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Computer-Aided Design ofComputer-Aided Design of
Digital FiltersDigital Filters

• The IIR and FIR filter design techniques
discussed so far can be easily implemented
on a computer

• In addition, there are a number of filter
design algorithms that rely on some type of
optimization techniques that are used to
minimize the error between the desired
frequency response and that of the
computer-generated filter
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Computer-Aided Design ofComputer-Aided Design of
Digital FiltersDigital Filters

• Basic idea behind the computer-based
iterative technique

• Let              denote the frequency response
of the digital filter H(z) to be designed
approximating the desired frequency
response             , given as a piecewise
linear function of    , in some sense
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Computer-Aided Design ofComputer-Aided Design of
Digital FiltersDigital Filters

• Objective - Determine iteratively the
coefficients of H(z) so that the difference
between between              and              over
closed subintervals of                  is
minimized

• This difference usually specified as a
weighted error function

where              is some user-specified
weighting function
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Computer-Aided Design ofComputer-Aided Design of
Digital FiltersDigital Filters

• Chebyshev or minimax criterion -
Minimizes the peak absolute value of the
weighted error:

where R is the set of disjoint frequency bands
in the range                , on which             is
defined

• For example, for a lowpass filter design, R is
the disjoint union of              and
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Computer-Aided Design ofComputer-Aided Design of
Digital FiltersDigital Filters

• Least-p Criterion - Minimize

over the specified frequency range R with p
a positive integer

• p = 2 yields the least-squares criterion
• As              , the least p-th solution

approaches the minimax solution
∞→p
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Computer-Aided Design ofComputer-Aided Design of
Digital FiltersDigital Filters

• Least-p Criterion - In practice, the p-th
power error measure is approximated as

where     ,                , is a suitably chosen
dense grid of digital angular frequencies

• For linear-phase FIR filter design,             and
      are zero-phase frequency responses

• For IIR filter design,              and              are
magnitude functions
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Design of Design of EquirippleEquiripple
Linear-Phase FIR FiltersLinear-Phase FIR Filters

• The linear-phase FIR filter obtained by
minimizing the peak absolute value of

is usually called the equiripple FIR filter
• After      is minimized, the weighted error

function E(ω) exhibits an equiripple
behavior in the frequency range R

ε

)(max ωε
ω

E
R∈

=



8
Copyright © 2001, S. K. Mitra

Design ofDesign of Equiripple Equiripple
Linear-Phase FIR FiltersLinear-Phase FIR Filters

• The general form of frequency response of a
causal linear-phase FIR filter of length
2M+1:

where the amplitude response           is a real
function of

• Weighted error function is given by

where           is the desired amplitude
response and           is a positive weighting
function
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Design ofDesign of Equiripple Equiripple
Linear-Phase FIR FiltersLinear-Phase FIR Filters

• Parks-McClellan Algorithm - Based on
iteratively adjusting the coefficients of
until the peak absolute value of E(ω) is
minimized

• If peak absolute value of E(ω) in a band    
              is     , then the absolute error

satisfies
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Design ofDesign of Equiripple Equiripple
Linear-Phase FIR FiltersLinear-Phase FIR Filters

• For filter design,

•      is required to satisfy the above desired
response with a ripple of          in the
passband and a ripple of      in the stopband
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Design ofDesign of Equiripple Equiripple
Linear-Phase FIR FiltersLinear-Phase FIR Filters

• Thus, weighting function can be chosen
either as

or

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Design ofDesign of Equiripple Equiripple
Linear-Phase FIR FiltersLinear-Phase FIR Filters

• Type 1 FIR Filter -
where

• Type 2 FIR filter -

where

∑ ω=ω
=

M

k
kkaH

0
)cos(][)(

(

( )∑ −ω=ω
+

=

2/)12(

1
2
1)(cos][)(

M

k
kkbH

(

MkkMhkaMha ≤≤−== 1],[2][],[]0[

2
12

2
12 1],[2][ ++ ≤≤−= MM kkhkb



13
Copyright © 2001, S. K. Mitra

Design ofDesign of Equiripple Equiripple
Linear-Phase FIR FiltersLinear-Phase FIR Filters

• Type 3 FIR Filter -
where

• Type 4 FIR Filter -

where
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Design ofDesign of Equiripple Equiripple
Linear-Phase FIR FiltersLinear-Phase FIR Filters

• Amplitude response for all 4 types of linear-
phase FIR filters can be expressed as

where
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Design ofDesign of Equiripple Equiripple
Linear-Phase FIR FiltersLinear-Phase FIR Filters

and

where
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=
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Design ofDesign of Equiripple Equiripple
Linear-Phase FIR FiltersLinear-Phase FIR Filters

with

            ,         ,  and         , are related to b[k],
c[k], and  d[k], respectively











−
=

−

−

4Typefor,
3Typefor,1
2Typefor,
1Typefor,

2
12

2
12

M

M

M

M

L

][~ kb ][~ kc ][~ kd



17
Copyright © 2001, S. K. Mitra

Design ofDesign of Equiripple Equiripple
Linear-Phase FIR FiltersLinear-Phase FIR Filters

• Modified form of weighted error function

where we have used the notation
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Design ofDesign of Equiripple Equiripple
Linear-Phase FIR FiltersLinear-Phase FIR Filters

• Optimization Problem - Determine
which minimize the peak absolute value
of

over the specified frequency bands
• After          has been determined,

corresponding coefficients of the original
       are computed from which h[n] are

determined
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Design ofDesign of Equiripple Equiripple
Linear-Phase FIR FiltersLinear-Phase FIR Filters

• Alternation Theorem -           is the best
unique approximation of D(ω) obtained by
minimizing peak absolute value     of

if and only if there exist at least L+2
extremal frequencies,
in a closed subset R of the frequency range

           such that
and                             ,                      for all i

)]()()()[()( ω−ωωω=ω DAQW

)(ωA

ε

,10},{ +≤≤ω Lii

π≤ω≤0 110 +ω<ω<<ω<ω LLL

)()( 1+ω−=ω ii EE ε=ω )( iE

E



20
Copyright © 2001, S. K. Mitra

Design ofDesign of Equiripple Equiripple
Linear-Phase FIR FiltersLinear-Phase FIR Filters

• Consider a Type 1 FIR filter with an
amplitude response           whose
approximation error           satisfies the
Alternation Theorem

• Peaks of           are at
where

• Since in the passband and stopband,
and           are piecewise constant,
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Design ofDesign of Equiripple Equiripple
Linear-Phase FIR FiltersLinear-Phase FIR Filters

• Using                                 , where          is
the k-th order Chebyshev polynomial

•           can be expressed as

which is an Lth-order polynomial in
• Hence,          can have at most          local

minima and maxima inside specified
passband and stopband
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Design ofDesign of Equiripple Equiripple
Linear-Phase FIR FiltersLinear-Phase FIR Filters

• At bandedges,             and            ,            is
a maximum, and hence           has extrema at
these points

•           can have extrema at           and
• Therefore, there are at most L+3 extremal

frequencies of
• For linear-phase FIR filters with K specified

bandedges, there can be at most L+K+1
extremal frequencies
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Design ofDesign of Equiripple Equiripple
Linear-Phase FIR FiltersLinear-Phase FIR Filters

• The set of equations

is written in a matrix form
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Design ofDesign of Equiripple Equiripple
Linear-Phase FIR FiltersLinear-Phase FIR Filters

• The matrix equation can be solved for the
unknowns         and     if the locations of the
L+2 extremal frequencies are known a
priori

• The Remez exchange algorithm is used to
determine the locations of the extremal
frequencies
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RemezRemez Exchange Algorithm Exchange Algorithm
• Step 1: A set of initial values of extremal

frequencies are either chosen or are
available from completion of previous stage

• Step 2:  Value of      is computed using

where
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RemezRemez Exchange Algorithm Exchange Algorithm
• Step 3: Values of           at             are then

computed using

• Step 4: The polynomial           is determined
by interpolating the above values at the L+2
extremal frequencies using the Lagrange
interpolation formula
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RemezRemez Exchange Algorithm Exchange Algorithm
• Step 4: The new error function

is computed at a dense set S (        ) of
frequencies.  In practice S = 16L is adequate.
Determine the L+2 new extremal frequencies
from the values of           evaluated at the
dense set of frequencies.

• Step 5: If the peak values     of           are
equal in magnitude, algorithm has converged.
Otherwise, go back to Step 2.
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RemezRemez Exchange Algorithm Exchange Algorithm
• Illustration of algorithm

                                     Iteration process is
                               stopped if the  
                               difference between 
                               the values of the 
                               peak absolute errors
                               between two  
                               consecutive stages is
                               less than a preset 
                               value, e.g., 610−
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RemezRemez Exchange Algorithm Exchange Algorithm
• Example - Approximate the desired

function                               defined for the
range                 by a linear function
by minimizing the peak value of the
absolute error

• Stage 1:
Choose arbitrarily the initial extremal points
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RemezRemez Exchange Algorithm Exchange Algorithm

• Solve the three linear equations

i.e.,

for the given extremal points yielding
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RemezRemez Exchange Algorithm Exchange Algorithm
• Plot of                                                 along

with values of error at chosen extremal
points shown below

• Note: Errors are equal in magnitude and
alternate in sign
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RemezRemez Exchange Algorithm Exchange Algorithm
• Stage 2:
• Choose extremal points where

assumes its maximum absolute values
• These are
• New values of unknowns are obtained by

solving

yielding
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RemezRemez Exchange Algorithm Exchange Algorithm

• Plot of                                                 along
with values of error at chosen extremal
points shown below
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RemezRemez Exchange Algorithm Exchange Algorithm
• Stage 3:
• Choose extremal points where

assumes its maximum absolute values
• These are
• New values of unknowns are obtained by

solving

yielding
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RemezRemez Exchange Algorithm Exchange Algorithm
• Plot of                                               along

with values of error at chosen extremal
points shown below

• Algorithm has converged as      is also the
maximum value of the absolute error
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IIR Digital Filter Design UsingIIR Digital Filter Design Using
MATLABMATLAB

• Order Estimation -
• For IIR filter design using bilinear

transformation, MATLAB statements to
determine the order and bandedge are:
[N, Wn] = buttord(Wp, Ws, Rp, Rs);
[N, Wn] = cheb1ord(Wp, Ws, Rp, Rs);
[N, Wn] = cheb2ord(Wp, Ws, Rp, Rs);
[N, Wn] = ellipord(Wp, Ws, Rp, Rs);



37
Copyright © 2001, S. K. Mitra

IIR Digital Filter Design UsingIIR Digital Filter Design Using
MATLABMATLAB

• Example - Determine the minimum order of a
Type 2 Chebyshev digital highpass filter with
the following specifications:

                kHz,             kHz,             kHz,
               dB,              dB
• Here,                              ,
• Using the statement
 [N, Wn] = cheb2ord(0.5, 0.3, 1, 40);

we get N = 5  and Wn = 0.3224

1=pF 1=pF 4=TF
1=α p 40=αs

5.04/12Wp =×= 3.04/6.02Ws =×=



38
Copyright © 2001, S. K. Mitra

IIR Digital Filter Design UsingIIR Digital Filter Design Using
MATLABMATLAB

• Filter Design -
• For IIR filter design using bilinear

transformation, MATLAB statements to use
are:
[b, a] = butter(N, Wn)
[b, a] = cheby1(N, Rp, Wn)
[b, a] = cheby2(N, Rs, Wn)
[b, a] = ellip(N, Rp, Rs, Wn)
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IIR Digital Filter Design UsingIIR Digital Filter Design Using
MATLABMATLAB

• The form of transfer function obtained is

• The frequency response can be computed
using the M-file freqz(b, a, w) where w is a
set of specified angular frequencies

• It generates a set of complex frequency
response samples from which magnitude
and/or phase response samples cn be
computed
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IIR Digital Filter Design UsingIIR Digital Filter Design Using
MATLABMATLAB

• Example - Design an elliptic IIR lowpass filter
with the specifications:               kHz,

      kHz,            kHz,               dB,
dB

• Here,                                  ,
• Code fragments used are:

[N,Wn] = ellipord(0.4, 0.5, 0.5, 40);
[b, a] = ellip(N, 0.5, 40, Wn);

8.0=pF
1=sF 4=TF 5.0=α p
40=αs

π=π=ω 4.0/2 Tpp FF π=π=ω 5.0/2 Tss FF
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IIR Digital Filter Design UsingIIR Digital Filter Design Using
MATLABMATLAB

• Gain response plot is shown below:
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FIR Digital Filter Design UsingFIR Digital Filter Design Using
MATLABMATLAB

• Order Estimation -
• Kaiser’s Formula:

• Note: Filter order N is inversely
proportional to transition band width
and does not depend on actual location of
transition band
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FIR Digital Filter Design UsingFIR Digital Filter Design Using
MATLABMATLAB

• Hermann-Rabiner-Chan’s Formula:

where

with
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FIR Digital Filter Design UsingFIR Digital Filter Design Using
MATLABMATLAB

• Formula valid for
• For             , formula to be used is obtained

by interchanging      and
• Both formulas provide only an estimate of

the required filter order N
• Frequency response of FIR filter designed

using this estimated order may or may not
meet the given specifications

• If specifications are not met, increase filter
order until they are met

sp δ≥δ

sp δ<δ
pδ sδ



45
Copyright © 2001, S. K. Mitra

FIR Digital Filter Design UsingFIR Digital Filter Design Using
MATLABMATLAB

• MATLAB code fragments for estimating
filter order using Kaiser’s formula
num = - 20*log10(sqrt(dp*ds)) - 13;
den = 14.6*(Fs - Fp)/FT;
N = ceil(num/den);

• M-file remezord implements Hermann-
Rabiner-Chan’s order estimation formula
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FIR Digital Filter Design UsingFIR Digital Filter Design Using
MATLABMATLAB

• For FIR filter design using the Kaiser
window, window order is estimated using the
M-file kaiserord

• The M-file kaiserord can in some cases
generate a value of N which is either greater
or smaller than the required minimum order

• If filter designed using the estimated order N
does not meet the specifications, N should
either be gradually increased or decreased
until the specifications are met
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EquirippleEquiripple FIR Digital Filter FIR Digital Filter
Design Using MATLABDesign Using MATLAB

• The M-file remez can be used to design an
equiripple FIR filter using the Parks-
McClellan algorithm

• Example - Design an equiripple FIR filter
with the specifications:               kHz,

      kHz,             kHz,                dB,
        dB

• Here,                      and

8.0=pF
1=sF 4=TF 5.0=α p
40=αs

0559.0=δ p 01.0=δs
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EquirippleEquiripple FIR Digital Filter FIR Digital Filter
Design Using MATLABDesign Using MATLAB

• MATLAB code fragments used are
[N, fpts, mag, wt] =   

remezord(fedge, mval, dev, FT);
b = remez(N, fpts, mag, wt);
where fedge = [800   1000],
mval = [1   0], dev = [0.0559   0.01], and
FT = 4000
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EquirippleEquiripple FIR Digital Filter FIR Digital Filter
Design Using MATLABDesign Using MATLAB

• The computed gain response with the filter
order obtained (N = 28) does not meet the
specifications (              dB,                dB)

• Specifications are met with N = 30
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EquirippleEquiripple FIR Digital Filter FIR Digital Filter
Design Using MATLABDesign Using MATLAB

• Example - Design a linear-phase FIR
bandpass filter of order 26 with a passband
from 0.3 to 0.5, and stopbands from 0 to
0.25 and from 0.55 to 1

• The pertinent input data here are
N = 26
fpts = [0  0.25  0.3  0.5  0.55 1]
mag = [0  0  1  1  0  0]
wt = [1  1  1]
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• Computed gain response shown below
where             dB,                 dB1=α p 7.18=αs
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• We redesign the filter with order increased
to 110

• Computed gain response shown below
where                    dB,                 dB

• Note: Increase in
order improves
gain response at the
expense of increased
computational
complexity

2.51=αs024.0=α p
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•       can be increased at the expenses of a
larger       by decreasing the relative weight
ratio

• Gain response of
bandpass filter of
order 110 obtained
with a weight vector
[1  0.1  1]

• Now                   dB,                    dB

pα
sα

spW δδ=ω /)(

076.0=α p 86.60=αs
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• Plots of absolute error for 1st design
• Absolute error has

same peak value in
all bands

• As L = 13, and there
are 4 band edges, there can be at most
                     extrema

• Error plot exhibits 17 extrema
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• Absolute error has same peak value in
all bands for the 2nd design

• Absolute error in passband of 3rd design is
10 times the error in the stopbands
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• Example - Design a linear-phase FIR
bandpass filter of order 60 with a passband
from 0.3 to 0.5, and stopbands from 0 to
0.25 and from 0.6 to 1 with unequal weights

• The pertinent input data here are
N = 60
fpts = [0  0.25  0.3  0.5  0.6 1]
mag = [0  0  1  1  0  0]
wt = [1  1  0.3]
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• Plots of gain response and absolute error
shown below
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• Response in the second transition band shows
a peak with a value higher than that in
passband

• Result does not contradict alternation theorem
• As N = 60, M = 30, and hence, there must be

at least M + 2 = 32 extremal frequencies
• Plot of absolute error shows the presence of

32 extremal frequencies
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• If gain response of filter designed exhibits a
nonmonotonic behavior, it is recommended
that either the filter order or the bandedges
or the weighting function be adjusted until a
satisfactory gain response has been obtained

• Gain plot obtained
by moving the
second stopband
edge to 0.55
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• A lowpass differentiator has a bandlimited
frequency response

where                    represents the passband
and                     represents the stopband

• For the design phase we choose


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• The M-file remezord cannot be used to
estimate the order of an FIR differentiator

• Example - Design a full-band (           )
differentiator of order 11

• Code fragment to use
b = remez(N, fpts, mag, ‘differentiator’);
where    N = 11

        fpts = [0   1]
        mag = [0   pi]

π=ωp
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• Plots of magnitude response and absolute
error

• Absolute error increases with     as the
algorithm results in an equiripple error of
the function ]1[ )( −ω
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• Example - Design a lowpass differentiator
of order 50 with                   and

• Code fragment to use
b = remez(N, fpts, mag, ‘differentiator’);
where

        N = 50
        fpts = [0   0.4   0.45   1]
        mag = [0   0.4*pi   0   0]

πω 4.0=p πω 45.0=s
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• Plot of the magnitude response of the
lowpass differentiator
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EquirippleEquiripple FIR  FIR Hilbert Hilbert TransformerTransformer
Design Using MATLABDesign Using MATLAB

• Desired amplitude response of a bandpass
Hilbert transformer is

with weighting function

• Impulse response of an ideal Hilbert
transformer satisfies the condition

which can be met by a Type 3 FIR filter

HLD ω≤ω≤ω=ω ,1)(

HLP ω≤ω≤ω=ω ,1)(

evenfor,0][ nnhHT =
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• Example - Design a linear-phase bandpass
FIR Hilbert transformer of order 20 with

           ,
• Code fragment to use

b = remez(N, fpts, mag, ‘Hilbert’);
where

            N = 20
            fpts = [0.1   0.9]
            mag = [1   1]

π=ω 1.0L π=ω 9.0H
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• Plots of magnitude response and absolute
error
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• Window Generation - Code fragments to use
w = blackman(L);
w = hamming(L);
w = hanning(L);
w = chebwin(L, Rs);
w = kaiser(L, beta);
where window length L is odd
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• Example - Kaiser window design for use in a
lowpass FIR filter design

• Specifications of lowpass filter:                 ,
            ,           dB

• Code fragments to use
[N, Wn, beta, ftype] = kaiserord(fpts, mag,dev);
w = kaiser(N+1, beta);
where  fpts = [0.3   0.4]

                 mag = [1   0]
                 dev = [0.003162   0.003162]

π=ω 4.0s

π=ω 3.0p
50=αs 003162.0=δ⇒ s
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• Plot of the gain response of the Kaiser
window
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• M-files available are fir1 and fir2
• fir1 is used to design conventional lowpass,

highpass, bandpass, bandstop and multiband
FIR filters

• fir2 is used to design FIR filters with
arbitrarily shaped magnitude response

• In fir1, Hamming window is used as a
default if no window is specified
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• Example - Design using a Kaiser window a
lowpass FIR filter with the specifications:

  ,                 ,
• Code fragments to use

[N, Wn, beta, ftype] = kaiserord(fpts, mag, dev);
b = fir1(N, Wn, kaiser(N+1, beta));
where  fpts = [0.3   0.4]

                 mag = [1    0]
                 dev = [0.003162   0.003162]

π=ω 3.0p π=ω 4.0s 003162.0=δs
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• Plot of gain response
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• Example - Design using a Kaiser window a
highpass FIR filter with the specifications:

    ,                 ,
• Code fragments to use
• [N, Wn, beta, ftype] = kaiserord(fpts, mag, dev);

b = fir1(N, Wn, ‘ftype’, kaiser(N+1, beta));
where  fpts = [0.4   0.55]

                 mag = [0    1]
                 dev = [0.02   0.02]

π=ω 55.0p π=ω 4.0s 02.0=δs
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• Plot of gain response
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• Example - Design using a Hamming
window an FIR filter of order 100 with
three different constant magnitude levels:
0.3 in the frequency range [0, 0.28], 1.0 in
the frequency range [0.3, 0.5], and 0.7 in the
frequency range [0.52, 1.0]
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• Code fragment to use
b = fir2(100, fpts, mval);
where  fpts = [0  0.28  0.3  0.5  0.52  1];
            mval = [0.3  0.3  1.0  1.0  0.7  0.7];
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