Phase and Group Delays

* The output y[n] of afrequency-selective
LTI discrete-time system with a freguency
response H (e!®) exhibits some delay
relative to the input x[n] caused by the
nonzero phase response 0(o) = arg{ H (e!®)}
of the system

e For an input

X[ n] = Acos(w N+ ¢), —o<N<o
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Phase and Group Delays

the output IS
yin] = AH (el“0) cos(won+6(wo) + )

 Thus, the output lags in phase by 6(®,)
radians

* Rewriting the above eguation we get
yin] = A4H (el®o) cos(%(n L @) j + <|>)
Wo
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Phase and Group Delays

e Thisexpression indicates atime delay,
known as phase delay, at ® = oy given by

Tp (@) =- 9((3:)0)

 Now consider the case when the input
signal contains many sinusoidal
components with different frequencies that
are not harmonically related
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Phase and Group Delays

 |nthis case, each component of the input
will go through different phase delays when
processed by afrequency-selective LTI
discrete-time system

e Then, the output signal, in general, will not
look like the input signal

 Thesignal delay now isdefined using a
different parameter
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Phase and Group Delays

* To develop the necessary expression,
consider adiscrete-time signal x[n] obtained
by a double-sideband suppressed carrier
(DSB-SC) modulation with a carrier
frequency . of alow-frequency sinusoidal
signal of frequency o,:

X[ n] = Acos(myN) cos(m:N)
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Phase and Group Delays

* Theinput can be rewritten as
X[ ] = éCOS((Dg n) + écos(wu n)
where o, = o, —0, and Oy =0+ 0g
 Let the above input be processed by an LTI

discrete-time system with afrequency
response H (el®) satisfying the condition

H(el®)=1 for o, <o< o,
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Phase and Group Delays
e The output y[n] Isthen given by
y[n] = QCOS((Dgn +0(wy))+ 'g‘COS(ooun +0(m,))

_ Acos(a)cn . O(oy) er e(mf)jcos(mon . 9oy ; 9(%))

* Note: The output isalso inthe form of a
modulated carrier signal with the same
carrier frequency o, and the same
modul ation frequency o, as the input
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Phase and Group Delays

 However, the two components have
different phase lags relative to their
corresponding components in the input

* Now consider the case when the modulated
Input Is anarrowband signal with the
frequencies ®, and o, very close to the
carrier frequency o , 1.e. myisvery small
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Phase and Group Delays

* Inthe neighborhood of . we can express
the unwrapped phase response 0. (®) as

0 (®) = 0, (o) + 1 0¢()

(0 — o)

W=0¢
0y making a Taylor’s series expansion and
Keeping only the first two terms

e Using the above formula we now evaluate

the time delays of the carrier and the
modul ating components
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Phase and Group Delays

* |nthe case of the carrier signal we have

B Oc(wy) +0c(w)) ~ _ec(o‘)c)
20, g

which Is seen to be the same as the phase
delay if only the carrier signal Is passed
through the system

10 _ _
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Phase and Group Delays

 |nthe case of the modulating component we
have

_Bc(0y) —0c(0)) ~ _dO;(w)
M, — O  do e,
e The parameter

do; (o)
dw O=0¢

Is called the group delay or envelope delay
caused by the system at ® = .

g () =—

11
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Phase and Group Delays

e The group delay isameasure of the
linearity of the phase function as a function
of the frequency

* It isthetime delay between the waveforms
of underlying continuous-time signals
whose sampled versions, sampled at t = nT,
are precisely the input and the output
discrete-time signals

12 _ _
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Phase and Group Delays

e |If the phase function and the angular
frequency o arein radians per second, then
the group delay 1sin seconds

* Figure below illustrates the evaluation of
the phase delay and the group delay
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Phase and Group Delays

* Figure below snhows the waveform of an
amplitude-modulated input and the output
generated by an LTI system
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Phase and Group Delays

e Note: The carrier component at the output Is
delayed by the phase delay and the envelope
of the output is delayed by the group delay
relative to the waveform of the underlying
continuous-time input signal

* Thewaveform of the underlying continuous-
time output shows distortion when the group
delay of the LTI system Is not constant over
the bandwidth of the modulated signal
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Phase and Group Delays

o |f the distortion Is unacceptable, a delay
equalizer is usually cascaded with the LTI
system so that the overall group delay of the
cascade Is approximately linear over the band
of Interest

* To keep the magnitude response of the parent
LTI system unchanged the equalizer must
have a constant magnitude response at all
frequencies
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Phase and Group Delays

* Example - The phase function of the FIR
filter y[n]=aX[n]+ SX[n-+aXn-2]
IS O(w) =—w

* Henceitsgroup delay isgiven by 14(®) =1
verifying the result obtained earlier by
simulation

17 _ _
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Phase and Group Delays

e Example - For the M-point moving-average
filter
/M, 0<n<M-1
in] = { g

otherwise

the phase function is

_ Mi2
(M 1)(D-I-7I > u(a)—znk)
k=0 M

 Henceitsgroup delay is

Ty(®) :|\/|2—1

18 _ _
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Frequency Response of the
LTI Discrete-Time System

e The convolution sum description of the LT]
discrete-time system is given by

yin]= 2 hk]x[n—K]
k=—o0
o Takingthe DTFT of both sides we obtain
Y(el*)= Yyfnjelon

N=—o0

_ 5 ( ih[k]x[n—k])e""””

19 N=—0o0 k=—OO
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Frequency Response of the
LTI Discrete-Time System

e Or,
V(@)= £ k] Sxe o)
k=—o0 /=
_§ h[k]( ix[z]e‘imfje‘i“’k
k=—00 f=—00

X (e)®)

20
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Frequency Response of the
LTI Discrete-Time System

e Hence, we can write

Y(el®) - ( S hkle mij(eJ‘”) H ()X ()

k=—c0
« Inthe above H (e!®) is the frequency
response of the LTI system

* The above equation relates the input and the
output of an LTI system in the frequency

domain

21 _ _
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Frequency Response of the
LTI Discrete-Time System

o |t follows from the previous equation
H(e!®) =Y (e!®)/ X (e)®)
e For an LTI system described by alinear

constant coefficient difference equation of
the form we have

M — |
> kio Pre

N PN
>keode

K

H(e!®) =

22 _ _
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The Transfer Function

e A generalization of the frequency response
function

e The convolution sum description of an LTl
discrete-time system with an impulse
response h[n] is given by

y[n]=k§h[k] KN K]

23 _ _
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The Transfer Function

o Taking the z-transforms of both sides we get

Y@= Tyinz"= ¥ ( ih[k]x[n—k]jz”

N=—0o0 N=—o0 \ K=—00

- f h[k]( ix[n—k]z‘”]
k=—o0 N=—o0
_ Y h[k]( 2xmz<“k>]

24 K=—00
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The Transfer Function

e Or, Y(2)= Z h[k]( Zx[é]z‘fj
/

k=—c0

; X(2) /
o Therefore, Y(z):[ Zh[k]zij(z)
k=—o0
H (2)

e Thus, Y(2) = H(2)X(2)

25
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The Transfer Function

e Hence,
H(z)=Y(2)/ X(2)

e Thefunction H(z), which isthe z-transform of
the iImpulse response h[n] of the LTI system,
Is called the transfer function or the system
function

e Theinverse z-transform of the transfer
function H(2) yields the impulse response h[n]

26 _ _
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The Transfer Function

e Consider an LTI discrete-time system
characterized by a difference equation

S ok VIn—Kl=>M o pexn—K]

e Itstransfer function is obtained by taking
the z-transform of both sides of the above

equation M i
+ Thus  H(2)= ZkN=0 e
2 k—0UkZ

Copyright © 2001, S. K. Mitra
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The Transfer Function

e Or, equivalently as
M M —k
H (Z) _ Z(N—M) Zk:() pkz

N N—k
Zk:odkz
e An dternate form of the transfer function is
given by

H(2) = Po H:l/lzl(l_ 527
do [Tp -4z

Copyright © 2001, S. K. Mitra
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The Transfer Function

Or, equivalently as
H (Z) _ pO Z(N M) Hk—]_(z gk)
do [Tiiy(z— )

&, Eo,..,E A€ thefinite zeros, and

My Aoy AN are the finite poles of H(2)

If N> M, there are additional (N — M) zeros
az=0

If N <M, there are additional (M — N) poles
atz=0
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The Transfer Function

 For acausal |IR digital filter, the impulse
response Is a causal sequence

e The ROC of the causal transfer function

H (2) = Po (N- M)Hk—1(z Sk)
do Hk—1(z ﬂ*k)

IS thus exterior to a circle going through the
pole furthest from the origin

« Thusthe ROCisgivenby |z > mkax\kk\

30 _ _
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The Transfer Function

 Example - Consider the M-point moving-
average FIR filter with an impulse response

Tl — 1/M, 0<n<M -1
[n] = 0, otherwise

o |tstransfer function is then given by

1 ML 1-zM zM -1

@70 277 "Mz M2 ()

31 _ _
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The Transfer Function

The transfer function has M zeros on the
unit circleat z=el?™/M g<k<M -1

hereare M —1 polesat z=0and asingle

poleatz=1 M =8
Thepoleatz=1 T,
exactly cancelsthe 50/ |
zeroatz=1 2 S
TheROCistheentire @
z-plane except z=0 T i e oo
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The Transfer Function

 Example- A causal L

| IR digital filter is

described by a constant coefficient
difference equation given by

vinl]=Xn-1-1.2Xxn-2]+ X n-3]+1.3y[n—-1]]
—1.04y[n—2]+0.222y[n— 3]
o Itstransfer function istherefore given by
z1-12724+2723

H(2) =

33

1-1.3214+1.04272-0.222773
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The Transfer Function

* Alternate forms:
2 _
H(2) = 22 1.2z +1
23-1.32%+1.042-0.222
~ (z-06+j0.8)(z—0.6—j0.8)
(z-0.3)(z- 0.5+ j0.7)(z-0.5- | 0.7)

» Note: Poles farthest from § °
z=0haveamagnitude £ °
m T -05) /X/@/
» * ROC: |2>+/0.74 T A I

Real Part
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Frequency Response from

Transfer Function

 |f the ROC of the transfer function H(2)
Includes the unit circle, then the frequency
response H (el®)of the LTI digital filter can
be obtained smply as follows:

H(el”) = H(2) ,_gio

e For area coefficient transfer function H(2)
It can be shown that
H(el*)” = H(el*)H * (el®)
=HE)H(E ) =H(@H(EZY) |,

Copyright © 2001, S. K. Mitra
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Frequency Response from

Transfer Function

e [For astable rational transfer function in the
form
H (Z) _ pO Z(N M) Hk—]_(z gk)

do Hk 1(2 )*k)

the factored form of the frequency response
IS given by

H (ejoo) _ Po alo(N-M) Hk—1(e = ‘ik)
do [Tr,(€1® —2y)

36
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Frequency Response from
Transfer Function

e |t IS convenient to visuaize the contributions

of the zero factor (z— & )and the pole factor
(z—X\y) from the factored form of the

frequency response
e The magnitude function is given by
M|
1_[k:1‘ej(JD - ﬁk‘

N .
1_[k:1‘eJCO _Kk‘

37 _ _
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Frequency Response from
Transfer Function

which reduces to v
Po Hk:1‘ejw _gk‘

N |
e The phase response for arational transfer
function 1s of the form

argH (e)) = arg(po/ do) + ®(N —M)

M _ N .
+ D arg(el® —gy) -y ag(e’® —y)
38 k=1 k=1
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Frequency Response from
Transfer Function

* The magnitude-squared function of areal-
coefficient transfer function can be
computed using

H(el)” -

39

Po

2TV (ele gy ) (e ie - &)

do

[To (el —n ) (e 1o =2 )
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Geometric Interpretation of
Frequency Response Computation

* The factored form of the frequency
response
H (e)®) = Po qjo(N-M) Hk 1(91(D Ck)
do [Tiia(e1® =)
IS convenient to develop a geometric
Interpretation of the frequency response

computation from the pole-zero plot as w
varies from 0 to 2z on the unit circle

Copyright © 2001, S. K. Mitra
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Geometric Interpretation of
Frequency Response Computation

e The geometric interpretation can be used to
obtain a sketch of the response as a function
of the frequency

o A typical factor in the factored form of the
frequency response is given by
(e} —pel?)
where pel?® isazeroif it iszero factor or is
apoleif it isapole factor

41 _ _
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Geometric Interpretation of
Frequency Response Computation
e Asshown below in the z-plane the factor

(el® —pel?) represents a vector starting at
the point z=pe!? and ending on the unit
circleat z=el®

| 6@ RP:

42 = _ .
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Geometric Interpretation of
Frequency Response Computation

 Asw Isvaried from O to 27, thetip of the
vector moves counterclockise from the
point z= 1 tracing the unit circle and back
tothepointz=1

43 _ _
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Geometric Interpretation of
Frequency Response Computation

o Asindicated by v
‘H (ejm)‘ _Po 1_[k=l‘ejm _E)k‘

dO HEI:]_‘ejO) — Kk‘

the magnitude response |H (€'®)| at a
specific value of w Is given by the product
of the magnitudes of all zero vectors
divided by the product of the magnitudes of
all pole vectors
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Geometric Interpretation of

Frequency Response Computation
e Likewise, from
argH (el®) = arg(po/ do) + (N —-M)
+ > arg(el® —&,) - TR arg(e! - &)
we observe that the phase response
al a specific value of o Is obtained by
adding the phase of the term py/dg and the
linear-phase term (N — M) to the sum of

the angles of the zero vectors minus the
angles of the pole vectors
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Geometric Interpretation of
Frequency Response Computation

* Thus, an approximate plot of the magnitude
and phase responses of the transfer function
of an LTI digital filter can be developed by
examining the pole and zero locations

 Now, azero (pole) vector has the smallest
magnitude when o = ¢

46 _ _
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Geometric Interpretation of
Frequency Response Computation

e To highly attenuate signal componentsin a
specified frequency range, we need to place
zeros very close to or on the unit circle in
thisrange

e Likewise, to highly emphasize signal
components in a specified frequency range,
we need to place poles very close to or on
the unit circle in this range

47 _ _
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