1.5.1 DERIVATION OF THE Z TRANSFORM

e Recall sufficient conditions for existence of the

DTFT

1) 3 [x(0) |2 < oo

or

2) ¥ [x()| <0

n

e By using impulses we were able to define the
DTFT for periodic signals which satisfy neither
of the above conditions.



Example 1

Consider  x(n) = 2" u(n)
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e It also satisfies neither condition for existence of

the DTFT.
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DTFT of x(n) exists
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Now let’s express X(e/) in terms of x(n)
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Let z = re)” and define the Z Transform (ZT) of
x(n) to be the DTFT of x(n) after multiplication by
the convergence factor r "u(n).



X(z) = X(el) = ¥ x(n) 2™

n

For the example x(n) = 2" u(n),

1
X(z) = , lz] > 2
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e It is important to specify the region of conver-
gence since the transform is not uniquely defined
without it.



Example 2

Let y(n) = —2" u(—mn — 1)
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SO we have

7T
x(n) = 2Mu(n) <> X(z) = ——— , |z] >2
1 —2z
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e The two transforms have the same functional
form.

e They differ only in their regions of convergence.
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Example 3
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w(n) = x(n) — y(n)
By linearity of the ZT,
W(z) = X(z) — Y(z)
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e But note that X(z) and Y(z) have no common
region of convergence.

There is mno ZT for w(n)=2",
—oo < n < 0.
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