Comb Filters

e The simple filters discussed so far are
characterized elther by a single passband
and/or a single stopband

* There are applications where filters with
multiple passbands and stopbands are
required

 The comb filter Isan example of such
filters

Copyright © 2001, S. K. Mitra



Comb Filters

* Initsmost general form, acomb filter has a
frequency response that is a periodic
function of o with aperiod 2r/L, whereL Is
a positive integer

o If H(2) isafilter with a single passband
and/or a single stopband, a comb filter can
be easlly generated from it by replacing
each delay in itsrealization with L delays
resulting in a structure with a transfer
function given by G(z) = H (z")

Copyright © 2001, S. K. Mitra



Comb Filters

» If |H(e'”)| exhibitsapesk at oy, then |G(e'®)]
will exhibit L peaks at mpk/L ,0<k <L -1
In the frequency range 0< o < 2x

» Likewise, if |[H(e'®)| hasanotch at o,
then |G(e!®)| will have L notches at o, k/L,
O<k<L-1linthefrequency range0< o< 2x

o A comb filter can be generated from ether
an FIR or an |IR prototype filter
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Comb Filters

e For example, the comb filter generated from
the prototype lowpass FIR filter Hy(2) =
(1+ z1) has atransfer function

Go(2) = Ho(z") = 3(+2 ")
¢ |G,(e!®)| has L notches

Comb filter from lowpass prototype
I I I

1

al o = (2k+1)=/L and L
peaksal m = 2r K/L,
O<k<L-1,inthe ¢
frequency range
O<w<2rm

0.5 1 15 2
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Comb Filters

* For example, the comb filter generated from
the prototype highpass FIR filter Hy(2) =
1(1 z 1Y has atransfer function

Gy(2) = Hy(z") = 3 (2~ z‘L)

I O Y /o A —
at ® = (2k+1)7/L and L N A

notchesat o = 2n k/L, .

O<k<L-1,inthe

frequency range
O<w<2rm

0 0.5

1 15 2
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Comb Filters

* Depending on applications, comb filters
with other types of periodic magnitude
responses can be easily generated by
appropriately choosing the prototype filter

* For example, the M-point moving average
filter

has been used as a prototype
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Comb Filters

o Thisfilter has apeak magnitude at » = 0,
and M —1notchesatw=2n//M,1</<M -1

* The corresponding comb filter has atransfer
function

—LM
G(Z) B I\j_(lz—z_'-)

whose magnitude has L peaks at m = 2rk/L,
O<k<L-1andL(M -1 notchesat
®=2nk/ILM, 1<k <L(M -1)
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Allpass Transfer Function
Definition
 AnlIR transfer function A(z) with unity
magnitude response for all frequencies, I.e.,
IAE®)P=1 fordlo
IS called an allpasstransfer function

 An M-th order causal real-coefficient
allpass transfer function is of the form
dy +dy 1z T4+ 0z MH
Au(2)=+ M Tz AR

+ z_'\/I

M

1+ d12_1+---+ dM_lz +d|v| Z
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Allpass Transfer Function

 |f we denote the denominator polynomials
of Ay (2) asDy (2):
D|\/| (Z) =1+ dlz_l + dl\/| _1Z

then it follows that Ay, (z) can be written as:
z M Dy (z_l)

» Note from the abovethat if z=rel® isa
pole of areal coefficient allpass transfer

function, then it hasa zero at z= 110

9
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Allpass Transfer Function

* The numerator of areal-coefficient allpass
transfer function is said to be the mirror -

Image polynomial of the denominator, and
vice versa

« We shall use the notation Dy (z) to denote

the mirror-image polynomial of a degree-M
polynomial Dy, (2),i.e,

Dy (2)=z2MDy, (2)

10 _ _
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Allpass Transfer Function
e The expression

Ay (D=2 Pu()
Dy (2)
Implies that the polesan(hzl/I zeros of areal-

coefficient allpass function exhibit mirror-
Image symmetry in the z-plane

15¢

i
_ _ 3 Fos -

-02+0.18z1+04z2+23 ¢

1+0.421+0.1827%2-0223 Eos

1

Ag(2) =

-1.5¢

11 1 0 1 2 3
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Allpass Transfer Function

. To show that | Ay (e/?)|=1 we observe that
Z D (2)

1
A (Z7)= DM (z1)

e Therefore
zMDy, (z1) zZMDy, (2)

A @A =510 Dy

 Hence

A (&19)2= Ay (DA (ZY) =

7= eJ‘”

12
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Allpass Transfer Function

* Now, the poles of a causal stable transfer
function must lie inside the unit circlein the
Z-plane

* Hence, all zeros of a causal stable allpass
transfer function must lie outside the unit
circle in amirror-image symmetry with its
poles situated inside the unit circle

13 _ _
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Allpass Transfer Function

* Figure below shows the principal value of

the phase of the 3rd-order allpass function
A2 =" 0.2+0.18z1+0.4z2%+ 73

- 1+04z1+01822-0.227°
* Note the discontinuity by the amount of 2r

In the phase 8()

Principal value of phase
I

,,,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,,

14 o 02 0.4 06 038 1 _
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Allpass Transfer Function

 If we unwrap the phase by removing the
discontinuity, we arrive at the unwrapped
phase function 0.(®) indicated below

* Note: The unwrapped phase function isa
continuous function of ®

Unwrapped phase
I I

15 1 _ .
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Allpass Transfer Function

* The unwrapped phase function of any
arbitrary causal stable allpass functionisa
continuous function of ®

Properties

e (1) A causal stable real-coefficient allpass
transfer function is alossless bounded real
(LBR) function or, equivalently, a causal
stable allpass filter is alossless structure

16 _ _
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Allpass Transfer Function

* (2) The magnitude function of a stable
allpass function A(z) satisfies:

<1, for|z>1

A(2)s=1 for z=1

>1 forz<1

* (3) Let 1(w) denote the group delay function
of an allpassfilter A(2), I.e.,

1(0) = 4 [0,(0)]
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Allpass Transfer Function

 The unwrapped phase function 6. (w) of a
stable allpass function is a monotonically
decreasing function of o so that t(w) Is
everywhere positiveintherangeO<w <=

* The group delay of an M-th order stable
real-coefficient allpass transfer function
satisfies: ]

[t(®w)dw =Mn
0

18 _ _
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Allpass Transfer Function

A Simple Application
o A simple but often used application of an
allpassfilter isasadelay equalizer

o Let G(2) bethetransfer function of adigital
filter designed to meet a prescribed
magnitude response

e The nonlinear phase response of G(z) can be
corrected by cascading it with an allpass
filter A(z) so that the overall cascade has a
constant group delay in the band of interest

19 _ _
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Allpass Transfer Function

— G(Z) | A(Z) I

e Since IA(ej‘”)lz 1. we have
G(e'”) A(e’)|=IG(e')]
e Overall group delay isthe given by the sum
of the group delays of G(z) and A(2)

20
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Minimum-Phase and Maximum-
Phase Transfer Functions

e Consder thetwo 1st-order transfer functions:
Hi(2) = 22, H,(2)="2", la<1 b<1

z+a’ : z+a'’ A
* Both transfer functions have a pole inside the
unit circle at the same location z=—a and are

stable

o But the zero of H¢(z) isinside the unit circle
at z=-b , whereas, the zero of H,(2) isat

Z= —t1) Situated In a mirror-image symmetry

21 _ _
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Minimum-Phase and Maximum-
Phase Transfer Functions

* Figure below shows the pole-zero plots of
the two transfer functions

H1(2) H2(2)

22 _ _
Copyright © 2001, S. K. Mitra



Minimum-Phase and Maximum-
Phase Transfer Functions
e However, both transfer functions have an
Identical magnitude function as
H1(2)Hy(z7) = Hp(DH, () =1
* The corresponding phase functions are

Joyy _ -1 siho -1 sinow
arg[Hl(e )] = tan b+cos@_tan a+Cosm

joyy _ -1 bsno _ 541 Sho
arg[HZ(e )]_tan 1+bcosm tan a+Cosm

23 _ _
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Minimum-Phase and Maximum-
Phase Transfer Functions
* Figure below shows the unwrapped phase

responses of the two transfer functions for
a=0.8andb=-0.5

Phase, degrees
b b o e
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Minimum-Phase and Maximum-
Phase Transfer Functions

 From thisfigureit followsthat H5(z) has
an excess phase lag with respect to H{(2)

o Generalizing the above result, we can show
that a causal stable transfer function with all
zeros outside the unit circle has an excess
phase compared to a causal transfer
function with identical magnitude but
having all zeros inside the unit circle
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Minimum-Phase and Maximum-
Phase Transfer Functions

e A causa stable transfer function with all
zeros inside the unit circleiscalled a
minimum-phase transfer function

e A causal stabletransfer function with all

zeros outside the unit circleiscalled a
maximum-phase transfer function

* Any nonminimum-phase transfer function

can be expressed as the product of a
minimum-phase transfer function and a
stable allpass transfer function
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Complementary Transfer
Functions

o A set of digital transfer functions with

complementary characteristics often finds
useful applications in practice

e Four useful complementary relations are
described next along with some applications

27 _ _
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Complementary Transfer

Functions

Delay-Complementary Transfer Functions

o A set of L transfer functions,{ H; (2)},
0<i1<L-1 isdefined to be delay-
complementary of each other if the sum of
thair transfer functions is equal to some
Integer multiple of unit delays, 1.e.,

L-1
> Hi(2)=pz™, B=0
=0

s Where n, Isanonnegative integer
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Complementary Transfer
Functions

* A delay-complementary pair{Hg(z),H(2)}
can be readily designed if one of the pairsis
aknown Type 1 FIR transfer function of
odd length

e Let Hp(z) beaType 1 FIR transfer function
of length M = 2K+1

* Then Its delay-complementary transfer
function is given by

. Hi(2)=z" —Hy(2)
Copyright © 2001, S. K. Mitra



Complementary Transfer
Functions

e Let the magnitude response of Hy(2) be
equal to1+3 , In the passband and less than
or equal to o4 In the stopband where o , and
O0g are very small numbers

* Now the frequency response of Hy(z) can be
expressedas -
Ho(el®) = e 1KOH ()

where Hqy(w) is the amplitude response

30 _ _
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Complementary Transfer
Functions

* |ts delay-complementary transfer function
H4.(z) hasafreguency response given by
H, (el®) = e K®H, (o) = & X®[1- H ()]
* Now, inthe passpand,1-0o <Ho(oo)<1+8
and in the stopband, — 6 < Hgp(®) <04

e |t followsfrom the above equation that in
the stopband, — o, 1((0) <o, andinthe
passband, 1-0. g Hl(oo) <1+8

31 _ _
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Complementary Transfer
Functions

e Asaresult, H{(z) hasacomplementary
magnitude response characteristic to that of
Hp(2) with a stopband exactly identical to
the passpand of Hy(z), and a passband that
IS exactly identical to the stopband of Hy(2)

e Thus, if Hy(2) isalowpassfilter, H(2) will
be a highpass filter, and vice versa

32 _ _
Copyright © 2001, S. K. Mitra



Complementary Transfer
Functions

« The frequency o, at which
Ho(®g) = Hi(mg) =0.5

the gain responses of both filters are 6 dB
below thelr maximum values

e Thefreguency o, Isthuscalled the 6-dB
crossover freguency

33 _ _
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Complementary Transfer
Functions

 Example - Consider the Type 1 bandstop
transfer function
Has(2) =, (1+ Z2)*(1-4z 2 +52 * +52 - 47710 + 271%)

o |ts delay-complementary Type 1 bandpass
transfer function is given by

Hgp(2) =z - Hgs(2)

= 614 (1-z2)*(A+4z2%2+524+528+42710 4 712

34 _ _
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Complementary Transfer
Functions

 Plots of the magnitude responses of Hgc(2)
and Hgp(2) are shown below

o
o =
-
-
! w

i~ o .
o

Magnitude
t

35 _ _
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Complementary Transfer
Functions

Allpass Complementary Filters

e A setof M digital transfer functions,{H; (2)} ,
0<i <M -1, isdefined to be allpass-
complementary of each other, if the sum of
their transfer functionsis equal to an allpass
function, I.e.,

M -1
2. Hi(2=A(2)
-0

36 _ _
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Complementary Transfer
Functions

Power-Complementary Transfer Functions

e A setof M digital transfer functions,{H; (2)} ,
0<i <M -1, isdefined to be power -
complementary of each other, if the sum of

thelr square-magnitude responses is equal to
aconstant K for all values of m, 1.e,,

M -1 5
> ‘Hi(el‘”)‘ =K, for al o
i=0

37 _ _
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Complementary Transfer
Functions

e By analytic continuation, the above
property Is equal to

M -1
Y H,(2H,(z}) =K, for al o
1=0

for real coefficient H;(2)

o Usually, by scaling the transfer functions,
the power-complementary property is
definedfor K=1

38 _ _
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Complementary Transfer

Functions

* For apair of power-complementary transfer
functions,Hq(2) and H4(2), thefrequency Mo
where |Hg(e!®0)[% =|H,(e1®)[? =0.5, is
called the cross-over freguency

o At thisfreguency the gain responses of both

filters are 3-dB below thaeir maximum
values

« Asaresult, o, Iscalled the 3-dB cross-
over freguency
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Complementary Transfer

Functions

 Example - Consider the two transfer functions
Ho(2) and Hl(z) given by

Ho(2) =1 A(2) + A(2)
H1(2) = 1A (D) - A2)

where Ay(2z) and A (2) are stable allpass
transfer functions

* Notethat Hg(z)+ H1(2) = Ay(2)

* Hence, Hy(2) and H4(z) are allpass
o complementary

I\J
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Complementary Transfer
Functions

e |t can be shown that Hy(2z) and H(2) are
also power-complementary

* Moreover, Hy(z) and Hy(z) are bounded-
real transfer functions
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Complementary Transfer
Functions

Doubly-Complementary Transfer Functions

o A set of M transfer functions satisfying both
the allpass complementary and the power-
complementary propertiesis known as a
doubly-complementary set

42 _ _
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Complementary Transfer
Functions

o A pair of doubly-complementary |IR
transfer functions,Hq(2z) and H4(z), with a
sum of allpass decomposition can be ssmply
realized as indicated below

|1/2 — Ay(2) P— Yy(2)
X(2) P
o A®) D ,(2)
Yo(2) Y1(2)
Ho(2) = X (2) H,(2) :xl(z)

43 _ _
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Complementary Transfer

Functions
e Example - Thefirst-order lowpass transfer

function . 4
TRCRR

l-az

can be expressed as
Hip (@)= 11,42 |- MA@ + A2)

1_
where P
—o+2Z

AO(Z) 1, AEI_(Z) = 1

—aZ
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Complementary Transfer
Functions

e |ts power-complementary highpass transfer
function is thus given by

i (2) - JLAD) - A=} 1 2

l-az
_lto| 1- 7t
2 \1-az?

* The above expression is precisaly the first-
order highpass transfer function described
earlier

45 _ _
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Complementary Transfer

Functions

* Figure below demonstrates the allpass
complementary property and the power
complementary property of H, p(z) and

Hpp(2)

jo jo joy 12 joy 12
. H (€)+H () o L H (€ +H () o
\ ﬁ - \ J— ———
- T H (@) ~
o 08 N P - o 08 AN T e
E E N e | HP( )
E 0.6+ S | Z 06! \
g g o HE) g <
=04l / e ] 04 S
: o / : SN H €
0.2+ 1 0.2+ LA
/ ~_ P A
o | | | | ™~ OJ/ | | | T -
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
olr olr
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Complementary Transfer
Functions

Power-Symmetric Filters

A real-coefficient causal digital filter with a
transfer function H(z) is said to be a power -
symmetric filter if it satisfies the condition

H(DQH(zH)+H(-2)H(-z) =K
where K > 0 Is a constant

47 _ _
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Complementary Transfer

Functions

e |t can be shown that the gain function G()
of a power-symmetric transfer function at
=misgiven by

10log;p K -3 dB

 |f wedefine G(z)=H(-2), thenit follows
from the definition of the power-symmetric
filter that H(2) and G(2) are power-
complementary as

H(2)H () +G(2)G(z ™) = a constant
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Complementary Transfer
Functions

Conjugate Quadratic Filter

 |f apower-symmetric filter has an FIR
transfer function H(z) of order N, then the
FIR digital filter with atransfer function

G(2)=zH(zh
IS called a conjugate quadr atic filter of
H(z) and vice-versa

49 _ _
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Complementary Transfer
Functions

o |t follows from the definition that G(2) is
also a power-symmetric causal filter

e |t also can be seen that a pair of conjugate
guadratic filters H(z) and G(z) are also
power-complementary

o0 _ _
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Complementary Transfer
Functions
« Example- Let H(z2)=1-2z1+62%+32°
 Weform
H(2H((Z " +H(2)H(-Z)
=(1- 2711+ 677% + 32‘3)(1— 27+ 67 + 323)
+(1+ 2714677 - 32‘3)(1+ 27+62° — 323)
= (323 +4z+50+47 1+ 32_3)
+ (—323 —4z+50-47 1 - 32_3) =100

e > H(2) isapower-symmetric transfer
51 function
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Digital Two-Pairs

 The LTI discrete-time systems considered
so far are single-input, single-output
structures characterized by atransfer
function

« Often, such a system can be efficiently
realized by Interconnecting two-input, two-
output structures, more commonly called
two-pairs

52 _ _
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Digital Two-Pairs

* Figures below show two commonly used
block diagram representations of a two-pair

X1—> —>Y2 X1—> —>Y1

Y1<— «— X5 X, —>Y2

* HereY; and Y, denote the two outputs, and
X4, and X, denote the two inputs, where the
dependencies on the variable z has been
omitted for smplicity

53 _ _
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Digital Two-Pairs

* The Input-output relation of adigital two-
pair is given by

Yi| [t ol X4

Yo| [ty oo Xoo
 Inthe above relation the matrix t given by

c_ |t b
Ty Ty
IS called the transfer matrix of the two-pair

A _ _
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Digital Two-Pairs

o |t follows from the input-output relation that
the transfer parameters can be found as

follows:

S19)
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Digital Two-Pairs

o An alternate characterization of the two-pair
IS In terms of Its chain parameters as

X, :[A B} Y,
v, |7IC D] X,

where the matrix I" given by
|A B
"¢ o]

IS called the chain matrix of the two-pair

56 _ _
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Digital Two-Pairs

* Therelation between the transfer
parameters and the chain parameters are
given by

C AD — BC 1 C

t =, to= Ctop=", toy=——
11 A 12 A 21 A 22 A

A=l po_2 c_ p_loln—laly
o1 o1 o1 o1

of _ _
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Two-Pair Interconnection

Schemes
Cascade Connection - I'-cascade
. \VA X4 .
X — [A: 5'1 : = {A: B':J—’YZ
.. 1 1c DL cC' D'| vy
Y X5 Yl X2
e Here _Xl___A' B'__YZ'_
Y| LC DX
X1|_[A B| Yz
, | [C DX,

58 - _ _
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Two-Pair Interconnection
Schemes
e But from figure, X; =Y, andY; = X,
e Substituting the above relations in the first

equation on the previous slide and
combining the two equations we get

Xi|_[A BTA B|Y:

Yl' C D__C D_ x;
e Hence,

A BA
c Dc

Bl
D__

DII
59 - - _ _
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Two-Pair Interconnection
Schemes

Cascade Connection - t-cascade

X1 — {til tiz} L . {til tiz} —Y
X, [t1 13 v vl 11 o] Y,
e Here Yl _ til ti2 Xi
Yol |top too | Xoo
Y| [ty o] Xg
60 Yo | |to1 too ] Xoo
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Two-Pair Interconnection
Schemes

e But from figure, X,

e Substituting the above relations in the first
equation on the previous slide and
combl n| ng the two equatl onswe get

1y ty

1 [te
Uy T

1 4o

to

11ty

1oyt |

11ty

1y tro

=Y, and X5 =Y,
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Two-Pair Interconnection

Schemes
Constrained Two-Pair
X1—* *YZ
R G(z
‘ Y1<— < '())(2

H(2)
e |t can be shown that
H(z):ﬁchr D-G(2)
Xy A+B-G(2)
_t - lot1G(2)
11 1- tzzG(Z)

62
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Algebraic Stability Test

We have shown that the BIBO stability of a
causal rational transfer function reguires
that all its poles be inside the unit circle

For very high-order transfer functions, it is
very difficult to determine the pole
locations analytically

Root |ocations can of course be determined

on a computer by some type of root finding
algorithms
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Algebraic Stability Test

e \We now outline asimple algebraic test that
does not require the determination of pole
locations

The Stability Triangle

e For a2nd-order transfer function the
stability can be easily checked by
examining its denominator coefficients

64 _ _
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Algebraic Stability Test

e Let
D(2) =1+d;z1+d,z2

denote the denominator of the transfer

function
e |Interms of its poles, D(z) can be expressed

as

D(2)=(1-2zD)A-Aoz ) =1- (Mg +X5)Z L+ Ahyz 2
e Comparing the last two equations we get
Op=—(A+A2),  da=7Agh;

65 _ _
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Algebraic Stability Test

he poles are inside the unit circle if

A1l <l [Apl<1
Now the coefficient d, is given by the
product of the poles
Hence we must have

[do|<1

It can be shown that the second coefficient
condition isgiven by
|di|<1+d,
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Algebraic Stability Test

* Theregion in the (dy,d,)-plane where the
two coefficient condition are satisfied,
called the stability triangle, is shown below

—2 - / 1

67 Stability region
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Algebraic Stability Test

 Example - Consider the two 2nd-order
bandpass transfer functions designed
earlier:

Hgp(2) = —0.18819

1—-2_2
1—0.73434247 1 +1.376382 2

1—z"2
1—0.533531z 1 + 0.726542537 2

Hgp(2) =0.13673

68 _ _
Copyright © 2001, S. K. Mitra



Algebraic Stability Test

e Inthe case of Hgp(z), we observe that
dl — — 07343424, d2 — 13763819
e Since here|d,| >1, Hgp(2) isunstable

* On the other hand, in the case of Hgp(2),

we observe that
d; =—-0.53353098, d, =0.726542528

» Here,|d,|<1 and |di|<1+d,, and hence
Hgp(2) isBIBO stable
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Algebraic Stability Test

A General Stability Test Procedure

e Let Dy (2) denote the denominator of an
M-th order causal 1IR transfer function H(2):

Dy (2) = ZI o4l a
where we assume dg =1for ssimplicity

e Define an M-th order allpass transfer
function: y 4
z " Dpy (Z7)

AM (Z) — Dy (2)

70 _ _
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Algebraic Stability Test

e Or, equivaently

An (2) =

dp +dy 1z 2+dy oz 2440z M+ 27 M

1+diz 1+ dyz 244 dpy 1z M*1dy, z7M

o If weexpress

Dy (2) =[], @-%iz7)

then i1t follows that

dw = (DM [T
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Algebraic Stability Test

* Now for stability we must have |A;|<1,
which implies the condition |dy, | <1

e Define
km = Au () =dpy
* Then anecessary condition for stability of
Ay (2) , and hence, the transfer function
H(z) isgiven by
ki <1

12 _ _
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Algebraic Stability Test

e Assume the above condition holds
e We now form a new function

A (D)= M@=k |_ ] Au(@)-dy
1-kvAv (2] [1-duAu(2)_
e Substituting the rational form of Ay, (2) in
the above equation we get
 dy g +dy _oZ Tt dyz7(M=2) 4 77 (M=))
M-1(2) - 14+diz7 4erdy oz (M2 1 gy, 27 (M-D)

/3 _ _
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Algebraic Stability Test

where
g4 = di —dmAm
' 1-d3
e Hence, Ay _1(2) Isan alpass function of
order M -1
* Now the poles A, of Ay _1(2) are given by
the roots of the equation

A1\/I (7\0) :kl::-/l

74 _ _
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Algebraic Stability Test

» By assumption kg <1
* Hence |Ay (Ag)|>1

o If Ay (2) isastable alpass function, then

<1 for

Av (24=1, for

>1 for
e Thus, If Ay (2) Isastab

- Ao <1

Z
Z
Z

>1
=1
<1

e allpass function,

then the condition |Ay (Ao)|>1 holds only if
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Algebraic Stability Test

 Or, In other words Ay, _1(2) isastable
allpass function

e Thus, if Ay (2) isastable allpass function
and kl\z,I <1, then Ay _1(2) isalso astable
allpass function of one order lower

* We now provethe converse, i.e., if Ay_1(2)
IS a stable allpass function and k,\z,I <1, then
Ay (2)is also astable allpass function

76 _ _
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Algebraic Stability Test

e Tothisend, we express Ay (2) in terms of
Av _1(2) arriving at
kp +Z A 1(2)
Z) =
D 7 Ay 4(2)
o If Gy isapoleof Ay (2), then

QSlAM —1(‘20) — _kli/l

» By assumption k{; <1 holds

Ia4 _ _
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Algebraic Stability Test

e Therefore, |C5 Ay _1(Co)|>1 i€,
| Av —1(Co)[>1C0l

o Assume Ay _1(2) isastable allpass function
 Then|Ay _1(2)|£1 for |z|>1

* Now, if |,|=1, then because of the above
condition |Ay _1(£o) |51

 But the condition | Ay _1(E5)|>1E,| reduces
to |Aw_1(Co)l> 1 if [£|>1

/8 _ _
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Algebraic Stability Test

e Thusthereis acontradiction
e On the other hand, if |y,]<1 then from
1A _1(2)|>1 for |z|]<1
we have |A|\/| —1((;0)' >1
 The above condition does not violate the

condition [ Ay _1(Co)[>[Col
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Algebraic Stability Test

e Thus, if ki <1andif Ay_4(2) isastable
allpass function, then Ay, (z) Isaso astable
allpass function

e Summarizing, a necessary and sufficient set
of conditions for the causal allpass function
Ay (2) to be stable istherefore:

(1) ki <1, and
(2) The alpass function Ay, _1(2) Isstable

Copyright © 2001, S. K. Mitra
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Algebraic Stability Test

e Thus, once we have checked the condition
k& <1, wetest next for the stability of the
lower-order allpass function Ay _1(2)

e The processisthen repeated, generating a
set of coefficients:

k|\/| , (|\/| _1,...,k2,k1

and a set of allpass functions of decreasing
order:

A (2), A -1(2),..., Ao(2), A(2), Ay (2) =1

Copyright © 2001, S. K. Mitra
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Algebraic Stability Test

. Theallpassfunctlon Ay (2) Isstable If and
only if kI <1fori

 Example - Test the stability of

1
H(z) =
(2) 474432342724+ 741

 From H(z) we generate a4-th order allpass
function
1841243743741 4,44 dy284d, 22+ dyze L
A4(Z) — 24 =

+§z3+%22+4112+411 2 +012°+d,z%+d3z+dy

Copyright © 2001, S. K. Mitra



Algebraic Stability Test

e Using
g — Gi —dads
' 1-d?
we determine the coefficients{d;} of the
third-order allpass function A5(z) from the
coefficients{d;} of A,(2):
1,3,2,2.11, 4
A3(2) =

, 1<1<3

d3z3+d22 +dlz+1 15 5 15

3 2 3,112, 2,1
d,23+d572%+d3z+1 7 2 TE 2t

83 _ _
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Algebraic Stability Test

* Note: kg = Ag(c0) =ds :115<1
 Following the above procedure, we derive
the next two lower-order allpass functions:

79 5,2 4 159
AZ(Z)=224Z +224Z+1
2,159 79
2+ 044t o4

55 7471

A(2) =2

Z+ 23
101

384 _ _
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Algebraic Stability Test

* Note: ky =Ay(w0) =0 <1

_ _ 53
kg = Ay(o0) = 101 S 1
o Sinceall of the stability conditions are

satisfied, A,(z) and hence H(z) are stable

» Note: It is not necessary to derive Ag(2)
since A,(z) can be tested for stability using

the coefficient conditions
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