Notes
Slide Show
Outline
1
Chapter 29
  • Transistor Amplifiers
2
Use of Capacitors in Amplifier Circuits
  • Capacitor review
    • Store electrical charge
    • Impedance:



    • ∞ impedance at dc
    • Impedance decreases at higher frequencies
3
Use of Capacitors in Amplifier Circuits
  • Capacitors
    • Block dc between stages
    • Can be designed to readily pass ac
4
Use of Capacitors in Amplifier Circuits
  • Coupling capacitors
    • At “high” frequencies




    • For R = Rin + RS, select capacitor so XC ≤ 0.1 R
    • Referred to as “stiff coupling”
5
Use of Capacitors in Amplifier Circuits
  • Bypass capacitors
    • Emitter resistor, Re used for biasing
    • Ce is a short circuit at high frequencies
    • Re has no effect on amplification when Ce is present
    • Select XC ≤ 0.1R
6
Use of Capacitors in Amplifier Circuits
7
Use of Capacitors in Amplifier Circuits
  • Capacitors
    • Couple desired ac signals between stages
    • Bypass unwanted ac signals to ground
8
Use of Capacitors in Amplifier Circuits
  • Circuit analysis
    • If XC ≤ 0.1R
    • Replace C with O.C. to determine dc I and V
    • Replace C with S.C. to determine ac i and v
9
BJT Small-Signal Models
  • T-Equivalent Model
    • ie = ib + ic
    • ie = (β + 1)ib



    • Simple
    • Good enough for most applications
10
BJT Small-Signal Models
11
BJT Small-Signal Models
  • Models
    • T-equivalent model simpler
    • h-parameter model more accurate
    • hfe (h-model) = βac (T-model) [βac ≈ βdc]
    • h-parameters dependent on Q-point
    • BJT is a current amplifier (current source in both models)
12
BJT Small-Signal Models
  • h-parameter model
    • More complex
    • Better for ac operation
    • Common Emitter model
      • hie = input impedance (Ω)
      • hre = reverse voltage transfer ratio (unitless)
      • hfe = forward current transfer ratio (unitless)
      • hoe = output admittance (S)
13
Calculating Av, zin, zout, and Ai of a Transistor Amplifier
  • Voltage Gain, Av
    • Output voltage divided by input voltage
  • Input Impedance, zin
    • Input voltage divided by input current
14
Calculating Av, zin, zout, and Ai of a Transistor Amplifier
  • Output Impedance, zout


  • Current Gain, Ai


  • Power Gain, Ap
15
Common-Emitter Amplifier
  • General BJT circuit analysis
    • Find operating point
    • Determine ac parameters (T- or h-  models)
    • Remove dc V sources & replace with S.C.’s
    • Replace coupling & bypass C’s with S.C.’s
    • Replace BJT with circuit model
    • Solve resulting circuit
16
Common-Emitter Amplifier
  • ac equivalent of fixed-bias CE amplifier using h-parameter model
17
Common-Emitter Amplifier
  • Equations for h-parameter model for fixed-bias CE amplifier
    • Circuit voltage gain a function of
      • Model forward current transfer ratio, hfe
      • Model input impedance, hie
      • Circuit collector resistance, RC
      • Circuit load resistance, RL
18
Common-Emitter Amplifier
  • Circuit current gain a function of
    • Same parameters, plus
    • Fixed bias resistance, RB
19
Common-Emitter Amplifier
  • Equations for h-parameter model for fixed-bias CE amplifier
    • Circuit input impedance a function of
      • Model forward current transfer ratio, hfe
      • Model input impedance, hie
20
Common-Emitter Amplifier
  • Circuit output impedance a function of
    • Collector resistance (model output admittance), hoe very low
21
ac Load Line
  • Q-point is on dc load line
  • ac load line determines maximum undistorted output
  • Can calculate maximum power
  • Q-point also on ac load line
  • ac load line has different slope
22
ac Load Line
  • CE amplifier circuit
23
ac Load Line
  • dc and ac load lines
24
ac Load Line
  • Equations of ac load line
  • Consider
    • CE amplifier circuit
    • dc load line
25
Common-Collector Amplifier
  • Important characteristics
    • High input impedance
    • Low output impedance
    • vout in-phase with vin
    • vout ≈ vin
26
Common-Collector Amplifier
  • Important characteristics
    • Large current gain
    • Input voltage measured at base
    • Output voltage measured at emitter
27
Common-Collector Amplifier
  • Common-Collector circuit
28
Common-Collector Amplifier
  • Circuit gains and impedances
    • Av ≈ 1
    • zin = RB||zin(Q)
    •                           close to hfe



    •                                       very small
29
FET Small-Signal Model
  • Voltage controlled amplifier
  • Small-signal model same for JFETs & MOSFETs
  • High input impedance
  • is = id
30
FET Small-Signal Model
  • gm is transconductance
  • gm is slope of transfer curve
31
FET Small-Signal Model
  • Equations
    • Definition



    • Maximum



    • Measured
32
Common-Source Amplifier
  • Analysis
    • Similar to BJT using h-parameter model
    • First determine bias
    • Find dc operating point (Q-point)
    • Determine gm
33
Common-Source Amplifier
  • A common-source circuit
34
Common-Source Amplifier
  • Equations
    • No current input
    • Voltage gain dependent on gm  and RD
    • Input impedance is RG || ∞
    • Output impedance approximately drain resistance
35
Common-Source Amplifier
  • D-MOSFETs
    • Analysis same as JFETs
    • Except operation in enhancement region
36
Common-Source Amplifier
  • E-MOSFETs
    • Find IDSQ, VGSQ, and VDSQ at Q-point
    • Solve for gm of amplifier
    • Sketch ac equivalent circuit
    • Determine Av, zin, and zout of amplifier
37
Common-Drain (Source Follower) Amplifier
  • Av < 1
  • vout in phase with vin
  • Input impedance very high
  • Output impedance low
  • Main application: Buffer
38
Troubleshooting a Transistor Amplifier Circuit
  • Incorrect placement of electrolytic capacitors
    • Noisy output signal
    • Capacitor as an antenna
    • Generally 60 Hz added
39
Troubleshooting a Transistor Amplifier Circuit
  • Correct placement
    • Check proper polarity
    • Replace faulty capacitors
40
Troubleshooting a Transistor Amplifier Circuit
  • Faulty or incorrectly placed capacitor
    • Measured Av different from theoretical Av
    • Faulty capacitor behaves like an open circuit
    • Faulty capacitor can develop internal short
41
Troubleshooting a Transistor Amplifier Circuit
  • Troubleshooting steps
    • Remove ac signal sources from circuit
    • Calculate theoretical Q-point
    • Measure to determine actual Q-point
    • Verify capacitors are correctly placed
    • Ensure connections, especially ground wires, as short as possible
42
Troubleshooting a Transistor Amplifier Circuit
  • Distorted output signal usually the result of too large an input signal