Perfect Reconstruction Two-
Channel FIR Filter Banks

* A perfect reconstruction two-channel FIR
filter bank with linear-phase FIR filters can

be designed If the power-complementary
reguirement

Ho(el®)FF + Hy(e!®)f =1
between the two analysis filters Hy(z) and
H1(2) is not imposed
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Perfect Reconstruction Two-
Channel FIR Filter Banks

0 develop the pertinent design equations
we observe that the input-output relation of
the 2-channel QM F bank

Y(2) = 2{Ho(2)Go(2) + H1(2G1(2} X (2)
+ 2{Ho(-2)Go(2) + Hy(-2)G(2} X (-2)
can be expressed in matrix form as

Y(z):;[Go(Z) Gl(Z)]m(l)((;)) ﬂi((:;))}w((—zg)}
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Perfect Reconstruction Two-
Channel FIR Filter Banks

 From the previous equation we obtain

CER T RCTE) g ]

e Combining the two matrix eguations we get

N R [ awae] P

- 1M AHM @I 5|
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Perfect Reconstruction Two-
Channel FIR Filter Banks

where

M, _| Go(2) Gy(z)
D=6y 2) G2,

(M), _| Ho(z2) Hy(2)
1 @= HoC2) Hy2)

are called the modulation matrices
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Perfect Reconstruction Two-
Channel FIR Filter Banks

* Now for perfect reconstruction we must have
Y(2) =z " X(2) and correspondingly
Y(-2)=(-2" X(-2)

e Substituting these relations in the equation

[ Y(2) } _ ;G(m)(z)[H(m)(Z)]T[ >z( ((_Z;)}

we observe that the PR condition is satisfied

It 2 m) g (M T _ 7" 0
A Gl A
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Perfect Reconstruction Two-
Channel FIR Filter Banks

e Thus, knowing the analysisfilters Hy(2)
and Hq(z), the synthesisfilters Gy(z) and
Gy(2) are determined from

GM(z)=2

z ! 0

0 (27"

H™ )T )

o After some algebrawe arrive at
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Perfect Reconstruction Two-
Channel FIR Filter Banks

7

G — . _
—_— 22_ ° —
Gl(z) — det[H (m)(Z)] HO( Z)
where

det[H ™ (2)] = Ho(2)Hy(-2) - Ho(-2)H1(2)
and ¢ I1san odd positive integer
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Perfect Reconstruction Two-
Channel FIR Filter Banks

» For FIR analysisfilters Hp(2) and H4(2),
the synthesisfilters Gy(z) and G;(z) will
also be FIR filtersif

det[H™ (2)] = cz X
where c isareal number and k is a positive
Integer
» Inthiscase Gy(2) =2z ""MH,(-2)

Gi(2) =57 """ Ho(-2)
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Orthogonal Filter Banks

* Let Hy(2) bean FIR filter of odd order N
satisfying the power-symmetric condition
Ho(2)Ho(zh) + Ho(-2)Ho(-z 1) =1
» Choose Hq(2)=z"NHy(-z?)
» Then det[H (M (2)]
= -z N(Hg(9Ho(zH) + Ho(-2)Ho(-z ) )= -2z N
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Orthogonal Filter Banks

o Comparing the last equation with
det[H™ (2)] = cz ¥
weobservethat c=-1land k=N
e Using Hy(2) =z NHy(-z?1) in
Go(2) =27 ""VHy(-2)

6i(2) =22 IHo(-2)
with ¢/ =k = N we get
Go(2) =22 "Hop(z™1), Gi(2)=2Z VHy(z 1)

10 _ _
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Orthogonal Filter Banks

Note: If Hy(2) Isacausal FIR filter, the
other threefilters are also causal FIR filters
Moreover, [H{(e!®)|=|Hq(-€e!®)
Thus, for areal coefficient transfer function
If Ho(z) 1salowpassfilter, then H;(2) isa
highpass filter

In addition, |G (e!®)|=|H;(e!®)|, i=12

Copyright © 2001, S. K. Mitra



Orthogonal Filter Banks

o A perfect reconstruction power-symmetric
filter bank Is also called an orthogonal filter
bank

e Thefilter design problem reducesto the
design of a power-symmetric lowpass filter
Ho(2)

e Tothisend, we can design aan even-order
F(2)=Ho(2)Ho(z™) whose spectra

factorization yields Hg(2)

12 _ _
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Orthogonal Filter Banks

* Now, the power-symmetric condition
Ho(2)Ho(z ™) + Hi(-2)Hy (-2 1) =1

Impliesthat F(z) be a zero-

phase half-band

lowpass filter with a non-negative

frequency response F (e!®)

« Such ahalf-band filter can be obtained by
adding a constant term K to a zero-phase
half-band filter Q(z) such that

F(el®)=Q(e!®)+ K >0

13

for dl o
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Orthogonal Filter Banks

e Summarizing, the steps for the design of a
real-coefficient power-symmetric lowpass
filter Ho(2) are:

* (1) Design azero-phase real-coefficient
FIR half-band lowpass filter Q(z) of order
2N with N an odd positive integer:

N
Q2= > qn]z™"
N

n=—

Copyright © 2001, S. K. Mitra



Orthogonal Filter Banks

e (2) Let 6 denote the peak stopband ripple of
Q(el®)

* Define F(2) = Q(2) + 6 which guarantees
that F(el®)>0 for al ®

* Note: If q[n] denotes the impulse response
of Q(2), then the Impulse response f [Nn] of

F(2) isgiven by
g[n]+o, for n=0
f[n]:{ gln], for n=0
 (3) Determine the spectral factor Hy(2) of
15 F(2

Copyright © 2001, S. K. Mitra



Orthogonal Filter Banks

 Example - Consider the FIR filter
F(2)=2" 1+ 2z HNR(2)

where R(2) is a polynomial inz ™ of degree
N —1with N odd

* F(2) can be made a half-band filter by
choosing R(z) appropriately

o Thisclass of half-band filters has been
called the binomial or maxflat filter

16 _ _
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Orthogonal Filter Banks

* Thefilter F(z) has afreguency response
that iIsmaximally flatat @ =0andat o =

» ForN=3, R(2) = 116(—1+ 4771772
resulting in
F(z)= 116(—23 +9z+16+9z7 -7
which Is seen to be a symmetric polynomial

with 4 zeros located at z=-1, azero at
7=2-+/3, andazeroat z=2++/3

Copyright © 2001, S. K. Mitra
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Orthogonal Filter Banks

e The minimum-phase spectral factor Is
therefore the lowpass analysis filter

Ho(2) = —0.3415(1+ z 1)?[1- (2-/3)Z Y]
= -0.3415(1+1.7327 1 + 0.4647 % — 0.2687>)
* The corresponding highpass filter is given

by
Hi(2) = 2 Ho(-Z )
=-0.3415(0.2679+ 0.4641z 1 -1.7327 % + 77>

18 _ _
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Orthogonal Filter Banks

* Thetwo synthesisfilters are given by
Go(2) =27 °Ho(Z )
= —0.683(—-0.2679+ 0.46417 1 +1.7327 % + 73
Gi(2) =27 Hy(z7)
=-0.683(1-1.7327 1 + 0.46417 % + 0.26797">)

e Magnitude responses of the two analysis
filters are shown on the next dide

19 _ _
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Orthogonal Filter Banks

1

Magnitude
©O o o o
N M OO 0

o

 Comments: (1) The order of F(2) isof the
form 4K+2, where K is a positive integer

o mm) Order of Hy(z) ISN = 2K+1, which is
odd as required

20 _ _
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Orthogonal Filter Banks

e (2) Zeros of F(z) appear with mirror-image
symmetry in the z-plane with the zeros on
the unit circle being of even multiplicity

* Any appropriate half of these zeros can be
grouped to form the spectral factor Hy(2)

» For example, a minimum-phase Hy(z)can
be formed by grouping all the zeros inside
the unit circle along with half of the zeros

on the unit circle

21 _ _
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Orthogonal Filter Banks

 Likewise, a maximum-phase Hq(z) can be
formed by grouping all the zeros outside the
unit circle along with half of the zeros on
the unit circle

 However, it Isnot possible to form a
spectral factor with linear phase

e (3) The stopband edge frequency Isthe
same for F(2) and Hg(2)
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Orthogonal Filter Banks

e (4) If the desired minimum stopband
attenuation of Hg(2) Is a5 dB, then the
minimum stopband attenuation of F(2) Is
20+ 6.02 dB

e Example - Design alowpass real-coefficient
power-symmetric filter Hqg(2) with the
following specifications. ws =0.637, and
as=12dB

23 _ _
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Orthogonal Filter Banks

* The specifications of the corresponding zero-
phase half-band filter F(z) are therefore:
ws =0.637 and ag=40dB

e The desired stopband rippleisthus 6 = 0.01
which Is also the passband ripple

 The passband edgeisat @, =7 —0.637 =0.377

e Using thefunctionr emezor d wefirst

estimate the order of F(z) and then using the

functionr emez design Q(2)

24 _ _
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Orthogonal Filter Banks

The order of F(2) isfound to be 14 implying
that the order of Hy(2) I1s7 which isodd as
desired

To determine the coefficients of F(z) we add

er r (the maximum stopband ripple) to the
central coefficient g[7]

Next, using the function r oot s we determine
the roots of F(z) which should theretically
exhibit mirror-image symmetry with double
roots on the unit circle

Copyright © 2001, S. K. Mitra
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Orthogonal Filter Banks

 However, the algorithm s numerically quite
sensitive and it 1s found that a slightly larger
value than er r should be added to ensure

double zeros of F(z) on the unit circle

* Choosing the roots inside the unit circle
along with one set of unit circle roots we get
the minimum-phase spectral factor Hq(2)

Copyright © 2001, S. K. Mitra
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Orthogonal Filter Banks

he gain responses of the two analysis
filters are shown below

Copyright © 2001, S. K. Mitra



Orthogonal Filter Banks

o Separate realizations of the two filters Hp(2)
and Hq(z) would require 2(N+1)
multipliers and 2N two-input adders

 However, acomputationally efficient
realization requiring N+1 multipliers and 2N
two-input adders can be developed by
exploiting the relation

Hi(2) =2 "Ho(-27)

29 _ _
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Paraunitary System

e A p-input, g-output LTI discrete-time
system with atransfer matrix T,(2) Is
called a paraunitary systemif Ty, (2) Isa
paraunitary matrix, I.e.,

Tho(2)Tpg(2)=cl
e Note: T oq(2) Isthe paraconjugate of Tpq(2)
given by the transpose of qu(z )W|th
each coefficient replaced by its conjugate
* |, Isan pxpidentity matrix, cisareal
30 constant

Copyright © 2001, S. K. Mitra



Paraunitary Filter Banks

o A causal, stable paraunitary system isalso a
|ossless system

e |t can be shown that the modul ation matrix
- Ho(2) Hy(2)
2= Ho(-2) Hi(-2)

of a power-symmetric filter bank isa
paraunitary matrix

31 _ _
Copyright © 2001, S. K. Mitra



32

Paraunitary Filter Banks

Hence, a power-symmetric filter bank has
also been referred to as a paraunitary filter
bank

The cascade of two paraunitary systems
with transfer matricesTé,lc)l(z) and Télrz)(z) IS
also paraunitary

The above property can be utilized In

designing a paraunitary filter bank without
resorting to spectral factorization

Copyright © 2001, S. K. Mitra



Power-Symmetric FIR
Cascaded Lattice Structure

e Consider areal-coefficient FIR transfer
function Hy(z) of order N satisfying the
power-symmetric condition

Hn(2HN(Z D + HyE2HN(-Z D) = Ky
» We shall show now that Hy(z) can be

realized in the form of a cascaded |lattice
structure as shown on the next slide

33 _ _
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Power-Symmetric FIR
Cascaded Lattice Structure

Xo() XN
Z Y&z)
e Define
Xi(Z Y: (Z
Hi@)=212, 6=
0(2) Xo(2)
N 1<i<N
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Power-Symmetric FIR

Cascaded Lattice Structure
* From the figure we observe that
X1(2) = Xo(2) + Kz X (2)
Y1(2) =~k Xo(2) + Z " Xo(2)
 Therefore,
Hi(2) =1+ kzZ S, G(2)=—k +2
e |t can be easily shown that

Gy(2) = Z Hy (-2 )

35
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Power-Symmetric FIR

Cascaded Lattice Structure

* Next from thefigure it follows that
Hi(2) = Hi_2(2) + kZ °Gi_»(2)
Gi(2)=-kiH;_2(2)+ 2 °G_»(2)

e |t can easily be shown that

Gi(2)=2"H(-27)
provided
Gi_2(2) =2 ""H;_5(-z71

36
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Power-Symmetric FIR
Cascaded Lattice Structure
We have shown that G; (z) = z" H; (- z‘l)
holdsfori =1

Hence the above relation holds for all odd
Integer values of |

==)> N must be an odd integer

It iIsasimple exercise to show that both H; (2)
and G; (z) satisfy the power-symmetry
condition H; (2)H;(z 1)+ H; (-2)H; (-z %) = K;

Copyright © 2001, S. K. Mitra



Power-Symmetric FIR
Cascaded Lattice Structure

* |n addition, H;(z) and G;(z) are power-
complementary, i.e.,
(1+k?)Z Gi_o(2) =k H; () +Gi (2
e To develop the synthesis equation we
express H;_»(2) and Gi_»(2) in terms of
Hi(z) and G (2):
(1+k*)Hi_2(2) = Hi (2 - kG (2)
(1+k?)Z Gi_o(2) =k H;(2)+ Gi (2

38 _ _
Copyright © 2001, S. K. Mitra



Power-Symmetric FIR
Cascaded Lattice Structure
* Note: At the i-th step, the coefficient k; is

chosen to eliminate the coefficient of z7,
the highest power of ztin H;(2) - kG (2)
 For this choice of k; the coefficient of
also vanishes making H;_»(z) a polynomial
of degree |1 —2
e The synthesis process beginswith 1 = N and
compute Gy (2)using Gy (2) =z “Hy (-Z )

39 _ _
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Power-Symmetric FIR

Cascaded Lattice Structure

e Next, the transfer functions Hy_»(z) and
Gpn_2(2) are determined using the synthesis
equations

(1+k?)Hi_2(2) = H; (2) -k G; (2)
(1+k?)Z °G_5(2) = kH;(2) + G (2)
e Thisprocessisrepeated until all coefficients
of the lattice have been determined

40
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Power-Symmetric FIR

Cascaded Lattice Structure
 Example- Consider
H:(2) =1+ 0.321+0.227%-0.376Z2°
—0.062%+022°
e |t can be easily verified that Hs(2) satisfies
the power-symmetric condition
e Next weform
Gs(2) =z °Hg(-Zz 1) =-0.2-0.062*
+0.3762°+022°-032%+27

Copyright © 2001, S. K. Mitra
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Power-Symmetric FIR

Cascaded Lattice Structure

o determine Hg(z) we first form

=(2) — keGs(2) = (1+ 0.2ks ) + (0.3+ 0.06ks) 2

+(0.2—0.376ks)z % + (-0.376 - 0.2ks) 2>
+(=0.06+0.3ks)Z 4 +(0.2—kg)Z >

e To cancel the coefficient of z~°in the above

42

we choose

ke =0.2
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Power-Symmetric FIR

Cascaded Lattice Structure

1

* Then Ha(2)= |, [Hs(2) ~ksGs(2)]

= ,(1.04+0.31271+0.12487 * - 0.4167 °)

* \Wenext form
Ga(7) = 73 1y _ -1 -2, -3
2(2) =72 "Ha(-Z2 ") =0.4+0.122 " -0.3Z “ +Z
 Continuing the above process we get
k3 — —0.4, kl — 03

43 _ _
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Power-Symmetric FIR Banks

o Using the method outlined for the
realization of a power-symmetric transfer
function, we can develop a cascaded lattice
realization of the 2-channel paraunitary
QM F bank

e Three important properties of the QMF
|attice structure are structurally induced

Copyright © 2001, S. K. Mitra



Power-Symmetric FIR Banks

* (1) The QMF lattice guarantees perfect
reconstruction independent of the lattice
parameters

o (2) It exhibits very small coefficient
sensitivity to lattice parameters as each
stage remains |ossless under coefficient
guantization

o (3) Computational complexity Is about one-
half that of any other realization as it
requires (N+1)/2 total number of multipliers

. foranorder-N filter

Copyright © 2001, S. K. Mitra



Power-Symmetric FIR Banks

 Example - Consider the analysisfilter of the
previous example:
H-(z) = 0.3231+0.51935z * + 0.301347 *

~0.078123-0.137672"% +0.3212°
+0.0792°-0.049z21

o \We place amultiplier h[0] = 0.3231 at the
Input and synthesize a cascade lattice
structure for the normalized transfer
function H-(z)/h[O]

46 _ _
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Power-Symmetric FIR Banks

* The lattice coefficients obtained for the
normalized analysis transfer function are:
kr =—0.15165, kg =0.2354,
Ky =-0.48393, k; =1.61

 Note: Because of the numerical problem,
the coefficients of the spectral factor
obtained in the previous example are not

very accurate

47 _ _
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Power-Symmetric FIR Banks

As aresult, the coefficients of z7(—1 of the

transfer function H,_,(z) generated from
the transfer function H, (z) using the
rel aIion

Hi—2(2) = 2[H (2)-kG (2)]
IS not exactly zero and has been set to zero
at each Iteration

Copyright © 2001, S. K. Mitra
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Power-Symmetric FIR Banks

e Two Interesting properties of the cascaded

lattice QM F bank can be seen by examining
Its multiplier coefficient values

e (1) Signs of coefficients alternate between
stages

 (2) The values of the coefficients{k}
decrease with increasing |

Copyright © 2001, S. K. Mitra



Power-Symmetric FIR Banks

 The QMF lattice structure can be used
directly to design the power-symmetric
analysisfilter Hy(z) using an iterative
computer-aided optimization technique

* Goal: Determine the lattice parameters k;
by minimizing the energy in the stopband of

Ho(2)

20 _ _
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Power-Symmetric FIR Banks

e The pertinent obj ective function is given by

Ho(e?)“do

 Note: The power symmetric property
ensures good passhand response

ol _ _
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Biorthogonal FIR Banks

 Inthe design of an orthogonal 2-channel
filter bank, the analysisfilter Hq(2) IS
chosen as a spectral factor of the zero-phase
even-order half-band filter

F(2)=Hp(2)Ho(z ™)

* Note: The two spectral factors Hy(z) and
Ho(z™) of F(2) have the same magnitude
response

52 _ _
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Biorthogonal FIR Banks

o Asaresult, it isnot possible to design
perfect reconstruction filter banks with
linear-phase analysis and synthesis filters

 However, it IS possible to maintain the
perfect reconstruction condition with linear-
phase filters by choosing a different
factorization scheme
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Biorthogonal FIR Banks

e To thisend, the causal half-band filter zZNF(2)
of order 2N 1sfactorized in the form

zNF(2) = Ho(2)H(-2)
where Hg(2) and H,(z) are linear-phase
filters

e The determinant of the modulation matrix
H{™ (2) isnow given by
det[HM (2)] = Ho(2)Hy(-2) —Ho(-2)Hy(2) =z N

Copyright © 2001, S. K. Mitra
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Biorthogonal FIR Banks

 Note: The determinant of the modulation
matrix satisfies the perfect reconstruction
condition

* Thefilter bank designed using the
factorization schemez-NF(2) = Hy(2)H4(-2)
Is called a biorthogonal filter bank

* Thetwo synthesisfilters are given by

Go(2) = Hi(=2), G1(2) =-Ho(-2)

29 _ _
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Biorthogonal FIR Banks

e Example - The half-band filter
F(2) = 23(1+ z N4 (-1+4z71- 7279
e can befactored several different waysto
yield linear-phase analysis filters Hgp(2) and
H1(2)
e For example, one choiceyields
Ho(2) = %(—1+ 2714 622+223-7%)
5 H1(2) = %(1— 22714+ 7°%)

Copyright © 2001, S. K. Mitra



Y

Biorthogonal FIR Banks

» Sincethelength of Hy(2) 1s5 and the
length of H,(2z) 1s 3, the above set of
analysisfiltersis known as the 5/3 filter-
pair of Daubechies

* A plot of the gain responses of the 5/3 filter-
pair s shown below

o/t Copyright © 2001, S. K. Mitra



Biorthogonal FIR Banks

* Another choiceyieldsthe 4/4 filter-pair of
Daubechies
Ho(2) = %(1+ 3214322+ 73)
H,(2) = %(—1— 3z1+3z2+779)
* A plot of the gain responses of the 4/4 filter-
pair is shovl\{sn below

oo
VA : N

Magnitude
o
(6] -

)
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