1.3.3 DISCRETE-TIME FOURIER
TRANSFORM (DTFT)

e Spectral representation foraperiodic DT signals.

e As in the CT case, we may derive the DTFT by
starting with a spectral representation (the
discrete-time Fourier series) for periodic DT sig-
nals and letting the period become infinitely
long.

e Instead, we will take a shorter but less direct
approach.



Recall the continuous-time Fourier series:

X(t) _ _1_ % Xkej27rkt/T (1)
T k=—o00
T/2 ]

X = [ x(t) e 2mkt/Tqy (2)
—T/2

Before, we interpreted (1) as a spectral representa-
tion for the CT periodic signal x(t).

Now, let’s consider (2) to be a spectral representa-
tion for the sequence Xj, —co < k < co.



We are effectively interchanging the time and fre-
quency domains.

We want to express an arbitrary signal x(n) in
terms of complex exponential signals of the form

eln,

Recall that w is only unique modulo 2.



To obtain this, we make the following substitu-
tions in (2)

T/2 |
Xe = [ x(t) e 2/ Tgy,
~T/2

k —n Tx(t) — X(e¥) —2mt/T — w
X, — x(n) dt — —— dw
2

()=—17;-7fr X(e¥) o™ du

This is the inverse transform.



To obtain the forward transform, we make the
same substitutions in (1)
1

X(t) = -T— % X ej27rkt/T

=—00

Tx(t) — X(e/“) k — n ot /T — —w
| X — x(n)
X(e“) = 3 x(n) e7ivn

n=—~o



Putting everything together

2 x(n) e

n=—~co

X(el¥)

x(n)

1 7 : :

— f X(e¥) 4" dw
2

Sufficient conditions for existence

| x(@)|? < oo

or

3| x(n) | < co plus Dirichlet conditions.



Transform Relations

1. linearity

DTFT | |
a1x1(n) + agxe(n) €> a;X () + agXa ()

2. shifting

DTFT
x(n —ng) > X(¥)e

3. modulation

) DTFT .
x(n) er()ﬂ <> X(eJ(W—wo))



4. Parseval’s relation

n=—~00

5. Initial value

T



Comments

1. As discussed earlier, scaling in DT involves sam-
pling rate changes; thus, the transform relations
are more complicated than in CT case.

2. There is no reciprocity relation, because time
domain is discrete-parameter whereas frequency
domain is continuous-parameter.

3. As in CT case, Parseval’s relation guarantees
uniqueness of the DTFT.



Some Transform Pairs

X(e?) = v §(n) eI4m

—1 (by sifting property)
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2. x(n) =1

— does not satisfy existence conditions

— Y e J¥" does not converge in ordinary sense
n

— cannot use reciprocity as we did for CT case.

Consider inverse transform
1 " 1wWn
() = 5 [ X S
2

What function X(e)*) would yield x(n) = 1?
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Let X(el) = 27 §(w), —1 < w < 7

1 [ 2n 6(w) e d ey

then x(n) = p
7T J—

v

=1 (again by sifting property)

Note that X(e!”) must be periodic with period 2;
so we have

X(e)¥) = 21 ¥ 6(w — 27k)

1%) - ¢1ﬁ{fﬁf>

n -én -4'n -2l7t | 6'n 4t 2T ®
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. jwon DTFT
. € <> repy, |21 §(w — wo)

(by modulation property)

DTFT
4. cos (won) €  repgg(m §(w — wo) + 7 8w + wo)]




X(ejw)_____ Z\ e——jwn
n=

1 e—ij

1w

_ o Jw(N=1)/2 sin(wIN/2)

sin(w/2)
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1, —(N-1)2 = n < (N—1)/2

0, else

N odd

y(n) =x(n + (N-1)/2)

where x(n) is signal from Example 5

Y(el¥) = X(el¥) “N—1/2  (by shifting property)

_ | oiwN—1)/2 SI(WN/2) | 50(N-1)/2
sin(w/2)
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sin(wN /2)

Y(el¥) =

sin(w/2)
A
1 N
® & o T o & o DTFT
~—
———— -
-(N-1)/2 (N-1)/2 n -2r - 2xg2x T 27

What happens as N — oco?

y(n) > 1, —co <n < o0

Y(el") — rep,(2m 6(w)

Z|
Z|

27 /N — 0
1 ™

37 [ Y(&) o=y
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DTFT and DT LTI Systems

Recall that in CT case we obtained a general char-
acterization in terms of CTFT by expressing x(t)
as a superposition of complex exponential signals
and then using frequency response H(f) to deter-
mine response to each such signal.

Here we take a different approach.

For any DT LTI system, we know that input and
output are related by

y(n) = % h(n — k) x(k)
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Thus
Y() = > y(n) e7"
= % % h(n — k) x(k) e 3"
= %{%3 h(n — k) e 392} x(k)

= v H(el?) e 39K x(k) (by shifting property)
k

where H(e'*) is the DTFT of the impulse response
h(n).
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Rearranging,

Y(e?) = H(e) 3 x(k) e 3k
k

= H(e)?) X(e!V)
How is H(e)*) related to the frequency response?
Consider
I on

x(n) =

X(eH) = repys 2 8w — wo)
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X(e¥) = 270 3 6(w — wg — 27k)
k

Y(e) = H(e) X()

= 27 3 H(" ™) §(w — wg — 27K)
k

= H(ejwo) 21 3 §(w — wy — 27k)
k
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Y(e)= H(e"?) X(e)

y(n) = H(€) x(n)

so H(e') is also the frequency response of the DT
system.
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We thus have two equivalent characterizations for
the response y(n) of a DT LTI system to any input

x(n)
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Convolution Theorem

Since x(n) and h(n) are arbitrary signals, we also
have the following transform relation

DTFT | |
wxp(k) xg(n —k) € Xy (e¥) Xo(e¥)
K
or
DTFT

xi(n) * x2(n) €>  X;(e) Xp(e¥)
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Product Theorem

As mentioned earlier, we do not have a reciprocity
relation for the DT case.

However, by direct evaluation of the DTFT, we
also have the following result

- DTFT o« . .
am) s > oo [ X)X d

Note that this is periodic convolution.
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