX(y/a) and fY (y) = 1
a
fX(y/a)

Since a > 1, then 1/a < 1

The overall effect is that the density is
Example: a = 2

fY (y) = 0.5e−y/2 (Y is still exponential)
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4. Functions of the form Y = −X

Start with the graphical approach:
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So the probability density at every point x is move to every point −x. The density is

To verify this, let’s check the mathematics:
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FY (y) =

Thus, FY (y) = and fY (y) =

Example:Y = −X

fY (y) = fX(−y) = eyu(−y)
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5. Functions of the form Y = aX , a < 0

This case combines the previous cases: the probability density is flipped and stretched
or compressed

Mathematically,
FY (y) =

Thus FY (y) = and fY (y) =

Note that since a < 0, the density is still non-negative everywhere.
Comparing with the previous cases Y = aX for a > 0, we can give a single formula
for the density as

fY (y) =

6. General transformations Y = g(X)

– Since any continuous function can be modeled as a series of infinitesimally small
linear pieces, the previous types of changes to the density represent everything that
can happen:

– The density can be:

1.

2.
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3.

4.

– Note that for general functions, all of these may apply at different points of the
function.


