
FIRST AND SECOND-ORDER
TRANSIENT CIRCUITS

IN CIRCUITS WITH INDUCTORS AND CAPACITORS VOLTAGES AND CURRENTS
CANNOT CHANGE INSTANTANEOUSLY. 
EVEN THE APPLICATION, OR REMOVAL, OF CONSTANT SOURCES CREATES A
TRANSIENT BEHAVIOR

LEARNING GOALS

FIRST ORDER CIRCUITS
Circuits that contain a single energy storing elements.
Either a capacitor or an inductor
SECOND ORDER CIRCUITS
Circuits with two energy storing elements in any combination
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AN INTRODUCTIONAN INTRODUCTIONAN INTRODUCTIONAN INTRODUCTION
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With the switch on the  left the capacitor receives
charge from the battery.

Switch to the right
and the capacitor
discharges through
the lamp
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GENERAL RESPONSE: FIRST ORDER CIRCUITS
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Including the initial conditions
the model for the capacitor
voltage or the inductor current 
will be shown to be of the form

Solving the differential equation
using integrating factors, one 
tries to convert the LHS into an
exact derivative
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THIS EXPRESSION ALLOWS THE COMPUTATIONTHIS EXPRESSION ALLOWS THE COMPUTATIONTHIS EXPRESSION ALLOWS THE COMPUTATIONTHIS EXPRESSION ALLOWS THE COMPUTATION
OF THE RESPONSE FOR ANY FORCING FUNCTION.OF THE RESPONSE FOR ANY FORCING FUNCTION.OF THE RESPONSE FOR ANY FORCING FUNCTION.OF THE RESPONSE FOR ANY FORCING FUNCTION.
WE WILL CONCENTRATE IN THE SPECIAL CASEWE WILL CONCENTRATE IN THE SPECIAL CASEWE WILL CONCENTRATE IN THE SPECIAL CASEWE WILL CONCENTRATE IN THE SPECIAL CASE
WHEN THE RIGHT HAND SIDE IS CONSTANTWHEN THE RIGHT HAND SIDE IS CONSTANTWHEN THE RIGHT HAND SIDE IS CONSTANTWHEN THE RIGHT HAND SIDE IS CONSTANT
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FIRST ORDER CIRCUITS WITH
CONSTANT SOURCES
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If the RHS is constant
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The form of the solution is
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Any variable in the circuit is of
the form
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Only the values of the constants
K_1, K_2 will change

TRANSIENTTRANSIENTTRANSIENTTRANSIENT

TIMETIMETIMETIME
CONSTANTCONSTANTCONSTANTCONSTANT



EVOLUTION OF THE TRANSIENT AND INTERPRETATION OF EVOLUTION OF THE TRANSIENT AND INTERPRETATION OF EVOLUTION OF THE TRANSIENT AND INTERPRETATION OF EVOLUTION OF THE TRANSIENT AND INTERPRETATION OF 
THE TIME CONSTANTTHE TIME CONSTANTTHE TIME CONSTANTTHE TIME CONSTANT

A QUALITATIVE VIEW:
THE SMALLER THE THE TIME
CONSTANT THE FASTER THE
TRANSIENT DISAPPEARS

With less than 2% error
transient is zero
beyond this point

Drops 0.632 of initial
value in one time constant

Tangent reaches x-axis in one time constant
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THE TIME CONSTANT

The following example illustrates
the physical meaning of time
constant
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Charging a capacitor
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1. THE CIRCUIT HAS ONLY CONSTANT INDEPENDENT SOURCES

THE DIFFERENTIAL EQUATION APPROACH

CIRCUITS WITH ONE ENERGY STORING ELEMENT

CONDITIONS

2. THE DIFFERENTIAL EQUATION FOR THE VARIABLE OF INTEREST
IS SIMPLE TO OBTAIN. NORMALLY USING BASIC ANALYSIS TOOLS;
e.g., KCL, KVL. . . OR THEVENIN

3. THE INITIAL CONDITION FOR THE DIFFERENTIAL EQUATION
IS KNOWN, OR CAN BE OBTAINED USING STEADY STATE ANALYSIS
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SOLUTION STRATEGY: USE THE DIFFERENTIAL EQUATION AND THE 
INITIAL CONDITIONS TO FIND THE PARAMETERS τ,, 21 KK



If the diff eq for y is known
in the form

Use the diff eq to find two
more equations by replacing
the form of solution into the
differential equation
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Use the initial condition to get
one more equation
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SHORTCUT: WRITE DIFFERENTIAL EQ.
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STEP 2: FIND K1 USING STEADY STATE
ANALYSIS
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FOR EXAMPLE USE THEVENIN
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USING THEVENIN TO OBTAIN MODELS

Obtain the voltage across the capacitor 
or the current through the inductor

Circuit
with

resistances
and

sources

Inductor
or
Capacitor

a

b

Representation of an arbitrary
circuit with one storage element
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Node analysis
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Hence, if the capacitor voltage
is known the problem is solved
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Now we need to determine
the initial value v_c(0+)
using continuity and the
steady state assumption
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