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Digital Filter StructuresDigital Filter Structures

• The convolution sum description of an LTI
discrete-time system can, in principle, be
used to implement the system

• For an IIR finite-dimensional system this
approach is not practical as here the impulse
response is of infinite length

• However, a direct implementation of the IIR
finite-dimensional system is practical
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Digital Filter StructuresDigital Filter Structures

• Here the input-output relation involves a
finite sum of products:

• On the other hand, an FIR system can be
implemented using the convolution sum
which is a finite sum of products:
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Digital Filter StructuresDigital Filter Structures

• The actual implementation of an LTI digital
filter can be either in software or hardware
form, depending on applications

• In either case, the signal variables and the
filter coefficients cannot be represented
with finite precision
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Digital Filter StructuresDigital Filter Structures
• However, a direct implementation of a digital

filter based on either the difference equation
or the finite convolution sum may not
provide satisfactory performance due to the
finite precision arithmetic

• It is thus of practical interest to develop
alternate realizations and choose the structure
that provides satisfactory performance under
finite precision arithmetic
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Digital Filter StructuresDigital Filter Structures
• A structural representation using

interconnected basic building blocks is the
first step in the hardware or software
implementation of an LTI digital filter

• The structural representation provides the
key relations between some pertinent
internal variables with the input and output
that in turn provides the key to the
implementation
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Block Diagram RepresentationBlock Diagram Representation

• In the time domain, the input-output
relations of an LTI digital filter is given by
the convolution sum

or, by the linear constant coefficient
difference equation
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Block Diagram RepresentationBlock Diagram Representation
• For the implementation of an LTI digital

filter, the input-output relationship must be
described by a valid computational algorithm

• To illustrate what we mean by a
computational algorithm, consider the causal
first-order LTI digital filter shown below



8
Copyright © 2001, S. K. Mitra

Block Diagram RepresentationBlock Diagram Representation

• The filter is described by the difference
equation

• Using the above equation we can compute
y[n] for          knowing the initial condition

   and the input x[n] for           :

]1[][]1[][ 101 −++−−= nxpnxpnydny

0≥n
1−≥n]1[−y



9
Copyright © 2001, S. K. Mitra

Block Diagram RepresentationBlock Diagram Representation

• We can continue this calculation for any
value of the time index n we desire

]1[]0[]1[]0[ 101 −++−−= xpxpydy
]0[]1[]0[]1[ 101 xpxpydy ++−=
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Block Diagram RepresentationBlock Diagram Representation
• Each step of the calculation requires a

knowledge of the previously calculated
value of the output sample (delayed value of
the output), the present value of the input
sample, and the previous value of the input
sample (delayed value of the input)

• As a result, the first-order difference
equation can be interpreted as a valid
computational algorithm
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Basic Building BlocksBasic Building Blocks
• The computational algorithm of an LTI

digital filter can be conveniently
represented in block diagram form using the
basic building blocks shown below

x[n] y[n]

w[n]

+ A
x[n] y[n]

y[n]1−zx[n]
x[n] x[n]

x[n]

Adder

Unit delay

Multiplier

Pick-off node
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Basic Building BlocksBasic Building Blocks

Advantages of block diagram representation
• (1) Easy to write down the computational

algorithm by inspection
• (2)  Easy to analyze the block diagram to

determine the explicit relation between the
output and input
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Basic Building BlocksBasic Building Blocks

• (3)  Easy to manipulate a block diagram to
derive other “equivalent” block diagrams
yielding different computational algorithms

• (4)  Easy to determine the hardware
requirements

• (5) Easier to develop block diagram
representations from the transfer function
directly
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Analysis of Block DiagramsAnalysis of Block Diagrams
• Carried out by writing down the expressions

for the output signals of each adder as a sum
of its input signals, and developing a set of
equations relating the filter input and output
signals in terms of all internal signals

• Eliminating the unwanted internal variables
then results in the expression for the output
signal as a function of the input signal and
the filter parameters that are the multiplier
coefficients
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Analysis of Block DiagramsAnalysis of Block Diagrams
• Example - Consider the single-loop feedback

structure shown below

• The output E(z) of the adder is

• But from the figure
)()()()( 2 zYzGzXzE +=

)()()( 1 zEzGzY =
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Analysis of Block DiagramsAnalysis of Block Diagrams

• Eliminating E(z) from the previous two
equations we arrive at

which leads to
)()()()]()(1[ 121 zXzGzYzGzG =−
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Analysis of Block DiagramsAnalysis of Block Diagrams

• Example - Analyze the cascaded lattice
structure shown below where the z-
dependence of signal variables are not
shown for brevity
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Analysis of Block DiagramsAnalysis of Block Diagrams

• The output signals of the four adders are
given by

• From the figure we observe

21 SXW α−=
112 SWW δ−=

213 WSW ε+=
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Analysis of Block DiagramsAnalysis of Block Diagrams
• Substituting the last two relations in the first

four equations we get

• From the second equation we get
       and from the third

equation we get
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Analysis of Block DiagramsAnalysis of Block Diagrams

• Combining the last two equations we get

• Substituting the above equation in

we finally arrive at
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The Delay-Free Loop ProblemThe Delay-Free Loop Problem
• For physical realizability of the digital filter

structure, it is necessary that the block
diagram representation contains no delay-
free loops

• To illustrate the delay-free loop problem
consider the structure below



22
Copyright © 2001, S. K. Mitra

The Delay-Free Loop ProblemThe Delay-Free Loop Problem
• Analysis of this structure yields

which when combined results in

•            The determination of the current
value of y[n] requires the knowledge of the
same value

][][][ nynwnu +=
])[][(][ nAunvBny +=

( )])[][(][][ nynwAnvBny ++=
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The Delay-Free Loop ProblemThe Delay-Free Loop Problem
• However, this is physically impossible to

achieve due to the finite time required to
carry out all arithmetic operations on a
digital machine

• Method exists to detect the presence of
delay-free loops in an arbitrary structure,
along with methods to locate and remove
these loops without the overall input-output
relation
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The Delay-Free Loop ProblemThe Delay-Free Loop Problem
• Removal achieved by replacing the portion

of the overall structure containing the delay-
free loops by an equivalent realization with
no delay-free loops

• Figure below shows such a realization of
the example structure described earlier
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Canonic and Canonic and NoncanonicNoncanonic
StructuresStructures

• A digital filter structure is said to be
canonic if the number of delays in the block
diagram representation is equal to the order
of the transfer function

• Otherwise, it is a noncanonic structure
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Canonic andCanonic and Noncanonic Noncanonic
StructuresStructures

• The structure shown below is noncanonic as
it employs two delays to realize a first-order
difference equation

]1[][]1[][ 101 −++−−= nxpnxpnydny
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Equivalent StructuresEquivalent Structures

• Two digital filter structures are defined to
be equivalent if they have the same transfer
function

• We describe next a number of methods for
the generation of equivalent structures

• However, a fairly simple way to generate an
equivalent structure from a given realization
is via the transpose operation
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Equivalent StructuresEquivalent Structures

Transpose Operation
• (1)  Reverse all paths
• (2) Replace pick-off nodes by adders, and

vice versa
• (3) Interchange the input and output nodes
• All other methods for developing equivalent

structures are based on a specific algorithm
for each structure
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Equivalent StructuresEquivalent Structures

• There are literally an infinite number of
equivalent structures realizing the same
transfer function

• It is thus impossible to develop all
equivalent realizations

• In this course we restrict our attention to a
discussion of some commonly used
structures
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Equivalent StructuresEquivalent Structures

• Under infinite precision arithmetic any
given realization of a digital filter behaves
identically to any other equivalent structure

• However, in practice, due to the finite
wordlength limitations, a specific
realization behaves totally differently from
its other equivalent realizations
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Equivalent StructuresEquivalent Structures
• Hence, it is important to choose a structure

that has the least quantization effects when
implemented using finite precision
arithmetic

• One way to arrive at such a structure is to
determine a large number of equivalent
structures, analyze the finite wordlength
effects in each case, and select the one
showing the least effects
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Equivalent StructuresEquivalent Structures

• In certain cases, it is possible to develop a
structure that by construction has the least
quantization effects

• We defer the review of these structures after
a discussion of the analysis of quantization
effects

• Here, we review some simple realizations
that in many applications are quite adequate
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Basic FIR Digital FilterBasic FIR Digital Filter
StructuresStructures

• A causal FIR filter of order N is characterized
by a transfer function H(z) given by

which is a polynomial in
• In the time-domain the input-output relation

of the above FIR filter is given by
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Direct Form FIR Digital FilterDirect Form FIR Digital Filter
StructuresStructures

• An FIR filter of order N is characterized by
N+1 coefficients and, in general, require
N+1 multipliers and N two-input adders

• Structures in which the multiplier
coefficients are precisely the coefficients of
the transfer function are called direct form
structures
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Direct Form FIR Digital FilterDirect Form FIR Digital Filter
StructuresStructures

• A direct form realization of an FIR filter can
be readily developed from the convolution
sum description as indicated below for N =
4
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Direct Form FIR Digital FilterDirect Form FIR Digital Filter
StructuresStructures

• An analysis of this structure yields

which is precisely of the form of the
convolution sum description

• The direct form structure shown on the
previous slide is also known as a tapped
delay line or a transversal filter

][][][][ 4433 −+−+ nxhnxh
][][][][][][][ 22110 −+−+= nxhnxhnxhny

][][][][ 4433 −+−+ nxhnxh
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Direct Form FIR Digital FilterDirect Form FIR Digital Filter
StructuresStructures

• The transpose of the direct form structure
shown earlier is indicated below

• Both direct form structures are canonic with
respect to delays
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Cascade Form FIR DigitalCascade Form FIR Digital
Filter StructuresFilter Structures

• A higher-order FIR transfer function can
also be realized as a cascade of second-
order FIR sections and possibly a first-order
section

• To this end we express H(z) as

where            if N is even, and               if N
is odd, with

∏ =
−− ++= K
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Cascade Form FIR DigitalCascade Form FIR Digital
Filter StructuresFilter Structures

• A cascade realization for N = 6 is shown
below

• Each second-order section in the above
structure can also be realized in the
transposed direct form
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PolyphasePolyphase FIR Structures FIR Structures

• The polyphase decomposition of H(z) leads
to a parallel form structure

• To illustrate this approach, consider a causal
FIR transfer function H(z) with N = 8:

4321 43210 −−−− ++++= zhzhzhzhhzH ][][][][][)(
8765 8765 −−−− ++++ zhzhzhzh ][][][][
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PolyphasePolyphase FIR Structures FIR Structures
• H(z) can be expressed as a sum of two

terms, with one term containing the even-
indexed coefficients and the other
containing the odd-indexed coefficients:

)][][][][][()( 8642 86420 −−−− ++++= zhzhzhzhhzH
)][][][][( 7531 7531 −−−− ++++ zhzhzhzh

)][][][][][( 8642 86420 −−−− ++++= zhzhzhzhh
)][][][][( 6421 7531 −−−− ++++ zhzhzhhz
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PolyphasePolyphase FIR Structures FIR Structures

• By using the notation

we can express H(z) as

321
1 7531 −−− +++= zhzhzhhzE ][][][][)(
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PolyphasePolyphase FIR Structures FIR Structures

• In a similar manner, by grouping the terms
in the original expression for H(z), we can
reexpress it in the form

where now
)()()()( 3

2
23

1
13

0 zEzzEzzEzH −− ++=

21
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PolyphasePolyphase FIR Structures FIR Structures

• The decomposition of H(z) in the form

or

is more commonly known as the polyphase
decomposition
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PolyphasePolyphase FIR Structures FIR Structures

• In the general case, an L-branch polyphase
decomposition of an FIR transfer function
of order N is of the form

where

with h[n]=0 for n > N

)()( L
m

L
m

m zEzzH ∑ −
=

−= 1
0

∑
+

=

−+=
LN

n

m
m zmLnhzE

/)(

][)(
1

0



46
Copyright © 2001, S. K. Mitra

PolyphasePolyphase FIR Structures FIR Structures
• Figures below show the 4-branch, 3-branch,

and 2-branch polyphase realization of a
transfer function H(z)

• Note: The expression for the polyphase
components           are different in each case)(zEm
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PolyphasePolyphase FIR Structures FIR Structures

• The subfilters              in the polyphase
realization of an FIR transfer function are
also FIR filters and can be realized using
any methods described so far

• However, to obtain a canonic realization of
the overall structure, the delays in all
subfilters must be shared

)( L
m zE
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PolyphasePolyphase FIR Structures FIR Structures
• Figure below shows a canonic realization of

a length-9 FIR transfer function obtained
using delay sharing
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Linear-Phase FIR StructuresLinear-Phase FIR Structures
• The symmetry (or antisymmetry) property of a

linear-phase FIR filter can be exploited to
reduce the number of multipliers into almost
half of that in the direct form implementations

• Consider a length-7 Type 1 FIR transfer
function with a symmetric impulse response:

321 3210 −−− +++= zhzhzhhzH ][][][][)(
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Linear-Phase FIR StructuresLinear-Phase FIR Structures
• Rewriting H(z) in the form

we obtain the  realization shown below

)]([)]([)( 516 110 −−− +++= zzhzhzH
342 32 −−− +++ zhzzh ][)]([



51
Copyright © 2001, S. K. Mitra

Linear-Phase FIR StructuresLinear-Phase FIR Structures

• A similar decomposition can be applied to a
Type 2 FIR transfer function

• For example, a length-8 Type 2 FIR transfer
function can be expressed as

• The corresponding realization is shown on
the next slide

)]([)]([)( 617 110 −−− +++= zzhzhzH

)]([)]([ 4352 32 −−−− ++++ zzhzzh
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Linear-Phase FIR StructuresLinear-Phase FIR Structures

• Note: The Type 1 linear-phase structure for
a length-7 FIR filter requires 4 multipliers,
whereas a direct form realization requires 7
multipliers
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Linear-Phase FIR StructuresLinear-Phase FIR Structures

• Note: The Type 2 linear-phase structure for
a length-8 FIR filter requires 4 multipliers,
whereas a direct form realization requires 8
multipliers

• Similar savings occurs in the realization of
Type 3 and Type 4 linear-phase FIR filters
with antisymmetric impulse responses
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