Digital Filter Structures

* The convolution sum description of an LTI
discrete-time system can, in principle, be
used to Implement the system

e For an |IR finite-dimensional system this
approach is not practical as here the impulse
response is of infinite length

 However, adirect implementation of the lIR
finite-dimensional system is practical
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Digital Filter Structures

e Here the input-output relation involves a
finite sum of products:

Vn] = -3y deyin—Kl+ 33 g pexn—K]

* On the other hand, an FIR system can be
Implemented using the convolution sum
which is afinite sum of products:

yin] =3 o hk]X{n—K]
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Digital Filter Structures

e The actual implementation of an LTI digital
filter can be elther in software or hardware
form, depending on applications

* |n ether case, the signal variables and the
filter coefficients cannot be represented
with finite precision
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Digital Filter Structures

 However, adirect implementation of adigital
filter based on elther the difference eguation
or the finite convolution sum may not
provide satisfactory performance due to the
finite precision arithmetic

o |tisthus of practical interest to develop
alternate realizations and choose the structure
that provides satisfactory performance under
finite precision arithmetic
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Digital Filter Structures

o A structural representation using
Interconnected basic building blocksisthe
first step In the hardware or software
Implementation of an LTI digital filter

e The structural representation provides the
key relations between some pertinent
Internal variables with the input and output
that in turn provides the key to the
Implementation
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Block Diagram Representation

 |nthetime domain, the input-output
relations of an LTI digital filter isgiven by
the convolution sum

yinl =2 KIXn—K]
or, by the linear constant coefficient
difference equation

yinl ==Y deyin—K]+ 3™ p{n—K]
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Block Diagram Representation

e For the implementation of an LTI digital
filter, the Input-output relationship must be
described by avalid computational algorithm

o TolIllustrate what we mean by a
computational algorithm, consider the causal

first-order LTI digital filter shown below

¥
x[n] ODD + » v[n]
7! 7]
¥ —dl
N
> <
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Block Diagram Representation

* Thefilter is described by the difference
equation

yin] = —dyy[n—=1] + poX{n] + pyX{n—1]

» Using the above equation we can compute
y[n] for n> 0 knowing the initial condition
y[—1] and the input x[n] for n> -1
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Block Diagram Representation

0] =~ cyy{~1]+ poX{0] + pX{-1]
Y1 =~ diy{0] + poxill+ p{O
V2=~ {1 + P2+ Pl

* \We can continue this calculation for any
value of the time index n we desire
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Block Diagram Representation

» Each step of the calculation requires a
knowledge of the previously calculated
value of the output sample (delayed value of
the output), the present value of the input
sample, and the previous value of the input
sample (delayed value of the input)

o Asaresult, thefirst-order difference
equation can be interpreted asavalid
computational algorithm
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Basic Building Blocks

e The computational algorithm of an LTl
digital filter can be conveniently
represented in block diagram form using the
basic building blocks shown below

A
A =@ g — >y

w[n]
Adder

Multiplier

X[n] — I > X[n]

XN — 25— yn]

X(n]

1 Unit delay Pick-off node
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Basic Building Blocks

Advantages of block diagram representation
e (1) Easy to write down the computational
algorithm by Inspection

e (2) Easy to analyze the block diagram to
determine the explicit relation between the
output and Input

Copyright © 2001, S. K. Mitra
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Basic Building Blocks

e (3) Easy to manipulate a block diagram to
derive other “equivalent” block diagrams
yielding different computational algorithms

e (4) Easy to determine the hardware
reguirements

e (5) Easier to develop block diagram
representations from the transfer function
directly
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Analysis of Block Diagrams

o Carried out by writing down the expressions
for the output signals of each adder as a sum
of Itsinput signals, and developing a set of
equations relating the filter input and output
signalsin terms of all internal signals

 Eliminating the unwanted internal variables
then results in the expression for the output
signal as afunction of the input signal and
the filter parameters that are the multiplier
1 Coefficients

Copyright © 2001, S. K. Mitra



Analysis of Block Diagrams

* Example - Consider the single-loop feedback
structure shown below

Eiz)
Xiz) Ht Giz) ¥izy
£i.02)

e The output E(2) of the adder is
E(z) = X(2)+G,y(2)Y(2)
e But from thefigure

Y(2) =Gi(2)E(2)

15 _ _
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Analysis of Block Diagrams

 Eliminating E(z) from the previous two
equations we arrive at

[1-G1(2)G,(2)]Y(2) = G1(2) X(2)
which leads to

(YD G

TX(2) 1-G(9Gy(2)

16

Copyright © 2001, S. K. Mitra



17

Analysis of Block Diagrams

 Example - Analyze the cascaded lattice
structure shown below where the z-
dependence of signal variables are not
snown for brevity

—1 la
A
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Analysis of Block Diagrams

* The output signals of the four adders are

given by W= X —aS,

Wo =W -05
W3 = Sl + 8W2
Y=PW+7>
e From the figure we observe
S, =7 W,
S =zW,

18 _ _
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Analysis of Block Diagrams

o Substituting the last two relations in the first
four equations we get

W =X —az W,
W, =W, — & 27 W,
W5 = 27 W, + W,
Y =BW, +yZz W,
* From the second equation we get

W, =W, /(1+ 6z71) and from the third
equation we get W = (e + Z )W,

19 _ _
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Analysis of Block Diagrams

e Combining the last two equations we get

-1
W, = €+Z
3 1+62_1

« Substituting the above equation in
Wi=X-az W5, Y=BW +yz2 W,
we finally arrive at

Y B+(PS+ye)zt+yz 2
H(z)=— = — —
X 1+(0+ae)z-+0az

20 _ _
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The Delay-Free Loop Problem

* For physical realizability of the digital filter
structure, It i1s necessary that the block
diagram representation contains no delay-
free loops

o Toillustrate the delay-free loop problem

consider the structure below
wln] H[.i'i',]h L

o L

~ v[n]

-
yin] Copyright © 2001, S. K. Mitra
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The Delay-Free Loop Problem

 Analysisof thisstructure yields

un

yin

=wn]+y[n]
= B(Mn] + Au[n])

which when combined results in

y[n] = B(Mn] + A(w{n] + y[n]))
 IEm) The determination of the current
value of y[n] requires the knowledge of the

same value
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The Delay-Free Loop Problem

 However, thisis physically impossible to
achieve due to the finite time required to
carry out all arithmetic operations on a
digital machine

* Method exists to detect the presence of
delay-free loops in an arbitrary structure,
along with methods to locate and remove
these loops without the overall input-output
relation
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The Delay-Free Loop Problem

 Removal achieved by replacing the portion
of the overall structure containing the delay-

free loops by an equivalent realization with
no delay-free loops

* Figure below shows such arealization of
the exampl e structure described earlier

1
wn] _ l-AB uln]

24 e —()
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Canonic and Noncanonic
Structures

o A digital filter structure is said to be
canonic If the number of delays in the block

diagram representation is equal to the order
of the transfer function

e Otherwise, It ISanoncanonic structure
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Canonic and Noncanonic
Structures

e The structure shown below Is honcanonic as
It employs two delays to realize afirst-order
difference eguation

yin] =—a yin—1]+ poX{n] + p{n—1]

x[n] 1 ODFH + 1 » y[n]

7! 7!

26 _ _
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Equivalent Structures

e Two digital filter structures are defined to
be equivalent If they have the same transfer
function

e \We describe next a number of methods for
the generation of equivalent structures

 However, afairly smple way to generate an
equivalent structure from a given realization

ISviathe transpose operation

27 _ _
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Equivalent Structures

ranspose Oper ation
(1) Reverseall paths

* (2) Replace pick-off nodes by adders, and
viceversa

* (3) Interchange the input and output nodes

 All other methods for developing equivalent
structures are based on a specific algorithm

for each structure

28 _ _
Copyright © 2001, S. K. Mitra



Equivalent Structures

o There areliterally an infinite number of
equivalent structures realizing the same
transfer function

 |tisthusimpossibleto develop all
equivalent realizations

e |Nnthis coursewe restrict our attention to a
discussion of some commonly used

structures

29 _ _
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Equivalent Structures

o Under infinite precision arithmetic any
given realization of adigital filter behaves
Identically to any other equivalent structure

 However, in practice, dueto the finite
wordlength limitations, a specific
realization behaves totally differently from
Its other equivalent realizations
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Equivalent Structures

e Hence, it Isimportant to choose a structure
that has the least quantization effects when
Implemented using finite precision
arithmetic

e Oneway to arrive at such astructure isto
determine alarge number of equivalent
structures, analyze the finite wordlength
effects in each case, and select the one
showing the least effects
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Equivalent Structures

* |n certain cases, It Is possible to develop a
structure that by construction has the |east
guantization effects

e \We defer the review of these structures after
a discussion of the analysis of quantization
effects

* Here, wereview some simple realizations
that in many applications are quite adeguate
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Basic FIR Digital Filter
Structures

e A causal FIR filter of order N is characterized
by atransfer function H(z) given by

H(2) =Y Jh[n]z "
which isapolynomial in z

 |nthetime-domain the input-output relation
of the above FIR filter isgiven by

ynl = >N o h[k]x{n—K]
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Direct Form FIR Digital Filter
Structures

 An FIR filter of order N is characterized by
N+1 coefficients and, in general, require
N+1 multipliers and N two-input adders

 Structuresin which the multiplier
coefficients are precisely the coefficients of
the transfer function are called direct form

structures
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Direct Form FIR Digital Filter
Structures

o A direct form realization of an FIR filter can
be readily developed from the convolution
sum description as indicated below for N =

x[n—1] x[n-2]

7 1 an—-3] = x[n—-4]
AT

;i[uﬁ'7 11[1]\?' P AV T A VAR 1 7 A4
.-@ »@ >(-|'—) ré » v[n]

Copyright © 2001, S. K. Mitra
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Direct Form FIR Digital Filter

Structures

« An analysisof this structure yields

y[n] = h[O]X[n]+ h[Z]x[n—-1] + h[2

+ h[3]X[n—3]+ h[4]x[n—4]

which is precisely of the form of t
convolution sum description

e Thedirect form structure shown o
previous slide isalso known asat

. delay lineor atransversal filter

X[n—2]

ne

n the
apped
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Direct Form FIR Digital Filter
Structures
* The transpose of the direct form structure

shown ear

—

—1

ler 1S 1ndicated below

'@‘E"@_' v[n]

N HOLZN

&

B —1 -1
h[ﬁlA h[ 3] h[2] h[1
xfn] *

e Both direct form structures are canonic with
respect to delays

37
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Cascade Form FIR Digital
Filter Structures

* A higher-order FIR transfer function can
also be realized as a cascade of second-

order FIR sections and possibly afirst-order
Section

e Tothisend we express H(z) as
H(2) = h[O]HkK_l(1+ Pzt + P %)

whereK =N if Niseven, and K = N2+1if N
IS odd, with Pok =0
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Cascade Form FIR Digital
Filter Structures

e A cascadereadization for N = 6 1S shown
below

h[0]

arnt

? "

—1
4

—O—
P13
>0

EBEB

e Each second-order section in the above
structure can also berealized in the
transposed direct form

39 _ _
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Polyphase FIR Structures

* The polyphase decomposition of H(z) leads
to aparallel form structure

o Toillustrate this approach, consider a causal
FIR transfer function H(z) with N = 8:

H(z) = h[0]+ h[1]Zz*+

N[2]27% +

+h[5]z + h[6

40

N[3]Z +

7%+ N7z +h[8

N4z

Z—8
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Polyphase FIR Structures

* H(2) can be expressed as a sum of two
terms, with one term containing the even-
Indexed coefficients and the other
containing the odd-indexed coefficients:

H (2) = (h[0] + N[2]Z % + h[4]Z~* + 6]z ° + h[8] Z°)
+(h[Yz 2 +h[3Zz >+ N5z +N7]z ")

= (N[O] + h[2]Z % + h[4]Z~* + h[6]2"° + h[8] 2"®)
+ 27 X(h[1] + h[3]Z % + h[5]z* + [ 7]z °

Copyright © 2001, S. K. Mitra
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Polyphase FIR Structures

e By using the notation
Eo(2) = h[O]+ h[2]z ™+ h[4]z ™% + h[6]z> + h[8] z*
E,(2) = h1] + h[3z*+ h[5]z % + h[7]z"3
we can express H(z) as
H(2) = Eg(2°) + Z 'Ey(2°)

42
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Polyphase FIR Structures

e Inasimilar manner, by grouping the terms
In the original expression for H(z), we can
reexpress it in the form

H(2) = Eo(Z) + 2 E(20) + 2 %E(2°)
where now
Eq(2) = h[0] + N3]z 1 + h[6] 22
E,(2) = 1] + h[4]z 1 + h[7]Z2
E,(2) = h[2]+ h[5]z * + h[8] 22
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Polyphase FIR Structures

he decomposition of H(z) in the form

H(2) = Eo(2%) + 2 'Ey(2°)
or
H(2) = Eo(Z°) + 2 E(20) + 2 %E(2°)

IS more commonly known as the polyphase
decomposition
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Polyphase FIR Structures

 Inthe general case, an L-branch polyphase
decomposition of an FIR transfer function

of order N 1s of the form
H(2) =Y oZ "Em(z")

where
[(N+1)/L|
E (2= > hLn+m]z™"
n=0

with h[n]=0 for n> N
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Polyphase FIR Structures

* Figures below show the 4-branch, 3-branch,
and 2-branch polyphase realization of a
transfer function H(z)

")

i

| £

EozY)

1

—*Tf*

=

—1
Z

+—| Exh

Ei(z?)

L EcY

L,

Ey(2?)

|

Ey(z2)

il

E(z)

* Note: The expression for the polyphase
componentskE,,(z) are different in each case
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Polyphase FIR Structures

e The subfilters Em(z") In the polyphase
realization of an FIR transfer function are
also FIR filters and can be realized using
any methods described so far

e However, to obtain a canonic realization of
the overall structure, the delaysin all
subfilters must be shared

47 _ _
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Polyphase FIR Structures

* Figure below shows a canonic realization of
alength-9 FIR transfer function obtained

using delay sharing

i
&[J]
h[5]
ity
¥ —1
h.fi-[]'] -
L~
| S
¥ 6] =1
Py
h[3]
h'l'[u]
L
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Linear-Phase FIR Structures

e The symmetry (or antisymmetry) property of a
linear-phase FIR filter can be exploited to
reduce the number of multipliers into almost
half of that in the direct form implementations

o Consider alength-7 Type 1 FIR transfer
function with a symmetric impul se response:

H(2) = hO0]+ h[1zt + h[2]z % + h[3]Z">
+h[2]z7* + N1z + h[0]z®

49 _ _
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Linear-Phase FIR Structures

e Rewriting H(2) in the form
H(2) = h[0](1+ 2 ®) + h[1](z 1 + 27°)
+h[2|(z7% + 74 + h[J|Z

we obtain the realization shown below

—1
“

—1
Z

-1

—1

—1

fof

?1[0] H[1]
_I_

1

+—p

‘5';1[2]
0

h[3]
n >

50
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Linear-Phase FIR Structures

e A similar decomposition can be applied to a
Type 2 FIR transfer function

e For example, alength-8 Type 2 FIR transfer
function can be expressed as

H(2)=h[0](1+Z ")+ 1 (z 1+ %)

+h[2(z %+ 22)+h3(z 3+
* The corresponding realization is shown on

the next dide

ol _ _
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Linear-Phase FIR Structures

~1

ﬁ..z—lgr.z

| E ~1 =
Y’a[ﬁ] h[1]
(1)

 Note: The Type 1 linear-phase structure for
alength-7 FIR filter requires 4 multipliers,
whereas a direct form realization requires 7

multipliers

52 _ _
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Linear-Phase FIR Structures

* Note: The Type 2 linear-phase structure for
alength-8 FIR filter requires 4 multipliers,
whereas a direct form realization requires 8
multipliers

o Similar savings occurs in the realization of
Type 3 and Type 4 linear-phase FIR filters
with antisymmetric impul se responses

23 _ _
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