1.5.1 DERIVATION OF THE Z TRANSFORM

• Recall sufficient conditions for existence of the DTFT

1)
$$\sum_{n} |x(n)|^2 < \infty$$
 or

2)
$$\sum_{n} |x(n)| < \infty$$

• By using impulses we were able to define the DTFT for periodic signals which satisfy neither of the above conditions.

Example 1

 $Consider \qquad x(n) = 2^n \ u(n)$

• It also satisfies neither condition for existence of the DTFT.

Define
$$\tilde{x}(n) = r^{-n} x(n)$$
, $r > 2$

$$\tilde{x}(n) = r^{-n} x(n)$$
, $r > 2$

$$\tilde{x}(n) = r^{-n} x(n)$$
, $r > 2$
Now $\sum_{n=0}^{\infty} |\tilde{x}(n)| = \sum_{n=0}^{\infty} |r^{-n} x(n)|$

$$= \sum_{n=0}^{\infty} (2/r)^n$$

$$\sum_{n=0}^{\infty} \mid \tilde{x}(n) \mid = \frac{1}{1-2/r} \quad , \quad (2/r) < 1$$
 or $r > 2$

 \therefore DTFT of $\tilde{x}(n)$ exists

$$\tilde{X}(e^{j\omega}) = \sum_{n=0}^{\infty} \tilde{x}(n) e^{-j\omega n}$$

$$\begin{split} \tilde{X}(e^{j\omega}) &= \sum\limits_{n=0}^{\infty} \ [2(re^{j\omega})^{-1}]^n \\ &= \frac{1}{1-2(re^{j\omega})^{-1}} \quad , \quad |\ 2(re^{j\omega})^{-1} \ | \ < 1 \end{split}$$
 or $r>2$

Now let's express $\tilde{X}(e^{j\omega})$ in terms of x(n)

$$\begin{split} \tilde{\mathbf{X}}(\mathbf{e}^{\mathbf{j}\omega}) &= \sum_{\mathbf{n}=\mathbf{0}}^{\infty} \mathbf{r}^{-\mathbf{n}} \ \mathbf{x}(\mathbf{n}) \ \mathbf{e}^{-\mathbf{j}\omega\mathbf{n}} \\ &= \sum_{\mathbf{n}=\mathbf{0}}^{\infty} \mathbf{x}(\mathbf{n}) \ (\mathbf{r}\mathbf{e}^{\mathbf{j}\omega})^{-\mathbf{n}} \end{split}$$

Let $z = re^{j\omega}$ and define the Z Transform (ZT) of x(n) to be the DTFT of x(n) after multiplication by the convergence factor $r^{-n}u(n)$.

$$X(z) = \tilde{X}(e^{j\omega}) = \sum_{n} x(n) z^{-n}$$

For the example $x(n) = 2^n u(n)$,

$$X(z) = \frac{1}{1 - 2z^{-1}}$$
 , $|z| > 2$

• It is important to specify the region of convergence since the transform is not uniquely defined without it.

Example 2

Let
$$y(n) = -2^n u(-n-1)$$

$$Y(z) = \sum_{n} y(n) z^{-n}$$

$$= -\sum_{n=-\infty}^{-1} 2^{n} z^{-n}$$

$$Y(z) = -\sum_{n=-\infty}^{-1} (z/2)^{-n}$$

$$= -\sum_{n=1}^{\infty} (z/2)^{n}$$

$$= -\sum_{n=0}^{\infty} (z/2)^{n} + 1$$

$$Y(z) = 1 - \frac{1}{1 - z/2}$$
, $|z/2| < 1$
or $|z| < 2$
 $= \frac{-z/2}{1 - z/2}$
 $= \frac{1}{1 - 2z^{-1}}$, $|z| < 2$

so we have

$$\mathrm{x(n)} = 2^{\mathrm{n}}\mathrm{u(n)} \stackrel{\mathrm{ZT}}{\longleftrightarrow} \mathrm{X(z)} = \frac{1}{1-2\mathrm{z}^{-1}} \ , \ |\mathrm{z}| > 2$$

$$y(n) = -2^n u(-n-1) \stackrel{ZT}{\longleftrightarrow} Y(z) = \frac{1}{1-2z^{-1}}, |z| < 2$$

- The two transforms have the same functional form.
- They differ only in their regions of convergence.

Example 3

$$w(n) = 2^n, \quad -\infty < n < \infty$$

$$w(n) = x(n) - y(n)$$

By linearity of the ZT,

$$W(z) = X(z) - Y(z)$$

$$= \frac{1}{1 - 2z^{-1}} - \frac{1}{1 - 2z^{-1}} = 0!$$

• But note that X(z) and Y(z) have no common region of convergence.

... There is no ZT for
$$w(n) = 2^n$$
, $-\infty < n < \infty$.