CHAPTER 15 - LAPLACE TRANSFORM

List of topics for this chapter:
Definition and Properties of the Laplace Transform

Inverse Laplace Transform

Application to Circuits

Transfer Functions

Convolution Integral

Application to Integrodifferential Equations

Applications

[——— A

DEFINITION AND PROPERTIES OF THE LAPLACE TRANSFORM

The Laplace transform is an integral transformation of a function f(t) from the time domain into
the frequency domain, giving F(s).

Problem 15.1 Find the Laplace transform for
() (10 —10e™") u(t)
() ®)  (10—10eD)u(t-1)

©  (10—10e*)u(t—1)
10 10 3
@ TTse3 :lo(s(s+3))

10e® 10e* (1 1 ) ( 3 )
L =10e’| = ——— |=10e"
®) s s+3 s Ts+3 10e s(s+3)

(©) Manipulate this to match a transform pair using the time-shifting property.
(10-10e?*)u(t—1) = (10~ 10e3¢*y u(t—1)
=(10-10e?**Ve ) u(t-1)

The Laplace transform is

10e* 10e3e* (1 ¢€?
- =10e”| ——
S s+3 s s+3
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Problem 15,2 Find the Laplace transform for
(@ [te ' +t?e?u(t)
(b) [t+t*+t3]u(t)
©  [t+t*]ut-1)
(d) [t+et +(t—de +t? e u(t)

1 2
@ G¥3) Ter2)y

o L,2. 6 sT+2s46
() SZ S3 S_4 s4

(c) Manipulate this to match a transform pair using the time-shifting property.

[t+t2]u(t—-1) =[(t-1+1D)+(t-1+1)2]u(t~1)
=[(t=D+1+ (=12 +2(t=D)+1]u(t=1)
=[(t=D)+ (=12 +2(t=1D)+2)]u(t—1)
=[(t=1)%+3(t-D+2]u(t-1)

The Laplace transform is

2e* 3e* 3e® [2 3, 3]

=e—3[3s +3s42]

+ = 4=
S3 S2 S 3 2

wlw

() First, expand the third term. Then, combine like terms.
[t+e* +(t—-d et +t7e']u(t) =[t+e" +te' —4et +t2 e u(t)
=[t—3e' +te" +t* e u(t)

The Laplace transform is
1 3 1 2

s G+ D) (s+1)°

¢

INVERSE LAPLACE TRANSFORM
Finding the inverse Laplace transform of F(s) involves two steps:

1. Decomposing F(s) into simple terms using partial fraction expansion, and
2. Finding the inverse of each term by matching entries in a Laplace transform table.
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Partial Fraction Expansion

N(s)

Suppose F(s) has the general form F(s) = B(—s—)w Consider the three possible forms F(s) may

take and how to perform partial fraction expansion of F(s) for each form.

Real Poles

If F(s) has only real poles, then the denominator becomes a product of factors so that
N(s)

(s+p)s+p,) - (s+p,)’

where S = -p;,-P,,""*»~P, arethe real poles and p; # p; forall i # j.

F(s) =

Assuming the degree of N(s) is less than the degree of D(s), partial fraction expansion is used to
decompose F(s) as

k1 + k2 oot kn

F(s) =
®) s+p, S+p, s+p,

There are many ways to find the expansion coefficients, k,, k, -+, k, , or residues of F(s). One
way is the residue method. If both sides of the equation are multiplied by (s +p,) , then
k,(s+ k,(s+

2(s+py) bt (8+P)

(s+p)F(s) =k, +

s+p, s+p,
Since p; # p;, set s = -p to find k,.
Hence, (s+p,)F(s) s=p k,
Thus, in general, k; = (s+p;)F(8)|s-.p,

When the residues of F(s) are known, the inverse of F(s) can be found. Since the inverse
transform of each term is

[k ]
-1 —_ -at
L |_s+a_| ke™ u(t)
then
f(t)= kle'plt + kze'pzt +--ot kne'pnt

Repeated Poles

Now, suppose that F(s) has repeated poles at s =-p. Then,

Ly K 4ot >N LI (s)
R X S s
(s+p)"  (s+p)™ (s+p)’ s+p
where Fy(s) is the remaining part of F(s) that does not have a pole at s = -p .

n-1

F(s) =
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The expansion coefficient k | is determined as
k, = 6+p)"FG),..,
similar to the method for real poles. To determine k__,, multiply F(s) by (s + p)", differentiate

and evaluate the result at s = -pto isolate k,_,. Thus,

k _i n
w1 =3 [6+P) FO)

s=-p
v 1 d?
and Kua =55 [G+P) FO|os
: 1 47 n
In general, the m## term 1s k, = aa—sx[(s +p)"F(s)]|...p

where m =1,2,---,n—1.

Once the values k,,k, +--,k  are obtained using partial fraction expansion, apply the inverse

transform

] e
L+ay |~ oD

-1

to each term in order to obtain

k k
— -pt -pt 4 3 42 -pt n n-1 -
f(t) =k, e™ +k,te™ + 2!t e® +m+(n—l)!t e +1,(t)

Complex Poles

A pair of complex poles may be handled the same as real poles, but the complex algebra may be

quite cumbersome. Even so,
® *
K, K;

“(sta-ip)  G+o+ip)

F(s)

and

K, =(s+a-jprE)
where K, =K |£6 and K| =[K,|£-6.

s=-0+jB

Then, f(t) = ’K, 'eje e-(a-iB)t ,K1| 10 o (Bt
| f(t)= IKlle'“‘ [eIBHO) 4 g (B0
£(t) = 2|K,|e* cos(Bt +6)
An easier approach is a method known as completing the square. Since N(s) and D(s) always
have real coefficients and complex roots occur in conjugate pairs, F(s) may have the general form
R =5 A g,

s?+as+b
where F(s) is the remaining part of F(s) that does not have complex poles.
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Begin completing the square by letting
s’ +as+b=s"+2as+a’ +p°

Also, let Ais+A,=A (s+a)+B,B

‘ 3 A/ (s+a) B,B
Then, K@) = (s+o)*+B*  (s+o)*+p?

and the inverse transform is f(t)= A, e cos(Bt) + B, e sin(Pt) + £, (1)

+E(s)

Problem 15.3 Find the inverse Laplace transform for
1
@ s+6
1
(®) s +9
1
© s?+2s+1
@ e
(b) Manipulate this to match a transform pair.

-GS
249 3NAs?2+9

The inverse Laplace transform is (1/3) sin(3t)

(©) Manipulate this to match a transform pair.
1 1
s2+2s+1  (s+1)°

The inverse Laplace transform is te™*

Problem 15.4 Find the inverse Laplace transform for
1
a
@ s* +6s
s+2
I Y
s*+4s+3
2
s’ +2s+1
©

s*+s? +4s+4

None of the above match a transform pair. Manipulate these problems, perform partial fraction
expansion, and then use a table of Laplace transform pairs to find the inverse Laplace transforms.

269



Manipulate and perform partial fraction expansion to get the following.

1 1 1/6  -1/6
_Ve -y | ®

@ T i6s ss46) s s+6

s+2 s+2 /2 1/2
® T 4543 T s+1)5+3) s+l 543

st +2s+1 (s+1)? s+1 S 1( 2 )
© s’ +sz+4s+4=(s+l)(sz+4)=sz+4=s2+4+§ s2+4

Now, the inverse Laplace transforms are

N
(@) gu( )—6e |

1 -t l -3t__1_ -t -3t
(b) 2e +2e —2[e +e']

©) cos(2t) + 0.5sin(2t)

Problem 15.5 Find the inverse Laplace transform for ‘
s? +2s+2 |
® s +s’+4s+4

! | 4 o

®) $? +3s*+3s+1

The inverse Laplace transforms are '

(a) %e‘t + COS(Zt - 36.870) (b) _;_(tz e-t)

¢ , ’

APPLICATION TO CIRCUITS

Begin by transforming the circuit from the time domain to the s-domain. Solve the circuit using
nodal analysis, mesh analysis, source transformation, superposition, or any circuit analysis
technique with which we are familiar. Take the inverse Laplace transform of the solution and
thus obtain the solution in the time domain.

Solving circuits with initial conditions is a straightforward process following the same basic
approach as circuits without initial conditions. Let us start with a capacitor and see how we
actually solve such circuits. Start with the defining equation for a capacitor.

ic tH=C "——dvc ©

dt ‘
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Taking the Laplace transform gives
Ic(s)=C[sV(8)=vc(0)]=CsV (s)-Cv (0)
or

Vo (s) = (1/Cs) 1o (s) + v (0)/s.

We now can use the following circuit model for capacitors with initial conditions.

1/Cs —J- i

Ve(s)
ve(0)/s

Now let us look at the inductor. The defining equation for the inductor is

o dip (1)
VL(t)—L——dt .

Taking the Laplace transform gives
V. (s)=L[sI, (s)—1,(0)]=LsI, (s)-Li,(0)
or
I(s)=V.(s)/Ls+i, (0)/s.

We can use the following circuit model for inductors with initial conditions.

IL(s)
P

+

Vi) Ls % <¢ iL(0)/s

Problem 15.6 Solve a first-order capacitive circuit with an initial condition using Laplace
transforms. In Figure 15.1, solve for v (t) forall t > 0. The initial value of v (t) =50 volts,

or v.(0) =50 volts, and the value of v¢(t) =20 u(t) volts.

vs(t) | +
50 § 0.1F == ve(t)
100 _

Figure 15.1
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» Carefully DEFINE the problem.
Each component is labeled completely. The problem is clear. .

» PRESENT everything you know about the problem.
In this circuit, we are expected to find v (t) forall t > 0 using Laplace transforms. We
need to set up a circuit in the frequency domain that will lead us to the desired solution. It
should be noted that the initial condition on the capacitor must be included so that the fact
that we do not have initial conditions is not violated. This is easy to do. Initial conditions
can be represented by impulse functions in the time domain. An impulse function transforms i
into a constant. Thus, the capacitor can be represented by a capacitor in series with what
appears to be a constant DC source. In reality, the Laplace transform of an impulse function
is a constant in the frequency domain. Thus, we have the following circuit.

V() !

l . o
20/s 1/0.1s |
S § Vls)

10

Please note that the actual value of V. (s) is the voltage across both the initial condition . ‘
source and the s-domain capacitor. This is in agreement with the model developed earlier.

Once we have found V. (s), then we can take the inverse Laplace transform to find v (t). :

> Establish a set of ALTERNATIVE solutlons and determine the one that promises the
greatest likelihood of success.
Because we have accounted for the initial condition in the frequency domain equivalent
circuit, we can use nodal analysis, mesh analysis, or basic circuit analysis to find the voltage
across the capacitor for any time greater than zero. Looking at the frequency domain circuit
above, it is evident that nodal analysis is the best technique. Because there is only one
nonreference node, this could be considered an application of KCL and Ohm's law.

» ATTEMPT a problem solution.
Summing the currents flowing out of the node gives us

V(s)—20/s N Ve(s)-0 N Ve(s)—50/s
10 5 1/0.1s

Simplifying and collecting terms,
[1/10+1/5+5/10] Vo (s) = 2/s+5

Multiplying both sides by 10, ‘ |
(s+3)V(s) = (20/s)+ 50
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Thus,
20 . 50
s(s+3) s+3

Ve(s) =

Let us simplify the first term, using partial fraction expansion.
20 20/3 -20/3
s(s+3) s s+3

Finally,
20/3 -20/3 50
+ +

V.(s) =
c(®) s+3 s+3

Taking the inverse Laplace transform produces
ve(t) = {(20/3) [1-e?']+50e?} u(t) volts

This can also be written as v (t) = {20/3+130/3e>'} u(t) volts.

EVALUATE the solution and check for accuracy.
How does this compare with our earlier approach, where we used a generic solution for a

first-order differential equation?

The value for ve(t)=A+ Be(t-to)/®
10)(5) 1
where t, =0 secand 1 =RC= (10+5)(0,1)=§,

v () =20/3volts, and v(0) = 50 volts.

Thus,
A =20/3 volts

B=v.(0)- A =50-20/3=130/3 volts
Therefore, v (t) = {20/3+130/3 €'} u(t) volts, and our answer is the same as what we
got using the Laplace transform approach!

Our check for accuracy was successful.

Has the problem been solved SATISFACTORILY? If so, present the solution; if not,
then return to “ALLTERNATIVE solutions” and continue through the process again.
This problem has been solved satisfactorily.

ve(t) = {—250- + —I?le'“}u(t) A%
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Problem 15.7 Given the circuit in Figure 15.2, solve for i, (t) where v(t) = (10e™)u(t)
volts and i; (0) = -2 amps.
iL(t)
>
50
v CP
SH

Figure 15.2

We now convert the above circuit into its Laplace equivalent as shown below.

IL(S)

5
- > AN :
+
Vs) @ Vi(s) % 5 @ <¢> iz (0)/s

Write a mesh equation, where i, (0) =-2 amps.
-V()+ 51, (s)+5s[1, (s)—(-2/s)]=0
5(6+DI (s)=V(s)-10
V(s)-10
I = e
() 5(s+1)

Since v(t) = (10e?)u(t) volts, V(s) = 10/(s +2) . Now, substitute V(s) into the equation.
10/(s+2)—10
I =
L&) =750
2 -2
+
(s+D)(s+2) s+1

I.(s)=

Simplifying the first term using partial fraction expansion,

2 -2 -2
I, (s)= + +
() s+1 s+2 s+1
-2
I,(8)=——
L) S+2

Taking the inverse Laplace transform of I, (s) gives
i, (t)={-2e*}u(t) A
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The answer can be easily checked by again summing the voltages around the loop using this
value of 1, (1).
Z of voltages =0
d(-2e™)

{ 10 +(5)(-2e2) + ST} u(t)=0

{-10e? +(-10e™) +(5)[(-2)(-2)e™ T} u(t) = 0
{-20e? +20e?} u(t) =0
The sum does equal zero.

Problem 15.8 Find the current, i, (t) for all t, given v(t) = (10—10e?)u(t) volts for the
circuit in Figure 15.3. Note that there are no initial conditions.

v(t) C_’) iL(t)

Figure 15.3

5Q

SH

This problem is most easily solved using Laplace transforms. The first thing to do is to write a
mesh equation since we are looking for a current.

-v(t)+5i, (t)+5di, (t)/dt =0
5di, (t)/dt+5i, (t) = v(t)
where

v(t) = (10 —10e™") u(t) volts

Taking the Laplace transform of both sides, noting that i, (0) =0,

10 -10
5)(s1 -0 1 = —
GELE)=0+5LE) =+
or
2 -2
DI =— 4 —
(s+DI(s) S+S+2
and

1()(2+'211)2( 1 -1 )
S)={— = +

L s s+2As+1 s(s+1)  (s+1)(s+2)
Now perform a partial fraction expansion of both terms.

| 1 -1 1 -1
IL(S):z((;+S+1)—(s+1 " s+2D
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-2 1

1
Iﬂs)*(?mt:z) @

Now to find i; (t) all we have to do is to take the inverse transform of I; (s) .
ip(t)=2{1-2e* +e*}u(t) A

It is interesting to check and see if our answer is correct. To do that, we need to place this into
the original equation.
5di, (t)/dt+ 51, (t) = v(t)
where 5di, (t)/dt=5{(2)[0-(-D(2e")]-2e™} u(t) = {20e™ —20e™'} u(t)
51, () = (5)@){1-2¢" +e™}u(t) = {10-20e™ +10e*} u(t)

Clearly,
{20e —20e™} u(t)+{10-20e™ +10e™} u(t) = {10-10e?'} u(t) = v(t) ,
and our answer checks.

Problem 15.9 Given the circuit in Figure 15.4, R, =10Q, R, =10Q, C=1/10F, and
v(t) = 10 u(t) volts. Calculate ig,(t).

R, ir2(t) f
MA —— ®
v(d) C) QF c § R, |
Figure 15.4
Ry ira(t) R, Ira(s) |
— A > —A\W > |
v(b) +> L ¢ § R =) VO C_”) == 1/Cs § R;
Time domain Frequency domain
_ R, |I@/Cs)
V@RISR, 0
R,/Cs R,
where R, || (1/C9) = 2" 1/Cs) = R,Cs+1 ®
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Then,
R,/(R,Cs+1)

Vea(®) = IR, (R, Cs + D))

R2
VO = R R,Cs+D+R, 'O

where R,R,C =(10)(10)(0.1) =10

Ve (8) = V) = V() = V()

10s+10+10 10s +20

Taking the Laplace transform of v(t), V(s) = I_Q
S

Then,
1 Tto] 10

Via(8) = Ls+2JL 1756+2)

The partial fraction expansion is

2(5)—'5“*'—5“

The inverse Laplace transform is

Vea () = ()1 -e™) u(t)

Now,
() = V;;; ® _ (5)(1—;?(')‘) u(t)

Finally,
| i (D) = (05)(1— ) u(t) A

Problem 15.10 Given 1,(t) = (le")u(t) amps, i,(t) = (le*)u(t) amps, v,(0) =0 volts,
v,(0) = 0 volts, and the circuit in Figure 15.5, find v,(t) and v, (1).

we 092 e
01F ==  ix(t) (T) i) ==<0.1F
L
Figure 15.5
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Since there are no initial conditions, the above circuit is easily changed into the s-domain circuit

shown below. .

vie 0 vy
10/s ‘/J< Li(s) Ix(s) =< 10/s
Using nodal analySiS,.
Atnode 1 : Atnode 2 :
Vi(s)-0 Vi(s) = V,(s) V,(s)-0 V,(s) = V,(s)
e 1) +——"==0 2 L (S) + R LY o
10/s 1) 10 10/s :(5) - 10 4 0

which leads to

s+1 -1 Vi(s) | | 10L,(s)
-1 s+l || V) | | 10L,(5)

[s+l 1 ]
Vi) | [ 1 s+l 101, (s)
[Vz(s)}— s +2s [1012(9} | o

Hence,
10 1 10
Vo= O ke
10 1
V0= 1@+ L D)

Taking the Laplace transform of i,(t) and i, (t), we find that
L(s)=T,(s)=1/(s+D)

Substitute these currents into V,(s) and V,(s)

__(10)(s+D 10
Vi) = 6726+ D) TG+ 6+D)
B 10 (10)(s+1)
V,(s)= S(S+2)(s+1)+s(s+2)(8+1)
10 10
Vi(s)=V,(s)= S($+2) + s(s+D(s+2)
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V,(s)=v2(s)=(§+s—'-5—j+(§+il—o—+—5—)

+2 s s+1 s+2

10 -10
Vi(5) = Vyls) = —+——
s s+1

Therefore,
v,(t)={10—10e"*}u(t) V and v,(t)={10-10e"*} u(t) V

Problem 15.11 Develop the matrix representation for the circuit shown in Figure 15.6, using
nodal analysis with three nodes.

100 U5 F 50 I5H
V() § 200 § 10Q S 200 it)
Figure 15.6

Transforming Figure 15.6 to the frequency domain,

10 Vi S/s Vv, 5 15s Vs

M\ Ic AMA—TG00

V(s) C_“) § 20 § 10 § 20 CT) I(s)

Using nodal analysis,
vV, —V(s)_I_Vl'—O_l_V1 -V, _
10 20 5/s
Vv, -V, +V2—0+V2—V3 _
5/s 10 5+15s
V, -V, N V, -0
5+15s 20

0

~I(s)=0

Simplifying these equations,
2V, =2V(s)+V,+4sV, -4sV, =0
[(2s)(Bs+D](V, = V) +(Bs+D)V, +(2)(V, =V;)=0
BV, -V,)+GBs+1)V, —(20)(3s+DI(s)=0
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Combining like terms,

(2+1+4s)V, ~4sV, = 2V(s)

[(25)3s + D]V, +[(2s)3s+1)+ Bs+1)+2]V, =2V, =0

-4V, +[4+(B3s+ 1)1V,

Simplifying further,

(4s+3)V, —4sV, =2V(s)

= (20)(3s+ 1D I(s)

(-652 —25) V, + (652 +55+3)V, =2V, = 0
4V, +(3s+5)V, = (20)3s+1)1(s)

Therefore, the matrix equation is
[ 4s+3 -4s 0

[-652—28» 6s*+5s+3 -2

0 -4 3s+5

\s
v

LK

2V(s)

(20)(3s + 1)I(s)

0

Problem 15.12 Given the circuit in Figure 15.7, write the s-domain equations for V,, V,,
V,,and V,. DO NOT SOLVE.
ix(t) 10 Q 0.1F 0.1F 0.1F
X Vi L V2 i V3 Y V4
I AN AN

—
Figure 15.7
Converﬁng this circuit to the s-domain yields,
L) 10 10/s 10/s 10/s
x() Vi " A%} s V3 i \Z

V(s) C) 10 § 10 §

102

10

L

Using nodal analysis,

V,-V(s), Vi=0_ V-V,

Atnode 1 :

280
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Atnode 2 : VZ_V‘+VZ_—O+VZ—V3=O
o 10/s 10 10/s
Vi-V, V=0 V-V, _

Atnode 3 : =0

- 10/s 10 10/s

V,-V, V,-0 V(s)-V,
Atnode 4 : 105 + 10 -51.(s)=0 where Ix(s)———-—lr
Simplifying, (5+2)V,-sV, =V(s)

-sV,+(2s+1)V, -sV, =0
-sV,+(2s+1)V, -sV, =0
5V,=sV,+(+1)V, =5V(s)

Finally, collect the equations and place them into a matrix form.
s+2 -s 0 0 Vv, V(s)
-s  2s+1 -s 0 v, 0
0 -s 2s+1 -s ||V,| | o
5 0 -s  s+1|V, S5V(s)

. Problem 15.13 [15.49]  For the circuit in Figure 15.8 find v (t) for t >.0.
1H
e
MW
° +
6u(t)<i> ZHE 1H vo 220

Figure 15.8
Consider the circuit shown below.
S
1 ﬂ
M
[ ]
6/s (i) I 2s % $ I § 2
[ ]
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For mesh 1,

6
§=(l+2s)Il+sI2 (1)
For mesh 2,
0=sI, + (2+s9)I,
2
I, =- 1+; I, )

Substituting (2) into (1) gives

6 ( 2) -(s*+55+2)
- 1+= —— TP
S (1+ 2s), +3 I, +sI, S I,
o8
or 27 g2 4+ 55+2
-12 -12

o .

Vo = 212 T s24+5s+2  (s+0.438)(s+4.561)

Since the roots of s” +5s+2=0 are - 0.438 and -4.561,
Vv, = A + =
° " 5+0.438 s+4.561

12 .12
-2 _ 091, -t
4.123 B=—13=291
v 29 291
() =570438 T 514561

v, (t) — 2.91[e-4.561t _ e0.438t] ll(t) vV

Problem 15.14  Given the circuit shown in Figure 15.9 and v, (t) = (10 +10e™ ) u(t) volts,

find v, (), Vt.
10 Q 1/10 F
M —
10H *
Vin(t) C“_p 2100 v
10 Q -
Figure 15.9
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Vo () =(10e* -5te*)V

Problem 15.15  Given the circuit shown in Figure 15.10 and v, (t) = {5¢™ u(t)} volts.
Find v(t). \
20 Q 10 Q
AN MW\
+

v(t) C) 5H % 100 Z vt

Figure 15.10

v(t) = 20u(t) V

¢ +
TRANSFER FUNCTIONS

The transfer function H(s) is the ratio of the output response Y(s) to the input excitation X(s),
assuming all initial conditions are zero.

Problem 15.16 [15.51]  The transfer function of a system is

S2

3s+1
Find the output when the system has an input of 4e™* u(t).

H(s) =

4 12
s+1/3 7 3s+1

Y(s) = H(s)X(s), X(s)=

12s2 4 8s+4/3

YO = Gean? T3 G+
vt 8 s 4 b
(S)"3"9'(s+1/3)2“27'(s+1/3)2
-8 S
Let G(s)=?~(—s:-1/7)‘2‘
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Using the time differentiation property,

8
gt = ————te W —eth
9
Hence,
8 8 4
_____ t)+— ——etB _ —
y(t) u( )+27te 9e 27te
8 . 4
— _ atf3 T 4 -t/3
y(t) = u(t) 0 ¢ +27te

Problem 15.17 [15.59] Refer to the network in Figure 15.11. Find the following transfer

functions:
@  H,()=V,()/V(s)
()  H,()=V,(5)/(s)
©  H;(6)=1,)/L(s)
@ H,®)=1,6)/V,6)

i 1Q 1H i,
MV /0000 >—
+
v 1F =< 1F == 10 §
s /P KP Vo
Figure 15.11
(@ Consider the following circuit.
W\ /00060 »—
+
Vs 1/s #ﬁ 1/s =< 1 g Vo
At node 1,
Vs - VI Vl - Vo
. - sV, +
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At node o,

°
5 =sV, +V, =(s+1D)V,
V,=(>+s+]D)V, 2)
Substituting (2) into (1)
V, =(s+1+1/s)(s* +s+1)V, ~1/sV,
V, = (s’ +2s* +3s+2)V,

V, 1

H =—2=
)=y =G 213502

®) I, =V,-V,=(+25? +3s+2)V, — (s> +s+ 1)V,
I =(s’+s*+2s+1)V,

H,(s) =

A 1
I s®+s?+2s+1

© I =

S)=
s> +s+2s+1

1
T st 287435 +2

IO VO
() H, =3 =7 =H0)

¢ s

CONVOLUTION INTEGRAL

The convolution of two signals consists of time-reversing one signal, shifting it, multiplying it
point by point with the second signal, and integrating the product.

Steps to evaluate the convolution integral :
1. Folding : Take the mirror image of h(A) about the ordinate axis to obtain h(-1).

2. Displacement : Shift or delay h(-A) by t to obtain h(t—A).
3. Multiplication:  Find the product of h(t—A) and x(1).
4. Integration : For a given time t, calculate the area under the product h(t—A)x(A) for

' 0<A<t toget y(t) att.
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Problem 15.18 [15.69] Given that F (s) =F,(s) = s/ (52 +1), find L [Fl (s)FE, (s)] by ‘ 1
convolution. “

f,(t) = £, (t) = cos(t)

L [ F (s)F, (s)] = [ cos(A)cos(t—A) di

cos(A) cos(B) = -;—[cos(A + B) + cos(A — B)]

L'[E) E6)= % f cos(t — 21) — cos(t) i

L [F o) B0l =5 costt) 2y + 5 - 2

L[ E(s) F,(8)] = 1/2 t cos(t) + 1/2sin(t)

t
0

+ %

APPLICATION TO INTEGRODIFFERENTIAL EQUATIONS ‘

Problem 15.19 Given the following is a matrix representation of a circuit in the frequency
domain. Determine the value of v,(t) and v,(t).

[s+2 -s Tvs)] [8s]
| s s+2lv,])7L o

[s+2 S 1 [ s+2 S _l
[ V,(s) _L s s+2J"8/s1__ s s+2JIF8/sT
Vz(s)_l_sz+4s+4—sz_ 0 J“ W+ Lo J

Hence,
[ (s+2) s [ ®6c+2) ] [4 -2 7
er(sﬂ_ll @)(s+1) @+ if8 su (4s)(s+1) |_] stoan |
VZ(S)_I— s (s+2) 0 J" 8s 2 |
[(4)(s+1) (4)(s+l)J [(45)(5+1)J 51
Therefore, v, (t) = {4—2¢"}u(t) V and  v,(t)={2e'}u(t) V.
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‘ Problem 1520  Solve for v,(t) and v, (t) given the following matrix equation.

[s+1 -s [vie | [ 2/s ]
-3 S+2j||_V2(S)J:|_4/(S+3)J

[s+2 s | [s+2 s |
I_Vl(s)} | 3 s+1JF 2fs ] Y 2fs ]|
V,(5) ] (s+D)(s+2)- 3sL4/(s+3)J s2+2 |_4/(s+3)J

r Vi(s) —I
V,(s)

1
i s?+2 !
s+1
I.s +2 52+2_“.s 3_I

(s+213) ( s I 4 )_(2)(s+2)(s+3)+(4s)(s)_ 652 +10s+12
Vis) = s2r2As) T\ 2As+3)7 s(s? +2)(s+3) T s(s?+2)(s+3)

[ s+2 S _{r
l

2
S
4
+

_( 3 I_z_) (SHX 4 )_(6)(s+3)+(4)(s+1)(s)_ 4s? +10s+18
V2= g o\s) T e 2hs+3)” s(s2+2)(s+3) s(sP+2)(s+3)

Now, we find the inverse Laplace transforms of V,(s) and V,(s).

Partial fraction expansion yields
2 -0.4545-0. 9642] - 0.4545 +0. 9642] -1.0909

Vi(s)=—+

=3 s — /2] s+4/2j s+3
V(s)—~3— -1.1364 - 06428_] -1.1364 + 0. 6428] -0.7273
? s s—«/—J S+\/—_] s+3

The inverse‘Laplace transform is
v,(t) = 2u(t) +1.066 52T V2 +1,066¢' 52 e —1,0909¢
v, (1) = 3u(t) +1.3056e1%051 e 11305655 e V2t — 07273

or - v,(£) = 2u(t) +1.066 (V211529 4 it/2-115200y _ 1 0909 ¢t

v, (1) = 3u(t) +1.3056 (eI V21905D 4 i(V2-1503Dy _ 9 7073 ¢
Finally,

v,(t) = 2u(t) + 2.132 cos(v/2t — 115.24°) - 1.0909 ¢

v, (t) = 3u(t) + 2.611cos(+/2t — 150.51°) — 0.7273 ¢
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Problem 15.21 Given the circuit in Figure 15.12 and the following s-domain matrix nodal .
equations, determine the values for R, C, and L.

Vi

i1(0) RZ =02F 1003 L <D ia(t)

1

Figure 15.12

V2

= 0

The matrix representation of the s-domain nodal equations is
[ 55+4 s |
20 0 IV 1_[Il(s)1
s sy e
l. 20 20s _]

So, the two equations are

SS+4V1 +:EV2 =1,(s)

20 20
s s?+2s+4 ‘

2V 42227 =1 (s
20 1 2OS 2 2()

Draw the s-domain circuit.
1/Cs

I
IN

I(s) R § s Sis 10 § g Ls L(s)

Vl Vz

Writing the node equations gives,
(/R +5/5+Cs)V, =CsV, =1,(s)

and
-CsV, +(Cs +1/10+1/Ls)V, =L, (s)
1 s 55+4 s 1
—+—+Cs= =—+—
Clearly, R 5 20 45
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Thus, 1/R =1/5 or R=5Q

$(0.2 +C) =s(1/4) or  C=025-02=0.05F
2
Also, Cs+1/10+1/Ls=s—tzs~—ti
20s
Finally, 0.05s +0.1+1/Ls =0.05s+0.1+1/5s or L=5SH
APPLICATIONS

Problem 15.22 Given the op-amp circuit in Figure 15.13, determine the value of v, (t),

where the value of v (t) is equal to 2 volts at t = 0. In other words, v(0) = 2 volts.

0.1F
|
A

50 vc(t)
MWV - .
—t ’ +

S5¢ u(t) Vout
Figure 15.13

Begin by transforming the circuit from the time domain to the frequency domain.

2/s
10/s
Ic A
+ '/ _
V(s)
Ve S v,
M = .
Vi + +
5/(s+1) Vou
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Writing a node equation at a,
Vo = V) | VL ~[Q/9) + Ve (9] _
5 10/s B

which is only one equation with two unknowns.

We need a constraint equation.
V, =V, =0.
Then,
V() | 12/ + Vo O] _
5 10/s

-2V()-[2+5V,, ()] =0

v (S)z-zz'<s>+-_z=(;z)(_5_)+;z_ 10 -2

S s /\s+1 ] _s(s+1)+ S

Partial fraction expansion of the first term leads to
V=10, 10 -2 -12 10
s s+1 s s s+l

Taking the inverse Laplace transform of both sides produces

v, (1) = {-12+10e"} u(t) V

Problem 15.23 In Figure 15.14, find v (t) and i (t), given that v(t) = (10e™)u(t) volts.

20Q
"W\
10H
000 -
+ io(t)
+
t
v . Vo(t) 1Q
Figure 15.14
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Begin by transforming the time domain circuit to the frequency domain.

20

<§<
Y?

Atnodea:
V,=VE) |, V= Voo _
10s 20

0

We cannot help ourselves by writing any more node equations. So we have one equation and two
unknowns. We need another equation without generating any additional unknowns. So we go to
the constraint equation.

V,=V, =0

So, now our node equation becomes

V), -V

10s 20
V() _- V()
20 10s

which leads to

W®=§ww’

Taking the Laplace transform of v(t) gives

V(s) = —I—Q—
s+1
Substituting for V(s) yields
-2Y 10 -
o[-
s As+1/ s(s+1)
After partial fraction expansion, |
Vi) =204 2
s s+l

Taking the inverse Laplace transform produces
v, (1) =(-20+20e*) u(t) V
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Since v=1R in either domain, we do not need to find I (s).
1, =v, (t)/1=(-20+20e*) u(t) A

Problem 15.24 Given the circuit in Figure 15.16, calculate V .

out

(s) interms of V,_(s).

R,
MW
R,
M\ AN
v
Vi) ‘ Vout(t) § Ry

Figure 15.15

Begin by transforming the circuit from the time domain to the frequency domain.

=7

=
‘ !

+

Vin
(S) Vout(s) § RL

Using nodal analysis,

Va - Vin (S) + Va - Vout(s) _
RI R2

0

This is one equation with two unknowns. Thus, we need the following constraint equation.
V, =V, =0

Then the node equation becomes

- Vin (S) + - Vout (S) =0

Rl R2
Vout (S) S Vin (S)
RZ Rl
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Therefore,

[ R,
Vout (S) = R Vin (S)
1

Problem 15.25 Given the circuit in Figure 15.16, calculate V_, (s) in terms of V (s).

R,
AW
+

+
vin(®) C—> Vout®) = R

\J 1

Figure 15.16

Begin by transforming the circuit from the time domain to the frequency domain.

1/C
® JI(S
Va
WA RN
Vi vy
Vin(s) <+>
- Vout(s) § RL

Using nodal analysis,
Va — Vin (S) + Va - Vout (S) — 0
R, 1/Cs

This is one equation with two unknowns. Thus, we need the following constraint equation.
vV, =V, =0

Then, the node equation becomes
- Vin (S) + - Vout (S) =0
R, 1/Cs
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Vout (S) - Vin (S)

I/Cs R, o

R,Cs

Therefore,

Vout (S) = Vin (S)

Problem 15.26 Given R, = 100 kQ. What value of C, in Figure 15.16, yields
Vi (1) = [V, (1) dt

Taking the Laplace transform,
-1
Vout (S) = —S— Vin (S)

From Problem 15.25, we know that
-1
V_(s)=——V. (s
out ( ) RICS in ( )
Thus,

C:l C:——:—-————: 1'5=
R, or R, = 100x10° 1x10” =10 pF ‘

Problem 15.27 Given R, =10kQ, R, =100Q, C=50 uF, and V, (t) =10e? u(t).
Calculate the total energy that v, delivers to the circuit shown in Figure 15.16. Also, find the

total energy delivered to R .
w(t) = Ip(t) dt=1/R Ivz (t)dt

To find the total energy that v, delivers to the circuit,
w,, (=R, Jvi,0)

w,_(£)=1/10,000 f(l 0e2)(10e>) dt
=100/10,000 fe"" dt
= (1/100)(-1/4¢e*|})

= (1/100)(-1/4e* +1/4)
= (1/400)(1-e™*)

294



To find the total energy delivered to R ,
we, ()=1/R, f v2 (O dt

First, find v_ (). From Problem 15.25, we know that

-1
Vout (S) = R CS \Iin (S)
1

out

where R,C=(10x10%)(50%10%)=500x10"=0.5

Then,
out (S) C (S) = Vin (S)

Taking the Laplace transform of v, (t),
V=1

Substitute V,,(s) into the equation for V. (s).
10 j -20
Vou(8) =7V (8) = ( )(s +2) s(s+2)

Take the partial fraction expansion of V_(s).

110 10

V —
out (S) S + S + 2
Hence,

V(O =(-10+ 10e'2‘) u(t)
Now,

we, ©=VR, [V,
t
~1/100 [(-10+ 1062)(-10+10e™) dr
=1/100 f(100e-4* —200e>* +100) dx
= fe"“ dt-2 _[e‘z‘ drt + _[t ldt

= [/ A)e +1/4]- QY2 +1/2]+

= (A/4)(-e* + 1)+ (-e* + 1)+t
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Problem 15.28 [15.89] A gyrator is a device for simulating an inductor in a network. A
basic gyrator is shown in Figure 15.17. By finding V_(s)/1_(s), show that the inductance

produced by the gyratoris L = CR2.

R
C
RW\'R—i
MA——- N
Peamiias =N
Vi
R

l“

Figure 15.17

The gyrator is-equivalent to two cascaded inverting amplifiers. Let V, be the voltage at
the output of the first op amp.

-R
V,=—YV. =-V,
1 R 1 i
-1/sC 1
= V= ——
Vo R ' sCR !
I Y, Yo
°=R " sRC
VO
N =sR?C

VO
1= sL, when L = R%C

[}
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