Stability Condition of an LTI
Discrete-Time System

 BIBO Stability Condition - A discrete-
time s BIBO stable if the output sequence
{y[n]} remains bounded for all bounded
Input sequence { x| n}}

« AnLTI discrete-time system isBIBO stable
If and only if I1ts iImpulse response sequence
{h[n]} 1sabsolutely summable, i.e.

S= > h[n]<ew

N=—0o0 _ )
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Stability Condition of an LTI
Discrete-Time System
* Proof: Assume h[n] iIsareal sequence

e Since the input sequence X[ n] Is bounded we
have

Xn] < By <o
e Therefore

y[n] = ih[k]x[n—k]g i\h[k]Hx[n—k]\

k:—OO k:—OO

<B, Y |h[k] =B, S
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Stability Condition of an LTI

Discrete-Time System
e Thus, S< o implies|y[n] < By <o
Indicating that y[n] is also boundeo

e To provethe converse, assumey[n] is
bounded, i.e., |y[n] < By

e Consider the input given by

_|sgn(h[—n]), If h[-n]=#0
X[”]‘{ K. if h[—n]=0
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Stability Condition of an LTI

Discrete-Time System
where sgn(c) =+1if c>0and sgn(c) = -1
if c<0 and K|<1

» Note: Since)X[n] <1, {x[n]} is obviously
bounded

e Forthisinput,y[n] aan=0Is

y[0] = isgn(h[k])h[k] =S <By<w

K=—00

» Therefore, |y[n] < B, implies S < «
4
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Stability Condition of an LTI
Discrete-Time System

 Example - Consider acausal LTI discrete-
time system with an impul se response

h[n] = ()" ]
e For thissystem
S = Z o u[n] = Z\a\ ‘ ‘ if o<1
N=—00 n=0 -
» Therefore S < o if \a\<1for which the
system isBIBO stable

o If |a|=1, the system is not BIBO stable
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Causality Condition of an LTI
Discrete-Time System

» Let x4[Nn] and X,[n] be two input sequences
with
x[n] =xo[n] for N<ng

e The corresponding output samplesat n=n,
of an LTI system with an impulse response
{h[n]} arethen given by
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Causality Condition of an LTI
Discrete-Time System

yl[no]=k§h[k]x1[no—k]= kih[k]xl[no—k]
. -0

+ ih[k]xl[no —K]

K=—0o0

yz[no]=k§h[k]x2[no—k]= kih[k]xﬂno—k]
=—00 =0

+ ih[k]XZ[no —K]

K=—0o0
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Causality Condition of an LTI
Discrete-Time System

e |fthelL

| system Is also causal, then
YalNol = Yol g ]

* As x[n]=X%[n] for n<n,

S hik]x[n, k] = 3 hiKlxaln — k]

k=0

k=0

. Thislimplies :
2 Nk]x[ng =K =" > h[K]xx[ny — K]

K=—o0

K=—00
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Causality Condition of an LTI
Discrete-Time System

* As xq[n]# %[n] for n>n, theonly way
the condition

-1 -1
Z h{k]xq[ng —k] = Z h{Kk]Xo[ng — K]

k=—o0 k=—00
will hold if both sums are equal to zero,
which is satisfied if
hk]=0 fork<O
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Causality Condition of an LTI
Discrete-Time System

» Emm) An LTI discrete-time system is causal
If and only If itsimpulse response {h[n]} Isa
causal sequence

« Example - The discrete-time system defined
by

yin] = a X n]+aX{n—=1+ azx{n—-2]+a,Nn-3]
ISacausal system asit has a causal impulse
response {Hnf} ={oy ap o3 og
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Causality Condition of an LTI
Discrete-Time System

e Example - The discrete-time accumulator
defined by

vinl= 3804] = ]
{=—0o0

ISacausal system as it has a causal iImpulse
response given by

ANl = Y8041 = pr

f=—00
11 . _
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Causality Condition of an LTI
Discrete-Time System

« Example - The factor-of-2 interpolator
defined by

yin] = x,[n]+ 5 (x,[n=1]+ x,[n+1])
IS noncausal asit has a noncausal impulse
response given by

(NN} ={05 1 0.5
1
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Causality Condition of an LTI
Discrete-Time System

 Note: A noncausal LTI discrete-time system
with a finite-length impul se response can
often be realized as a causal system by
Inserting an appropriate amount of delay

* For example, acausal version of the factor-
of-2 interpolator is obtained by delaying the
Input by one sample period:

yinl = x,[n=1]+ 2 (x,[n— 2]+ %,[n])
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Finite-Dimensional LTI

Discrete-Time Systems

e Animportant subclass of LTI discrete-time
systems Is characterized by alinear constant
coefficl ent difference equation of the form

deY[n k]—ZIOKX[n K]

e X[N] and y[n] are, respectlvely the input and
the output of the system

e {dy} and{ py} areconstants characterizing
the system
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Finite-Dimensional LTI

Discrete-Time Systems

 Theorder of the system is given by
max(N,M), which is the order of the difference
equation

o |tispossibletoimplement an LTI system
characterized by a constant coefficient
difference equation as here the computation
Involves two finite sums of products
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Finite-Dimensional LTI

Discrete-Time Systems

 |f we assume the system to be causal, then
the output y[n] can be recursively computed

using
N.d Pk
yin]=-2. kY[n k]+Z —x{n-K]
k=190 k=190
provideddg =0

» y[n] can be computed for all n>n, ,
knowing X[ n] and the initial conditions

Y[no _1]’ Y[no _2]’---’ Y[no - N]
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Classification of LTI Discrete-
Time Systems

Based on I mpulse Response L ength -
o If the impulse response h[n] is of finite
length, 1.e.,
hn]=0 forn<N;andn>N,, N;y<N,
then it isknown as afinite impulse
response (FIR) discrete-time system
* The convolution sum description hereis

N>
vinl = S hk]{n—K]

17 S
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Classification of LTI Discrete-
Time Systems

 The output y[n] of an FIR LTI discrete-time
system can be computed directly from the
convolution sum as it isafinite sum of
products

 Examplesof FIR LTI discrete-time systems
are the moving-average system and the
linear interpolators
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Classification of LTI Discrete-
Time Systems

e If the impulse response is of infinite length,
then it iIsknown as an infinite Impulse
response (11R) discrete-time system

 Theclassof IIR systems we are concerned
with In this course are characterized by
linear constant coefficient difference
equations
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Classification of LTI Discrete-

Time Systems

 Example- The discrete-time accumulator
defined by

yln] = y[n—-1+Xn]
ISseen to be an IR system
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Classification of LTI Discrete-
Time Systems

e Example - The familiar numerical
Integration formulas that are used to
numerically solve integrals of the form

t
y(t) = jx(t) dt
0

can be shown to be characterized by linear
constant coefficient difference equations,
and hence, are examples of |IR systems
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Classification of LTI Discrete-
Time Systems

 |f wedividethe interval of integration into n
equal parts of length T, then the previous
Integral can be rewritten as

nT
y(nT) = y((n-D)T)+ [x(r)dr
(n-1)T
where we have set t = nT and used the
notation T
y(nT) = [x(t)dr
0
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Classification of LTI Discrete-

Time Systems
o Using the trapezoidal method we can write

nT
f X(t)dt = T{x((n=DT) + x(nT)}
2
(n-1)T
* Hence, anumerical representation of the
definite integral isgiven by

y(nT) = y((n=DT) + 2 {x((n-JT) + x(nT)}
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Classification of LTI Discrete-
Time Systems

o Lety[n] =y(nT) and x[n] = x(nT)
e Then
y(nT) = y((n=DT) + J{x((n-DT) +x(nT)}
reducesto
yinl = yin-1+ 2{x{n] + {n-1]}
which isrecognized as the difference

equation representation of afirst-order IR
discrete-time system
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Classification of LTI Discrete-
Time Systems

Based on the Output Calculation Process

 Nonrecursive System - Here the output can
be calculated sequentially, knowing only
the present and past input samples

* Recursive System - Here the output
computation involves past output samplesin
addition to the present and past Input
samples
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Classification of LTI Discrete-
Time Systems

Based on the Coefficients -

e Real Discrete-Time System - The impulse
response samples are real valued

« Complex Discrete-Time System - The
Impul se response samples are complex

valued
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Correlation of Signals

* There are applications where it is necessary
to compare one reference signal with one or
more signals to determine the similarity
between the pair and to determine additional
Information based on the ssmilarity

Copyright © 2001, S. K. Mitra
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Correlation of Signals

e For example, indigital communications, a
set of data symbols are represented by a set
of unigque discrete-time sequences

* |f one of these sequences has been
transmitted, the recelver has to determine
which particular sequence has been received
by comparing the received signal with every
member of possible sequences from the set

Copyright © 2001, S. K. Mitra
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Correlation of Signals

o Similarly, in radar and sonar applications,
the recalved signal reflected from the target
IS adelayed version of the transmitted
signal and by measuring the delay, one can
determine the location of the target

* The detection problem gets more
complicated in practice, as often the
recelved signal Is corrupted by additive
ransom noise
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Correlation of Signals

Definitions

* A measure of similarity between a pair of
energy signals, x[n] and y[n], isgiven by the
cross-correl ation sequence ryy[ /] defined by

Myl f]= ix[n]y[n—é], ¢=0,£1,%2,...

N=—00
* The parameter ¢ called lag, indicates the
time-shift between the pair of signals
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Correlation of Signals

 y[n] issaid to be shifted by ¢ samplesto the
right with respect to the reference sequence
X[n] for positive values of ¢, and shifted by /¢
samples to the left for negative values of

e The ordering of the subscripts xy in the
definition of ryy[¢] specifies that x[n] isthe
reference sequence which remains fixed in
time while y[n] I1s being shifted with respect
to X[ n]
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Correlation of Signals

 If y[n] iIs made the reference signal and shift
X[ n] with respect to y[n], then the
corresponding cross-correlation sequence Is
given by

Iyl 0] =2, YINIX{n—/]

— Zor;:_oo y[m-+£]{m] = ry [—]

* Thus, ry,[/] Is obtained by time-reversing
Myl /]
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Correlation of Signals

e The autocorrelation sequence of x[n] Is
given by
ol 2] = 2 pe o XINIX[N— /]
obtained by setting y[n] = x[n] in the

definition of the cross-correlation sequence
Myl (]
Xy

» Note: r,[0]=>"" x2[n]:fx,theenergy

N=—0o0

of the signal x[n]
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Correlation of Signals

* From therelation ry,[¢] =r,,[-¢] It follows
that ry[?]=rw[—¢] implying that r,,[¢] is
an even function for real x[n|

* An examination of

y[0]= 2 n o XINIY[IN— /]
reveals that the expression for the cross-

correlation looks quite similar to that of the
linear convolution
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Correlation of Signals

o Thissimilarity is much clearer if we rewrite
the expression for the cross-correlation as

oy [1= 2 e XINIY[=(C = )] = X1 © Y[ -/]

« mm) Thecross-correlation of y[n] with the
reference signal x|n] can be computed by
processing X[n] with an LTI discrete-time
system of impulse response y[—N]

X[n] —— y[-n] —— 1y, (1]
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Correlation of Signals

o Likewise, the autocorrelation of x|n] can be
computed by processing x[n] with an LTI

discrete-time system of impulse response
X[—n]

X[n] —— X[-n] —— I [N]
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Properties of Autocorrelation and
Cross-correlation Sequences
e Consider two finite-energy sequences x| nj
and y[n]
* The energy of the combined sequence
axn]+y[n—/] isaso finite and
nonnegative, 1.e.,

> (@xin]+ y[n- )% = azzc;f:_oo x2[n]
+2aY 7 A{n)y[n—+Y% _yn-/]>0
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Properties of Autocorrelation and
Cross-correlation Sequences

e Thus
8%, [0] + 2ary [£] + 1,y [0] > O
where [0l =%, >0 and r,[0]=Z, >0

* \We can rewrite the equation on the previous
dide as

lolO] Tyl ?
[a 1] XX:g: Xy:O: [ﬂzO
eyl 7] TyylO

for any finite value of a
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Properties of Autocorrelation and
Cross-correlation Sequences

e Or, In other words, the matrix

I

0

Mo LY

xyll.

I
I

Xy
ywl0

IS positive semidefinite

o ==
or, equivalently,

14

rex[Olryy [0 - 15[ 41> 0

g1 < 10l [0] = | EE,
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Properties of Autocorrelation and
Cross-correlation Sequences

* Thelast inequality on the previous slide
provides an upper bound for the cross-
correlation samples

o If wesety[n] =x[n], then the inequality
reducesto

e L41] < 1l 0] =

40 Copyright © 2001, S. K. Mitra



Properties of Autocorrelation and
Cross-correlation Sequences

* Thus, at zero lag (¢ =0), the sample value
of the autocorrelation sequence has its
maximum value

e Now consider the case
y[n] =xbXx[n— N]

where N Isan integer and b > 0isan
arbitrary number

* Inthiscase £, = bzfx
41
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Properties of Autocorrelation and
Cross-correlation Sequences

e Therefore
JEE, =0*E? =bE,
e Using the above result in
I [1] < 1l Ol [0] = [ E(E,
we get

— by [0l < 1y [£] < by [O]
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Correlation Computation
Using MATLAB

e The cross-correlation and autocorrelation
sequences can easily be computed using

MATLAB
 Example - Consider the two finite-length
seguences
X(N|=13 -212 -14 4 2]

y[n

43

2-141-2 3]
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Correlation Computation
Using MATLAB

he cross-correlation sequencer,y[n]
computed using Program 2_7 of text is
plotted below

30—

AN
[n

-4 -2 0 2 4 6 8
L ag index

Amplitude
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Correlation Computation
Using MATLAB

he autocorrelation sequence r,, [/]
computed using Program 2_7 is shown below

» Note: At zero lag, ry, [0] Isthe maximum

®

60

N
o

N
o

T?TUQT?

Amplitude

)?T@T?T
)

-5 0 5
Lag index
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Correlation Computation
Using MATLAB
he plot below shows the cross-correl ation
of Xx[n] and y[n]=X[n— N] for N=4
neak of the cross-correlation is

 Note: The
precisely the value of the delay N

®

40+
[}
e
=
é- 207 T T |
£ 9% JollTe] 6%,
)
20 w . ‘ !
-10 -5 0 5
Lagind
o INC Copyright © 2001, S. K. Mitra
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Correlation Computation
Using MATLAB

* The plot below shows the autocorrelation of
X|n] corrupted with an additive random
noise generated using the function r andn

* Note: The autocorrelation still exhibits a

peak at zero lag

(o))
(@)

Amplitude
LN
=

N
o
o

TTEJTTOTTT@ETT
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Correlation Computation
Using MATLAB

 The autocorrelation and the cross-

correlation can also be computed using the
function xcor r

 However, the correlation seguences
generated using this function are the time-
reversed version of those generated using
Programs2 7 and 2 8

48 Copyright © 2001, S. K. Mitra



Normalized Forms of

Correlation

 Normalized forms of autocorrelation and
cross-correlation are given by

I’XX:E: B Irxy Z]

W0 YT O (0

* They are often used for convenience in
comparing and displaying

* Note: |py[£]|<1 and | pyy[£]]<1
Independent of the range of values of x[n]
and y[n]

49 Copyright © 2001, S. K. Mitra

Pxxl ] =




Correlation Computation for
Power Signals

e The cross-correlation sequence for a pair of
power signals, x[n] and y[n], isdefined as

K
lylf]= lim K1+1n§é<[n] y[n—/]

K—w
* The autocorrelation sequence of a power
signal x[n] is given by
. [
' [f]= lIm X[n]x[n—/¢
ol /] < g 2N —]

K—>w
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Correlation Computation for
Periodic Signals

e The cross-correlation sequence for a pair of
periodic signals of period N, X[n]and Yy[n],
Is defined as

raglf]= § ZncoXN1YIn—/]

* The autocorrelation sequence of a periodic

signal X[n] of period N is given by

rexl{] = NZn ]X[n]x[n /]

o1 Copyright © 2001, S. K. Mitra
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Correlation Computation for
Periodic Signals

* Note: Both rgg[/¢] and rg[ ] are also
periodic signals with a period N

o The periodicity property of the
autocorrel ation segquence can be exploited to
determine the period of aperiodic signal
that may have been corrupted by an additive
random disturbance
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Correlation Computation for
Periodic Signals

e Let X[n] beaperiodic signal corrupted by
the random noise d[n] resulting in the signal

wn] = Xn] +d[n]

which i1sobsarved for 0<n<M —1where
M >N

23 Copyright © 2001, S. K. Mitra



Correlation Computation for

Periodic Signals
he autocorrelation of w|n] Is given by

(] = o > WINIW[n — /]

= Ly M)+ d[n])(Xn— ]+ d[n—1])

= LM -+ L S™ td[n]d[n -]
+ LM Astnldin- 1+ & SM tdn]n -]
= Il 0]+ rgq [ €] + rgg [£] + rggl /]

o4 Copyright © 2001, S. K. Mitra
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Correlation Computation for
Periodic Signals

 |nthelast equation on the previous slide, rgx| /]
IS a periodic sequence with a period N and
hence will have peaksat / =0, N, 2N,...
with the same amplitudes as ¢ approaches M

o AsX n]and d[n] are not correlated, samples
of cross-correlation sequencesryy[ /] and rgg| /]
are likely to be very small relative to the
amplitudes of rgg| /]
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Correlation Computation for

Periodic Signals

he autocorrelation ryq[¢] of d[n] will show
apeak at ¢ = 0 with other samples having
rapidly decreasing amplitudes with
increasing values of |/]

Hence, peaks of r,,,,[¢] for £ >0 are
essentially due to the peaks of rgg[ /] and can
be used to determine whether X[n] isa
periodic sequence and also its period N If
the peaks occur at periodic intervals
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Correlation Computation of a
Periodic Signal Using MATLAB

 Example - We determine the period of the
sinusoidal sequence X n] = cos(0.25n),
0<n<95 corrupted by an additive
uniformly distributed random noise of
amplitude in the range[-0.5,0.5]

e Using Program 2_8 of text we arrive at the
plot of r,,[¢] shown on the next slide
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Correlation Computation of a
Perlodlc Signal Using MATLAB

mmﬁf
11101

20 10 10 20
Lagi ndex

e Ascan be seen from the plot given above,
there isastrong peak at zero lag
 However, there are distinct peaks at lags that

are multiples of 8 indicating the period of the
sinusoidal sequence to be 8 as expected

o8 Copyright © 2001, S. K. Mitra
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Correlation Computation of a
Periodic Signal Using MATLAB

 Figure below shows the plot of ryq[4]

8 ‘ ‘ ‘
©

ol
@}@@?%&Q j%% 9@ %ﬁi @ﬁ%D@
P S e
“ 20 10 o0 10 20
Lag index
» Ascan be seenryy[ /] shows avery strong
peak at only zero lag
Copyright © 2001, S. K. Mitra
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