FIRST AND SECOND-ORDER
TRANSIENT CIRCUITS

IN CIRCUITS WITH INDUCTORS AND CAPACITORS VOLTAGES AND CURRENTS

CANNOT CHANGE INSTANTANEOUSLY.
EVEN THE APPLICATION, OR REMOVAL, OF CONSTANT SOURCES CREATES A

TRANSIENT BEHAVIOR

LEARNING GOALS

FIRST ORDER CIRCUITS
Circuits that contain a single energy storing elements.
Either a capacitor or an inductor

SECOND ORDER CIRCUITS
Circuits with two energy storing elements in any combination
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ANALYSIS OF LINEAR CIRCUITS WITH INDUCTORS AND/OR CAPACITORS

THE CONVENTIONAL ANALYSIS USING MATHEMATICAL MODELS REQUIRES THE DETERMINATION
OF (A SET OF) EQUATIONS THAT REPRESENT THE CIRCUIT.

ONCE THE MODEL IS OBTAINED ANALYSIS REQUIRES THE SOLUTION OF THE EQUATIONS FOR
THE CASES REQUIRED.

FOR EXAMPLE IN NODE OR LOOP ANALYSIS OF RESISTIVE CIRCUITS ONE REPRESENTS THE
CIRCUIT BY A SET OF ALGEBRAIC EQUATIONS

) 5 | THE MODEL | (G| + G,)v; — Gy, = iy
R, -Gy + (GZ + GS)!"Z = ~lg

WHEN THERE ARE INDUCTORS OR CAPACITORS THE MODELS BECOME LINEAR ORDINARY
DIFFERENTIAL EQUATIONS (ODES). HENCE, IN GENERAL, ONE NEEDS ALL THOSE TOOLS
IN ORDER TO BE ABLE TO ANALYZE CIRCUITS WITH ENERGY STORING ELEMENTS.

A METHOD BASED ON THEVENIN WILL BE DEVELOPED TO DERIVE MATHEMATICAL MODELS
FOR ANY ARBITRARY LINEAR CIRCUIT WITH ONE ENERGY STORING ELEMENT.

THE GENERAL APPROACH CAN BE SIMPLIFIED IN SOME SPECIAL CASES WHEN THE FORM

OF THE SOLUTION CAN BE KNOWN BEFOREHAND.

THE ANALYSIS IN THESE CASES BECOMES A SIMPLE MATTER OF DETERMINING SOME
PARAMETERS.

TWO SUCH CASES WILL BE DISCUSSED IN DETAIL FOR THE CASE OF CONSTANT SOURCES.

ONE THAT ASSUMES THE AVAILABILITY OF THE DIFFERENTIAL EQUATION AND A SECOND
THAT IS ENTIRELY BASED ON ELEMENTARY CIRCUIT ANALYSIS.. BUT IT IS NORMALLY LONGER

WE WILL ALSO DISCUSS THE PERFORMANCE OF LINEAR CIRCUITS TO OTHER SIMPLE INP
" 4 I > GEAUX




AN INTRODUCTION

INDUCTORS AND CAPACITORS CAN STORE ENERGY. UNDER SUITABLE CONDITIONS THIS ENERGY
CAN BE RELEASED. THE RATE AT WHICH IT IS RELEASED WILL DEPEND ON THE PARAMETERS
OF THE CIRCUIT CONNECTED TO THE TERMINALS OF THE ENERGY STORING ELEMENT

With the switch on the left the capacitor receives
Rg E charge from the battery.

v,.(1) ?S
— Ve + : :
p— C = v(t) Switch to the right
_ and the capacitor +
discharges through (==X V| R
the lamp _
o
((R) Xenon lamp) l
v.(f) 4 time L
| - Ct}arge -
v, tme

¢ [omave>




GENERAL RESPONSE: FIRST ORDER CIRCUITSl

Including the initial conditions

the model for the capacitor t t, (] X
voltage or the inductor current ,rx(f)—e? x(t.)= “e? fr (x)dxls, :
will be shown to be of the form ) (fo) IT " fe |

ity t  t—x

dx B . B t—x
@O EO=1O; xO0=x | T E ) 1 fe ©f(x)dx
T

—dx i
T+t Xx= frp; x(0+)=x,
dt THIS EXPRESSION ALLOWS THE COMPUTATION

- : . - OF THE RESPONSE FOR ANY FORCING FUNCTION.
Solvi 12 the differential cquation WE WILL CONCENTRATE IN THE SPECIAL CASE

using integrating factors, one WHEN THE RIGHT HAND SIDE IS CONSTANT
tries to convert the LHS into an

exact derivative 7 is called the "time constant."
dx 1 L it will be shown to provide significant
T—+x=f, /*—e* : : :
dt T information on the reaction speed of the
—-dk 1 L 1 L circuit
E = 7 e x = ;eTfTH The initial time, ¢z,, is arbitrary. The
, t t general expression can be used to
j d oty | = le; s study sequential switchings.
n |dt 4 <] [B [GrAT >




FIRST ORDER CIRCUITS WITH
CONSTANT SOURCES

T%+x fra; x(0+)=x,

1=

t, t —-X

t

x(t)=e ° x(t0)+1 je T fory (X)dx

0

If the RHS is constant

x(t)=e 0x(t)+fTH _[e ’dx

= &z

e " =e ‘e’ =

x(t)=e 3 Juu “dx
T

tto

x(t)=e

1=

x(t)=e

X))+ [yl (

(1) = fry + () = fr )

12%
The form of the solution is
] TIME
x(t) — K1 + Kze ; {2 [, [ CONSTANT
TRANSIENT:

Any variable in the circuit is of
the form

ity

yt)=K +Ke *;t=>t

only the values of the constants
- K_1, K_2 will change EEE£>

0

| |




EVOLUTION OF THE TRANSIENT AND INTERPRETATION OF
THE TIME CONSTANT

Tangent reaches x-axis in one time constant

___________ yv_

0.632G ¢;

-W1{h less than 2% error

Drops 0.632 of initial
value in one time cons

\ transient is zero
ted , beyond this point

g Tl
1.0
(.5
(0.6 —
0.4 —
(.2 —

A QUALITATIVE VIEW:

THE SMALLER THE THE TIME
CONSTANT THE FASTER THE
TRANSIENT DISAPPEARS




THE TIME CONSTANT

/ b
The following example illustrates e’
the physical meaning of time T 0.368
constant I with less than 1%

27 0.135 error the transient
37 0.0498 is negligible after

CIEMETNE & ETEaCcT Loy 47 (0.0183 five time constants
vC _vS RS a KCL@a .
Rg AW + dy v.—v ST 00067
C dtc + CR S = 0 1 EFFECT OF TIME CONSTANT
S E—— ‘ T ‘ T T
The model ool — 122
=i
de pgll— =9
dv_C b RTHC -F VC = VTH
dt dt 0.7+ |
Assume 06l i
T=RyC| +.. P
vs = Vs,vC (0) — O bk
The solution can be shown to be’
03-
ve(t)=Vs=Vse * : 2 | S T=R,C
transient | L

0

For practical purposes the S
0 05 1 1.5 2 25 3 35 4 4.5 5

capacitor is charged when the | ' m | '
transient is negligible KIgL= @




CIRCUITS WITH ONE ENERGY STORING ELEMENT

THE DIFFERENTIAL EQUATION APPROACH

CONDITIONS

1. THE CIRCUIT HAS ONLY CONSTANT INDEPENDENT SOURCES

2. THE DIFFERENTIAL EQUATION FOR THE VARIABLE OF INTEREST
IS SIMPLE TO OBTAIN. NORMALLY USING BASIC ANALYSIS TOOLS;
e.g., KCL, KVL. . . OR THEVENIN

3. THE INITIAL CONDITION FOR THE DIFFERENTIAL EQUATION
IS KNOWN, OR CAN BE OBTAINED USING STEADY STATE ANALYSIS

FACT : WHEN ALL INDEPENDEN T SOURCES ARE CONSTANT
FOR ANY VARIA BLE, y(¢), IN THE CIRCUIT THE
SOLUTION IS OF THE FORM

_(t=ty)

yt)=K,+K,e 7 ,t>t,

SOLUTION STRATEGY: USE THE DIFFERENTIAL EQUATION AND THE
INITIAL CONDITIONS TO FIND THE PARAMETERS K,.K,,7
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If the diff eq for y is known
in the form

dy

a—+a,y=f We can use this
4 info to find
y(0+) =y, the unknowns

Use the diff eq to find two
more equations by replacing
the form of solution into the

Use the 1nitial condition to get
one more equation

yO0+) =K, + K,

K, =y(0+)- K,

differential equation

SHORTCUT: WRITE DIFFERENTIAL EQ.

IN
OF

NORMALIZED FORM WITH COEFFICIENT
VARIABLE = 1.

u ot
yt)=K,+K,e ",t>0=> d_y=_£e T
dt T
= ot

d a,\d
“1_":"“10.1’:f:>_1 . /

a,|dt a,

| ]
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LEARNING EXAMPLE [FIND (1), r>0. ASSUME »(0)="5/

=0

v{t)
O < M -]

o

1

MODEL FOR t > 0. USE KCL @ v(z)

"(”T_VS_,_C‘;_‘;U):() * R

initial condition v(0)=V /2

(DIFF. EQ. KNOWN,
INITIAL CONDITION KNOWN)

STEP 1 TIME CONSTANT

P ty=f

R L ANSWER :

——

dt

dv
RC E(t) +v(t) = Vs‘/_‘

Get time constant as
coefficient of derivative

t

2 x()=K,+K,e T,t>0
K, =x(); K, + K, = x(0+)

() =Vs—(Vg/2)e RC.t>0

STEP 2 STEADY STATE ANALYSIS

t

SOLUTION IS vw(f)=K,+ K,e *,t>0
fort>0 andt— o, v@® — K, (steady state value)

IN STEADY STATE THE SOLUTION IS
A CONSTANT. HENCE ITS DERIVATIVE
IS ZERO FROM DIFF EQ.

Steady state value

[ t_OD e eq.

. (equating steady state values)
K, =V
IF THE MODEL IS T%+y =f THENK, = f
STEP 3 USE OF INITIAL CONDITION
ATt=0
v(0)=K,+K, = K, =v(0)- K,
K,=v(0)-f

| |

> | v(0) =V /2= K,=-V/2 GEAUX




FIND i(¢),t>0 t

LEARNING EXAMPLE

t=10 x(t)=K1+K2e_;,t>O
>§ . K, = x(=); K, + K, = x(0+)
o
R e
KVL + i(t)=K,+K,e ",t>0
Ve C"’) | || &L [MODEL USE KVLFORt>0
< - i),

Vi=vp+v, = Ri(t)+L%(t)

INITIAL CONDITION
t<0=>1i(0-)=0
inductor = i(0-) =i(0+)

}i(0+) =0

STEP 1 | Ldi .
“E () +i(t
3 t() i(t)

STEP 2 STEADY STATE |;

STEP 3 INITIAL CONDITION e
.. Vg e
i(0H)=K, +K, ANS: z(t):; l-e

<] [> [GrAT >




LEARNING BY DOING Find i(z) fort > 0

in the following network:

t t=0

i(t)=K1+K28_;,t>O ()X
L it)

MODEL.KCL FOR t>0

I, R L

%(t) +i(f) INITIAL CONDITION: i(0+) =0

+i(t)

_ g, di 1
=L ()= I

STEP 1 |t=—
R

STEP 2 i(o)=I¢=> K, =1
STEP 3 i(0+)=0=K,+K,

t
ANS: i(t)=I|1-e ®

< > GEa >




t

) — T
(SRR AC et a0 Assuming that the switch has been in posi-

tion 1 for a long time, at time ¢ = 0 the switch is moved to position 2. We wish to cal-

culate the current i(¢) for¢t > 0. INITIAL CONDITIONS
1 o CIRCUIT IN STEADY STATE FOR t<0
N 6 kQ2 o
2 R, Pe—0 o l
12V (ﬁ)pg C 7= 100 pF 33 k0
12V 000 © 33 KO
1
MODELFORt>0 =
1 v() i) - =

: . WA -
— > v (0-)= b (12) =4V = v(0+) =4V
o) _u 3k + 6k
12V se _ P\ C R
’(’)—R2 32 STEP 1
T=R,C=(2x10°Q)(100x107°F)=0.2s

STEP 2 w()=K,=0
IT IS SIMPLER TO DETERMINE MODEL

FOR CAPACITOR VOLTAGE STEp 3 Vv(0+H)=K,+K, =4V =K, =4V
v(t) v(t) . B ot
71 _(t) 2 09 RP - Rl H Rz v(t) =4e 0'2[V],l‘ > ()
v(t) R, =3k || 6k =2kQ P
—() =0 ANS:i(t)=—e *2[mA],t>0

Rp <] > 3 [GrAT >




LEARNING EXAMPLEl

FIND v, (2),t>0

R, L
A A 0
2 2H +
O I STEP 2:
ANALYSTIS

=
2:1
M'.H:I
)
LI
)
W
oo

v
/ (v |
<

l .

vo(t) =K, +K2e7,t >0

t

t

x(t)=K1+K2e_;,t>O
K, =x(); K, + K, = x(0+)

FIND K1

USING STEADY STATE

0

Vo (o) =K,

5‘%0(t)+vo(t) = 6= v,y (o) =6V

Va{t}k}

K =6V

THE NEXT STEP REQUIRES THE INITIAL

MODEL FOR t>0. USE WL|

2%(1) +4i(t) =12 vo(t) =2i(0)[V]

di .
0.5 (1) +i(t) =3[ ]

dv n

VALUE OF THE VARIABLE, V,(0+)

FOR THE INITIAL CONDITION ONE NEEDS
THE INDUCTOR CURRENT FOR t<0O AND
USES THE CONTINUITY OF THE INDUCTOR
CURRENT DURING THE SWITCHING

O-S-f(t)ﬂo(t) =6 =0.5|| sTEP 1

THE STEADY STATE ASSUMPTION FOR t<O0
SIMPLIFIES THE ANALYSIS

Kl

=

GEAUX »




CIRCUIT IN STEADY STATE (t<0)

o
2 i (t
<0

EVCDVSI Rzgz Rggz

+ 0

0
+
Ry =2(2=1Q
—12+41,-4=0
v, 1 =44]

+ ; !

MUST FIND i, (¢)

FOR EXAMPLE USE THEVENIN

Q!

4V

ASSUMING INDUCTOR IN STEADY

STATE

t

vo(t)=K, +K2e_f,t >0

_>_
O

O

_I_

iL(0—>=i(0+>=§[A]

gz i(0+) = 4 v, (0+) =§[V]

=6—K2:>K2=?

W[ 00 (,

K +K,=

t

i(t)=3—§e_0-5,t>0

r<] [>]

- O

10 ~4s
vo(t)= 6—?e 05[V],¢>0

GEAUX >




LEARNING EXTENSIONFIND v, (¢),t>0
t=0

ve(t) =K,

t
+K,e 7,t>0

K, =v.(); K, + K, =i,(0+)

3kQ 4 k)
>N‘n./" ‘o)
R, +
i N
12V 1) == 100 uF R 2 kO v,(t)
_ C
- o
MODEL FOR t>0. USE KCL DETERMINE v_(7)
dv 2 1
C(t)"‘ =10 vo(t)=2+4vc(t):§"c(t)

STEP 1 :(Rl+R2)C:(6><103Q)(100><10‘6F):0.6s

t

vo(t)%e_%[V],t >0

t
STEP 2 (K [+ Kpe 7150 Ki=0
INITIAL CONDITIONS. CIRCUIT IN STEADY STATE t<O STEP 3
YY) | A o Ve(0)=8=K, +K,= K,=8[V]
+ ¥ o
12V _ vC(o_)zg(lz)V 2k0 v,(f) ve(t)=8e *°[V],t>0
& 1|< > 5 GEAUX >




LEARNING EXTENSION FIND i (¢), t >0

t=0

AN in(0)

i (1)
sal glm

e

! IZ(I)I T 2H

L
'L

MODEL FOR t>0. USE KVL

di 1ldi
L—L+18i()=0=1—L()+i ()40
” (1) :EI‘”() (1)

1

T=—5
STEP 1 9

STEP 2 K, =0

t
K, =i(~); K, + K, =,(0+)
CIRCUIT IN STEADY STATE
PRIOR TO SWITCHING

7,(0-)
60 >120
mr(D
1 &)
&
12V
0, (0 )——IZQ 14

STEP 3
i(0-)=i(0+)=K,+K, = K, =1[A]

FOR INITIAL CONDITIONS ONE NEEDS
INDUCTOR CURRENT FOR t<O

ANS: i (t) = e_%[A] =e"[A],t>0

| ]

>

GEAUX »




USING THEVENIN TO OBTAIN MODELS

Obtain the voltage across the capacitor
or the current through the inductor

a
Circuit Rrn
: 2
with Inductor
resnstadnces or ‘ Inductor
an Capacitor _ V1H or
sources | Thevenin Capacitor
b
b

Representation of an arbitrary
circuit with one storage element

R
I KCL@ node a Usé KVL
i +i,=0 VR TV = Vg
—_— dv, Ve = Rpyl;
- di
t v, =L—*
Case 1.1 ;=Y TV Case 1.2 dt
Voltage across capacitor * R Current through inductor dl
TH _
—L 4RI, =V
dv. v.—v a’ ) tH'L = VrH
c Ye VY _
& R, L \di |
dv, TH I L Vor 0
R, C—+v,.=v,, R J ' ~p sC
dt <] > TH { TH | GEAUX »




EXAMPLE

Find i, (t); t>0

The variable of interest is the
inductor current. The model 1is

L di, v = Vm

R, dt ° R

TH

And the solution is of the form

t

i (=K +K,e ";t>0

Next: Initial Condition

Theyenin for >0
at inductor terminals

la

6€2 6€2

6€2

24V

b
t>0 651 I

0 R, =6+(6[(6+6))

o
I

0.3—=+i, =0

O.3(—£e°'3j +K +Ke®=0
0.3

K =0=|i,()=K,e *;t>0

| <
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Determine i, (0+). Use steady state

assumption and continuity of 61, +6(i, —1;) +6(i, —1,) =0 Loop analysis
inductor current —24+6(i, —i) +6(, —1;) =0 i.(0+) =1,
Circuit for t<0 6(i, —i)+6( —1i,)=0
. ﬁ+ﬁ+"1—24:():>v1:8 Node analysis
602 6Q Y6 o ¢

o 3 H% solution: i.(0+)= %ZmA

24V 6<2
t<0
*—>0

Since K1=0 the solution is

Y i, (0)=i,(04)

_C
i ()=Ke %;t>0
32

Evaluating at 0+ KZ:Z

: . 24
hay 10(0+)=—+% 3 t

° io(t):62e_0-3;t>0

<1 [ [GrAT >




EXAMPLE

Find i (t),t>0
6k 10|0//F 6k

AAANA AAANA

VVVY |\ l VVVY

i,(HC +v, —
12V<f> 6 >§Z§o 6k
Fort>0 i,

~'%%k

Hence, 1f the capacitor voltage
1s known the problem is solved

Model for v_c

ave V.=V
a < " K
6k g 6k
+ v, — O—WWh
lO(t) o

KIgL=

v, =6V
R, =6k | 6k =3k
=3*10°Q*100*10°° F =0.3s

Model for v
03%¢ 4y, 6
dt i
ve =K+ Kye 03

Now we need to determine
the 1initial value v_c(0+)
using continuity and the
steady state assumption

GEAUX »




circuit in steady state
before the switching

6k Ok
+v.(0-) —

i ()
12V<f> 6 (<0 6k

!

v.(0-)=6V

Continuity of capacitor voltage
v.(0+) =6V
K +K,=v.(0+)
K=6=>K =0
v.(t))=6V;t>0=>
i (1) = 2_2 =1mA;t>0 AD;pfrfancqh

-



