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Comb FiltersComb Filters

• The simple filters discussed so far are
characterized either by a single passband
and/or a single stopband

• There are applications where filters with
multiple passbands and stopbands are
required

• The comb filter is an example of such
filters
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Comb FiltersComb Filters
• In its most general form, a comb filter has a

frequency response that is a periodic
function of ω with a period 2π/L, where L is
a positive integer

• If H(z) is a filter with a single passband
and/or a single stopband, a comb filter can
be easily generated from it by replacing
each delay in its realization with L delays
resulting in a structure with a transfer
function given by )()( LzHzG =
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Comb FiltersComb Filters

• If                exhibits a peak at      , then
will exhibit L peaks at       ,
in the frequency range

• Likewise, if                has a notch at      ,
then                will have L notches at           ,

              in the frequency range
• A comb filter can be generated from either

an FIR or an IIR prototype filter
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Comb FiltersComb Filters
• For example, the comb filter generated from

the prototype lowpass FIR filter                 
          has a transfer function

•                 has L notches
at ω = (2k+1)π/L and L
peaks at ω = 2π k/L,
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Comb FiltersComb Filters
• For example, the comb filter generated from

the prototype highpass FIR filter
 has a transfer function

•                 has L peaks
at ω = (2k+1)π/L and L
notches at ω = 2π k/L,
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Comb FiltersComb Filters

• Depending on applications, comb filters
with other types of periodic magnitude
responses can be easily generated by
appropriately choosing the prototype filter

• For example, the M-point moving average
filter

has been used as a prototype
)(
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Comb FiltersComb Filters
• This filter has a peak magnitude at ω = 0,

and           notches at                   ,
• The corresponding comb filter has a transfer

function

whose magnitude has L peaks at                 ,
               and                notches at
               ,
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Allpass Allpass Transfer FunctionTransfer Function
Definition
• An IIR transfer function A(z) with unity

magnitude response for all frequencies, i.e.,

is called an allpass transfer function
• An M-th order causal real-coefficient

allpass transfer function is of the form
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AllpassAllpass Transfer Function Transfer Function
• If we denote the denominator polynomials

of             as            :

then it follows that             can be written as:

• Note from the above that if               is a
pole of a real coefficient allpass transfer
function, then it has a zero at
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AllpassAllpass Transfer Function Transfer Function

• The numerator of a real-coefficient allpass
transfer function is said to be the mirror-
image polynomial of the denominator, and
vice versa

• We shall use the notation              to denote
the mirror-image polynomial of a degree-M
polynomial             , i.e.,
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AllpassAllpass Transfer Function Transfer Function
• The expression

implies that the poles and zeros of a real-
coefficient allpass function exhibit mirror-
image symmetry in the z-plane
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AllpassAllpass Transfer Function Transfer Function

• To show that                       we observe that

• Therefore

• Hence
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AllpassAllpass Transfer Function Transfer Function

• Now, the poles of a causal stable transfer
function must lie inside the unit circle in the
z-plane

• Hence, all zeros of a causal stable allpass
transfer function must lie outside the unit
circle in a mirror-image symmetry with its
poles situated inside the unit circle
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AllpassAllpass Transfer Function Transfer Function
• Figure below shows the principal value of

the phase of the 3rd-order allpass function

• Note the discontinuity by the amount of 2π
in the phase θ(ω)
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AllpassAllpass Transfer Function Transfer Function
• If we unwrap the phase by removing the

discontinuity, we arrive at the unwrapped
phase function            indicated below

• Note: The unwrapped phase function is a
continuous function of ω
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AllpassAllpass Transfer Function Transfer Function

• The unwrapped phase function of any
arbitrary causal stable allpass function is a
continuous function of ω

Properties
• (1)  A causal stable real-coefficient allpass

transfer function is a lossless bounded real
(LBR) function or, equivalently, a causal
stable allpass filter is a lossless structure
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AllpassAllpass Transfer Function Transfer Function
• (2) The magnitude function of a stable

allpass function A(z) satisfies:

• (3) Let τ(ω) denote the group delay function
of an allpass filter A(z), i.e.,
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AllpassAllpass Transfer Function Transfer Function

• The unwrapped phase function           of a
stable allpass function is a monotonically
decreasing function of ω so that τ(ω) is
everywhere positive in the range 0 < ω < π

• The group delay of an M-th order stable
real-coefficient allpass transfer function
satisfies:

)(ωθc

π=ω∫ ωτ
π

Md
0

)(



Copyright © 2001, S. K. Mitra
19

AllpassAllpass Transfer Function Transfer Function
A Simple Application
• A simple but often used application of an

allpass filter is as a delay equalizer
• Let G(z) be the transfer function of a digital

filter designed to meet a prescribed
magnitude response

• The nonlinear phase response of G(z) can be
corrected by cascading it with an allpass
filter A(z) so that the overall cascade has a
constant group delay in the band of interest
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AllpassAllpass Transfer Function Transfer Function

• Since                    , we have

• Overall group delay is the given by the sum
of the group delays of G(z) and A(z)
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Minimum-Phase and Maximum-Minimum-Phase and Maximum-
Phase Transfer FunctionsPhase Transfer Functions

• Consider the two 1st-order transfer functions:

• Both transfer functions have a pole inside the
unit circle at the same location            and are
stable

• But the zero of            is inside the unit circle
at             , whereas, the zero of            is at

       situated in a mirror-image symmetry
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Minimum-Phase and Maximum-Minimum-Phase and Maximum-
Phase Transfer FunctionsPhase Transfer Functions

• Figure below shows the pole-zero plots of
the two transfer functions
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Minimum-Phase and Maximum-Minimum-Phase and Maximum-
Phase Transfer FunctionsPhase Transfer Functions

• However, both transfer functions have an
identical magnitude function as

• The corresponding phase functions are
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Minimum-Phase and Maximum-Minimum-Phase and Maximum-
Phase Transfer FunctionsPhase Transfer Functions

• Figure below shows the unwrapped phase
responses of the two transfer functions for
a = 0.8 and b = 5.0−
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Minimum-Phase and Maximum-Minimum-Phase and Maximum-
Phase Transfer FunctionsPhase Transfer Functions

• From this figure it follows that            has
an excess phase lag with respect to

• Generalizing the above result, we can show
that a causal stable transfer function with all
zeros outside the unit circle has an excess
phase compared to a causal transfer
function with identical magnitude but
having all zeros inside the unit circle

)(2 zH
)(1 zH



Copyright © 2001, S. K. Mitra
26

Minimum-Phase and Maximum-Minimum-Phase and Maximum-
Phase Transfer FunctionsPhase Transfer Functions

• A causal stable transfer function with all
zeros inside the unit circle is called a
minimum-phase transfer function

• A causal stable transfer function with all
zeros outside the unit circle is called a
maximum-phase transfer function

• Any nonminimum-phase transfer function
can be expressed as the product of a
minimum-phase transfer function and a
stable allpass transfer function
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Complementary TransferComplementary Transfer
FunctionsFunctions

• A set of digital transfer functions with
complementary characteristics often finds
useful applications in practice

• Four useful complementary relations are
described next along with some applications
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Complementary TransferComplementary Transfer
FunctionsFunctions

Delay-Complementary Transfer Functions
• A set of L transfer functions,             ,

             , is defined to be delay-
complementary of each other if the sum of
their transfer functions is equal to some
integer multiple of unit delays, i.e.,

where       is a nonnegative integer
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Complementary TransferComplementary Transfer
FunctionsFunctions

• A delay-complementary pair
can be readily designed if one of the pairs is
a known Type 1 FIR transfer function of
odd length

• Let            be a Type 1 FIR transfer function
of length M = 2K+1

• Then its delay-complementary transfer
function is given by
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Complementary TransferComplementary Transfer
FunctionsFunctions

• Let the magnitude response of            be
equal to           in the passband and less than
or equal to      in the stopband where      and

are very small numbers
• Now the frequency response of            can be

expressed as

where            is the amplitude response
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Complementary TransferComplementary Transfer
FunctionsFunctions

• Its delay-complementary transfer function
      has a frequency response given by

• Now, in the passband,
and in the stopband,

• It follows from the above equation that in
the stopband,                                and in the
passband,
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Complementary TransferComplementary Transfer
FunctionsFunctions

• As a result,            has a complementary
magnitude response characteristic to that of

      with a stopband exactly identical to
the passband of           , and a passband that
is exactly identical to the stopband of

• Thus, if            is a lowpass filter,           will
be a highpass filter, and vice versa
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Complementary TransferComplementary Transfer
FunctionsFunctions

• The frequency       at which

the gain responses of both filters are 6 dB
below their maximum values

• The frequency       is thus called the 6-dB
crossover frequency
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Complementary TransferComplementary Transfer
FunctionsFunctions

• Example - Consider the Type 1 bandstop
transfer function

• Its delay-complementary Type 1 bandpass
transfer function is given by
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Complementary TransferComplementary Transfer
FunctionsFunctions

• Plots of the magnitude responses of
and               are shown below
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Complementary TransferComplementary Transfer
FunctionsFunctions

Allpass Complementary Filters
• A set of M digital transfer functions,              ,

     , is defined to be allpass-
complementary of each other, if the sum of
their transfer functions is equal to an allpass
function, i.e.,
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Complementary TransferComplementary Transfer
FunctionsFunctions

Power-Complementary Transfer Functions
• A set of M digital transfer functions,              ,

     , is defined to be power-
complementary of each other, if the sum of
their square-magnitude responses is equal to
a constant K for all values of ω, i.e.,
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Complementary TransferComplementary Transfer
FunctionsFunctions

• By analytic continuation, the above
property is equal to

for real coefficient
• Usually, by scaling the transfer functions,

the power-complementary property is
defined for K = 1
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Complementary TransferComplementary Transfer
FunctionsFunctions

• For a pair of power-complementary transfer
functions,           and           , the frequency
where                                                   , is
called the cross-over frequency

• At this frequency the gain responses of both
filters are 3-dB below their maximum
values

• As a result,       is called the 3-dB cross-
over frequency
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Complementary TransferComplementary Transfer
FunctionsFunctions

• Example - Consider the two transfer functions
      and            given by

where           and           are stable allpass
transfer functions

• Note that
• Hence,           and           are allpass

complementary
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Complementary TransferComplementary Transfer
FunctionsFunctions

• It can be shown that            and           are
also power-complementary

• Moreover,            and            are bounded-
real transfer functions
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Complementary TransferComplementary Transfer
FunctionsFunctions

Doubly-Complementary Transfer Functions
• A set of M transfer functions satisfying both

the allpass complementary and the power-
complementary properties is known as a
doubly-complementary set
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Complementary TransferComplementary Transfer
FunctionsFunctions

• A pair of doubly-complementary IIR
transfer functions,           and           , with a
sum of allpass decomposition can be simply
realized as indicated below
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Complementary TransferComplementary Transfer
FunctionsFunctions

• Example - The first-order lowpass transfer
function

can be expressed as

where







= −

−

α−
+α−

1

1

1
1

2
1)(

z
z

LP zH

)]()([)( 102
1

1
1

2
1

1

1
zAzAzH

z
z

LP +





= =

α−
+α−+ −

−

1

1

1 1
)( −

−

α−
+α−=

z
zzA,)( 10 =zA



Copyright © 2001, S. K. Mitra
45

Complementary TransferComplementary Transfer
FunctionsFunctions

• Its power-complementary highpass transfer
function is thus given by

• The above expression is precisely the first-
order highpass transfer function described
earlier
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Complementary TransferComplementary Transfer
FunctionsFunctions

• Figure below demonstrates the allpass
complementary property and the power
complementary property of              and)(zHLP

)(zHHP
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Complementary TransferComplementary Transfer
FunctionsFunctions

Power-Symmetric Filters
• A real-coefficient causal digital filter with a

transfer function H(z) is said to be a power-
symmetric filter if it satisfies the condition

where K > 0 is a constant
KzHzHzHzH =−−+ −− )()()()( 11
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Complementary TransferComplementary Transfer
FunctionsFunctions

• It can be shown that the gain function G(ω)
of a power-symmetric transfer function at ω
= π is given by

• If we define                        , then it follows
from the definition of the power-symmetric
filter that H(z) and G(z) are power-
complementary as
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Complementary TransferComplementary Transfer
FunctionsFunctions

Conjugate Quadratic Filter
• If a power-symmetric filter has an FIR

transfer function H(z) of order N, then the
FIR digital filter with a transfer function

is called a conjugate quadratic filter of
H(z) and vice-versa
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Copyright © 2001, S. K. Mitra
50

Complementary TransferComplementary Transfer
FunctionsFunctions

• It follows from the definition that G(z) is
also a power-symmetric causal filter

• It also can be seen that a pair of conjugate
quadratic filters H(z) and G(z) are also
power-complementary
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Complementary TransferComplementary Transfer
FunctionsFunctions

• Example - Let
• We form

•           H(z) is a power-symmetric transfer
function
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Digital Two-PairsDigital Two-Pairs

• The LTI discrete-time systems considered
so far are single-input, single-output
structures characterized by a transfer
function

• Often, such a system can be efficiently
realized by interconnecting two-input, two-
output structures, more commonly called
two-pairs
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Digital Two-PairsDigital Two-Pairs
• Figures below show two commonly used

block diagram representations of a two-pair

• Here     and      denote the two outputs, and
and       denote the two inputs, where the

dependencies on the variable z has been
omitted for simplicity
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Digital Two-PairsDigital Two-Pairs
• The input-output relation of a digital two-

pair is given by

• In the above relation the matrix τ given by

is called the transfer matrix of the two-pair
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Digital Two-PairsDigital Two-Pairs

• It follows from the input-output relation that
the transfer parameters can be found as
follows:
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Digital Two-PairsDigital Two-Pairs
• An alternate characterization of the two-pair

is in terms of its chain parameters as

where the matrix Γ given by

is called the chain matrix of the two-pair











=





2
2

1
1

X
Y

DC
BA

Y
X





= DC

BAΓ
- -



Copyright © 2001, S. K. Mitra
57

Digital Two-PairsDigital Two-Pairs
• The relation between the transfer

parameters and the chain parameters are
given by
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Two-Pair InterconnectionTwo-Pair Interconnection
SchemesSchemes

Cascade Connection - Γ-cascade

• Here
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Two-Pair InterconnectionTwo-Pair Interconnection
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• But from figure,              and
• Substituting the above relations in the first

equation on the previous slide and
combining the two equations we get

• Hence,
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Two-Pair InterconnectionTwo-Pair Interconnection
SchemesSchemes

Cascade Connection - τ-cascade

• Here
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• But from figure,              and
• Substituting the above relations in the first

equation on the previous slide and
combining the two equations we get

• Hence,
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Two-Pair InterconnectionTwo-Pair Interconnection
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Constrained Two-Pair

• It can be shown that
1Y
1X 2Y

2X
G(z)

H(z)
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Algebraic Stability TestAlgebraic Stability Test
• We have shown that the BIBO stability of a

causal rational transfer function requires
that all its poles be inside the unit circle

• For very high-order transfer functions, it is
very difficult to determine the pole
locations analytically

• Root locations can of course be determined
on a computer by some type of root finding
algorithms
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Algebraic Stability TestAlgebraic Stability Test

• We now outline a simple algebraic test that
does not require the determination of pole
locations

The Stability Triangle
• For a 2nd-order transfer function the

stability can be easily checked by
examining its denominator coefficients
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Algebraic Stability TestAlgebraic Stability Test
• Let

denote the denominator of the transfer
function

• In terms of its poles, D(z) can be expressed
as

• Comparing the last two equations we get

2
2

1
11)( −− ++= zdzdzD

2
21

1
21

1
2

1
1 )(1)1)(1()( −−−− λλ+λ+λ−=λ−λ−= zzzzzD

212211 ),( λλ=λ+λ−= dd
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• The poles are inside the unit circle if

• Now the coefficient      is given by the
product of the poles

• Hence we must have

• It can be shown that the second coefficient
condition is given by

1||,1|| 21 <λ<λ

2d

1|| 2 <d

21 1|| dd +<
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• The region in the (         )-plane where the
two coefficient condition are satisfied,
called the stability triangle, is shown below

21,dd

Stability region
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Algebraic Stability TestAlgebraic Stability Test

• Example - Consider the two 2nd-order
bandpass transfer functions designed
earlier:
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Algebraic Stability TestAlgebraic Stability Test

• In the case of              , we observe that

• Since here             ,               is unstable
• On the other hand, in the case of              ,

we observe that

• Here,             and                    , and hence
        is BIBO stable

)(' zHBP
3763819.1,7343424.0 21 =−= dd

726542528.0,53353098.0 21 =−= dd

)(' zHBP1|| 2 >d
)(" zHBP

21 1|| dd +<1|| 2 <d
)(" zHBP
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Algebraic Stability TestAlgebraic Stability Test

A General Stability Test Procedure
• Let              denote the denominator of an

M-th order causal IIR transfer function H(z):

where we assume           for simplicity
• Define an M-th order allpass transfer

function:
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• Or, equivalently

• If we express

then it follows that
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• Now for stability we must have            ,
which implies the condition

• Define

• Then a necessary condition for stability of
      , and hence, the transfer function

H(z) is given by

1|| <λi
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MMM dAk =∞= )(

)(zAM

12 <Mk
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• Assume the above condition holds
• We now form a new function

• Substituting the rational form of             in
the above equation we get
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where

• Hence,                is an allpass function of
order

• Now the poles      of                are given by
the roots of the equation
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1 2
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• By assumption
• Hence
• If             is a stable allpass function, then

• Thus, if             is a stable allpass function,
then the condition                      holds only if
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1|)(| >λoMA

)(zAM







<>
==
><

1for,1
1for,1
1for,1

)(
z
z
z

zAM

)(zAM
1|)(| >λoMA

1<λo



Copyright © 2001, S. K. Mitra
76
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• Or, in other words               is a stable
allpass function

• Thus, if             is a stable allpass function
and            , then                is also a stable
allpass function of one order lower

• We now prove the converse, i.e., if
is a stable allpass function and            , then

      is also a stable allpass function
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• To this end, we express             in terms of

         arriving at

• If       is a pole of            , then

• By assumption              holds
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• Therefore,                              i.e.,

• Assume                is a stable allpass function
• Then                      for
• Now, if            , then because of the above

condition
• But the condition                             reduces

to                          if
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• Thus there is a contradiction
• On the other hand, if              then from

we have
• The above condition does not violate the

condition

1|| <ζo
1||for1|)(| 1 <>− zzAM
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• Thus, if             and if                is a stable
allpass function, then            is also a stable
allpass function

• Summarizing, a necessary and sufficient set
of conditions for the causal allpass function

       to be stable is therefore:
(1)              , and
(2) The allpass function                is stable

)(1 zAM −
)(zAM
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)(zAM

)(1 zAM −
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• Thus, once we have checked the condition

       , we test next for the stability of the
lower-order allpass function

• The process is then repeated, generating a
set of coefficients:

and a set of allpass functions of decreasing
order:

12 <Mk
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Algebraic Stability TestAlgebraic Stability Test
• The allpass function             is stable if and

only if            for i
• Example - Test the stability of

• From H(z) we generate a 4-th order allpass
function

• Note:
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• Using

we determine the coefficients         of the
third-order allpass function           from the
coefficients        of          :
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• Note:
• Following the above procedure, we derive

the next two lower-order allpass functions:
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• Note:

• Since all of the stability conditions are
satisfied,           and hence H(z) are stable

• Note: It is not necessary to derive
since           can be tested for stability using
the coefficient conditions
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