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• The output y[n] of a frequency-selective
LTI discrete-time system with a frequency
response              exhibits some delay
relative to the input x[n] caused by the
nonzero phase response
of the system

• For an input
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the output is

• Thus, the output lags in phase by
radians

• Rewriting the above equation we get
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• This expression indicates a time delay,
known as phase delay, at             given by

• Now consider the case when the input
signal contains many sinusoidal
components with different frequencies that
are not harmonically related
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• In this case, each component of the input
will go through different phase delays when
processed by a frequency-selective LTI
discrete-time system

• Then, the output signal, in general, will not
look like the input signal

• The signal delay now is defined using a
different parameter
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• To develop the necessary expression,
consider a discrete-time signal x[n] obtained
by a double-sideband suppressed carrier
(DSB-SC) modulation with a carrier
frequency       of a low-frequency sinusoidal
signal of frequency      :oω

cω
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• The input can be rewritten as

where                          and
• Let the above input be processed by an LTI

discrete-time system with a frequency
response              satisfying the condition
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• The output y[n] is then given by

• Note: The output is also in the form of a
modulated carrier signal with the same
carrier frequency       and the same
modulation frequency      as the input
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• However, the two components have
different phase lags relative to their
corresponding components in the input

• Now consider the case when the modulated
input is a narrowband signal with the
frequencies      and      very close to the
carrier frequency      , i.e.      is very small
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• In the neighborhood of       we can express

the unwrapped phase response           as

by making a Taylor’s series expansion and
keeping only the first two terms

• Using the above formula we now evaluate
the time delays of the carrier and the
modulating components
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• In the case of the carrier signal we have

which is seen to be the same as the phase
delay if only the carrier signal is passed
through the system
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• In the case of the modulating component we

have

• The parameter

is called the group delay or envelope delay
caused by the system at
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• The group delay is a measure of the
linearity of the phase function as a function
of the frequency

• It is the time delay between the waveforms
of underlying continuous-time signals
whose sampled versions, sampled at t = nT,
are precisely the input and the output
discrete-time signals
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• If the phase function and the angular

frequency ω are in radians per second, then
the group delay is in seconds

• Figure below illustrates the evaluation of
the phase delay and the group delay
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• Figure below shows the waveform of an

amplitude-modulated input and the output
generated by an LTI system
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• Note: The carrier component at the output is

delayed by the phase delay and the envelope
of the output is delayed by the group delay
relative to the waveform of the underlying
continuous-time input signal

• The waveform of the underlying continuous-
time output shows distortion when the group
delay of the LTI system is not constant over
the bandwidth of the modulated signal
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• If the distortion is unacceptable, a delay
equalizer is usually cascaded with the LTI
system so that the overall group delay of the
cascade is approximately linear over the band
of interest

• To keep the magnitude response of the parent
LTI system unchanged the equalizer must
have a constant magnitude response at all
frequencies
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• Example - The phase function of the FIR
filter
is

• Hence its group delay is given by
verifying the result obtained earlier by
simulation
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• Example - For the M-point moving-average

filter

the phase function is

• Hence its group delay is
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Frequency Response of theFrequency Response of the
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• The convolution sum description of the LTI
discrete-time system is given by

• Taking the DTFT of both sides we obtain

][][][ knxkhny
k

−= ∑
∞

−∞=

nj

n

j enyeY ω−∞

−∞=

ω ∑= ][)(

nj

n k
eknxkh ω−∞

−∞=

∞

−∞=
∑ 






 ∑ −= ][][



20
Copyright © 2001, S. K. Mitra

Frequency Response of theFrequency Response of the
LTI Discrete-Time SystemLTI Discrete-Time System

• Or,

∑ 





 ∑=

∞

−∞=

∞

−∞=

+ω−ω

k

kjj exkheY
l

ll )(][][)(

kj

k

j eexkh ω−∞

−∞=

∞

−∞=

ω−∑ 





 ∑=
l

ll][][

)( ωjeX



21
Copyright © 2001, S. K. Mitra

Frequency Response of theFrequency Response of the
LTI Discrete-Time SystemLTI Discrete-Time System

• Hence, we can write

• In the above              is the frequency
response of the LTI system

• The above equation relates the input and the
output of an LTI system in the frequency
domain
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• It follows from the previous equation

• For an LTI system described by a linear
constant coefficient difference equation of
the form we have
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• A generalization of the frequency response
function

• The convolution sum description of an LTI
discrete-time system with an impulse
response h[n] is given by
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• Taking the z-transforms of both sides we get
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• Or,

• Therefore,

• Thus,           Y(z) = H(z)X(z)
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• Hence,

• The function H(z), which is the z-transform of
the impulse response h[n] of the LTI system,
is called the transfer function or the system
function

• The inverse z-transform of the transfer
function H(z) yields the impulse response h[n]
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• Consider an LTI discrete-time system

characterized by a difference equation

• Its transfer function is obtained by taking
the z-transform of both sides of the above
equation

• Thus
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• Or, equivalently as

• An alternate form of the transfer function is
given by
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• Or, equivalently as

•                       are the finite zeros, and
                 are the finite poles of H(z)

• If N > M, there are additional               zeros
at z = 0

• If N < M, there are additional               poles
at z = 0
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• For a causal IIR digital filter, the impulse

response is a causal sequence
• The ROC of the causal transfer function

is thus exterior to a circle going through the
pole furthest from the origin

• Thus the ROC is given by
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• Example - Consider the M-point moving-
average FIR filter with an impulse response

• Its transfer function is then given by
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• The transfer function has M zeros on the

unit circle at                    ,
• There are           poles at z = 0 and a single

pole at z = 1
• The pole at z = 1

exactly cancels the
zero at z = 1

• The ROC is the entire
z-plane except z = 0
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• Example - A causal LTI IIR digital filter is
described by a constant coefficient
difference equation given by

• Its transfer function is therefore given by
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• Alternate forms:

• Note: Poles farthest from
z = 0 have a magnitude

• ROC:
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Frequency Response fromFrequency Response from
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• If the ROC of the transfer function H(z)
includes the unit circle, then the frequency
response              of the LTI digital filter can
be obtained simply as follows:

• For a real coefficient transfer function H(z)
it can be shown that
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• For a stable rational transfer function in the
form

the factored form of the frequency response
is given by
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• It is convenient to visualize the contributions
of the zero factor              and the pole factor

         from the factored form of the
frequency response

• The magnitude function is given by

)( kz ξ−
)( kz λ−

∏
∏

=
ω

=
ω

−ωω

λ−

ξ−
= N

k k
j

M
k k

j
MNjj

e

e
e

d
peH

1

1)(

0

0)(



38
Copyright © 2001, S. K. Mitra

Frequency Response fromFrequency Response from
Transfer FunctionTransfer Function

which reduces to

• The phase response for a rational transfer
function is of the form
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• The magnitude-squared function of a real-
coefficient transfer function can be
computed using
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Geometric Interpretation ofGeometric Interpretation of
Frequency Response ComputationFrequency Response Computation
• The factored form of the frequency

response

is convenient to develop a geometric
interpretation of the frequency response
computation from the pole-zero plot as ω
varies from 0 to 2π on the unit circle
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Geometric Interpretation ofGeometric Interpretation of
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• The geometric interpretation can be used to

obtain a sketch of the response as a function
of the frequency

• A typical factor in the factored form of the
frequency response is given by

where          is a zero if it is zero factor or is
a pole if it is a pole factor
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• As shown below in the z-plane the factor

               represents a vector starting at
the point                and ending on the unit
circle at

φρ= jez
ω= jez
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• As ω is varied from 0 to 2π, the tip of the
vector moves counterclockise from the
point z = 1 tracing the unit circle and back
to the point z = 1
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• As indicated by

the magnitude response               at a
specific value of ω is given by the product
of the magnitudes of all zero vectors
divided by the product of the magnitudes of
all pole vectors
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Geometric Interpretation ofGeometric Interpretation of
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• Likewise, from

we observe that the phase response
at a specific value of ω is obtained by
adding the phase of the term            and the
linear-phase term                  to the sum of
the angles of the zero vectors minus the
angles of the pole vectors
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Geometric Interpretation ofGeometric Interpretation of
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• Thus, an approximate plot of the magnitude

and phase responses of the transfer function
of an LTI digital filter can be developed by
examining the pole and zero locations

• Now, a zero (pole) vector has the smallest
magnitude when ω = φ
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Geometric Interpretation ofGeometric Interpretation of
Frequency Response ComputationFrequency Response Computation

• To highly attenuate signal components in a
specified frequency range, we need to place
zeros very close to or on the unit circle in
this range

• Likewise, to highly emphasize signal
components in a specified frequency range,
we need to place poles very close to or on
the unit circle in this range
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