LECTURE 23 Limit theorems – I

• Readings: Sections 7.1-7.3

•
$$X_1, \ldots, X_n$$
 i.i.d.

$$M_n = \frac{X_1 + \dots + X_n}{n}$$

What happens as $n \to \infty$?

- Why bother?
- A tool: Chebyshev's inequality
- Convergence "in probability"
- ullet Convergence of M_n

Deterministic limits (review)

- Sequence a_n Number a
- a_n converges to a

$$\lim_{n\to\infty}a_n=a$$

" a_n eventually gets and stays (arbitrarily) close to a"

• For every $\epsilon>0$, there exists n_0 , such that for all $n\geq n_0$, we have $|a_n-a|<\epsilon$.

Chebyshev's inequality

 \bullet Random variable X

$$\sigma^2 = \int (x - \mathbf{E}[X])^2 f_X(x) \, dx$$

$$\sigma^2 \geq c^2 \mathbf{P}(|X - \mathbf{E}[X]| \geq c)$$

$$\mathbf{P}(|X - \mathbf{E}[X]| \ge c) \le \frac{\sigma^2}{c^2}$$

$$\mathbf{P}(|X - \mathbf{E}[X]| \ge k\sigma) \le \frac{1}{k^2}$$

Convergence "in probability"

- Sequence of random variables Y_n
- converges in probability to a number a: "(almost all) of the PMF/PDF of Y_n , eventually gets concentrated (arbitrarily) close to a"
- For every $\epsilon > 0$,

$$\lim_{n\to\infty} \mathbf{P}(|Y_n - a| \ge \epsilon) = 0$$

Examples

•

Does Y_n converge?

• Flip fair coin n times $Y_n = \text{(number of heads) minus } n/2$ Converges?

The pollster's problem

- f: fraction of population that do XYZ
- *i*th person polled:

$$X_i = \begin{cases} 1, & \text{if yes,} \\ 0, & \text{if no.} \end{cases}$$

- $M_n = (X_1 + \cdots + X_n)/n$ fraction of "yes" in our sample
- Suppose we want:

$$P(|M_n - f| \ge .01) \le .05$$

• Use Chebyshev's inequality:

$$P(|M_n - f| \ge .01) \le \frac{\sigma_{M_n}^2}{(0.01)^2}$$

$$= \frac{\sigma_x^2}{n(0.01)^2} \le \frac{1}{4n(0.01)^2}$$

• If n=50,000, then $\mathbf{P}(|M_n-f| \geq .01) \leq .05$ (conservative)

Convergence of the sample mean

(Weak law of large numbers)

• X_1, X_2, \ldots i.i.d. finite mean μ and variance σ^2

$$M_n = \frac{X_1 + \dots + X_n}{n}$$

- $\mathbf{E}[M_n] =$
- $Var(M_n) =$

$$\mathbf{P}(|M_n - \mu| \ge \epsilon) \le \frac{\sigma^2}{n\epsilon^2}$$