Department of EECS - University of California at Berkeley
EECS126 - Probability and Random Processes - Fall 2003
REVIEW

These notes go through a number of problems to help you review the material. We
classify the problems by topic but we do not restrict ourselves to a strict ordering of the
concepts. These notes complement the review for midterm 2.

1 Probability Space

We have learned that a probability space is {Q, F, P} where € is a nonempty set, F is a
o-field of €2, i.e., a collection of subsets of {2 that is closed under countable set operations,
and P : F — [0,1] is a o additive set function such that P(Q) = 1.

The idea is to specify the likelihood of various outcomes (elements of €2). If one can
specify the probability of individual outcomes (e.g., when Q is countable), then one can
choose F = 29, so that all sets of outcomes are events. However, this is generally not
possible as the example of the uniform distribution on [0, 1] shows.

Recall also the definition of conditional probability P[A | B] = P(ANB)/P(B) and that
of independence of two events and of mutual independence of a collection of events.

Example 1 Pick three balls from an urn with fifteen balls that are identical except that ten
are red and five are blue. Specify the probability space.

One possibility is to specify the color of the three balls in the order they are picked. Then

1 4
98  pyBBB) =223
151413 151413

Example 2 We deal five cards from a perfectly shuffied 52-card deck. Specify the probability
space.

Q={R, B}, F =22 P({RRR}) =

One possibility is to choose €2 to be the set of all the permutations of the numbers 1 to 52.
Here, w represents the shuffled deck. Then F = 2% and P({w}) = 1/(52!) for w € .

Note that this probability space is bigger than necessary since it specifies more than the
five cards we deal. However, it is easy to specify.

Example 3 You flip a fair coin until you get three consecutive ‘heads’. Specify the proba-
bility space.

One possible choice is Q = {H, T}*, the set of finite sequences of H and T. That is,
[H,TY = U, {1, T}
This set €2 is countable, so we can choose F = 2%. Here,
P({w}) = 2 "where n := length of w.

This is another example of a probability space that is bigger than necessary, but easier
to specify than the smallest probability space we need.
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Example 4 Let Q = {0,1,2,...}. Let F be the collection of subsets of Q that are either
finite or whose complement is finite. Is F a o-field?

No, F is not closed under countable set operations. For instance, {2n} € F for each n > 0
because {2n} is finite. However,
A:=U2 {2n}

is not in F because both A and A€ are infinite.

Example 5 Choose two numbers uniformly but without replacement in {0,1,...,10}. What
is the probability that the sum is less than or equal to 10 given that the smallest is less than
or equal to 57

Draw a picture of
Q=1{0,1,...,10}*\ {(4,4) | i=0,1,...,10}.
The outcomes in €2 all have the same probability. Let also
A={w|w # ws and wy + ws < 10}, B = {w | w1 # ws and min{w;,ws} < 5}.

The probability we are looking for is

ANB| Al
| B kD

Your picture shows that |A| = 10+948+---4+1 =55 and that |B| = 10 x5+4 x5 = 70.
Hence, the answer is 55/70 = 11/14.

Example 6 In a class with 24 students, what is the probability that no two students have
the same birthday?

Let N = 365 and n = 24. The probability is

N N-1 N-=2 N-—-n+1
o= — X X X oo X — .
N N N N

To estimate this quantity we proceed as follows. Note that

In(a) = Z n(*— o S [ “"(W)d‘”
_ N/a In(y)dy = Nlyln(y) — y]
= —(N—-n-+ l)ln(W) —(n—1).

(In this derivation we defined a = (N —n + 1)/N.) With n = 24 and N = 365 we find that
o~ 0.48.



2 Random Variables

A random variable is a function X : Q — R such that X ~'((—oo,z]) € F for all z € R. We
then define the c.d.f. fx(.) of X as

fx(z) = P(X <z):=P(X ((~00,2])),z € R.

The random variable X is continuous if

x

fx(x) :/ fx(u)du, z € R.

— 00

In that case, fx is the p.d.f. of X. We know that

E(h(X)) = [ h(z)dFx(a)
If the random variable takes countably many values, then the list of these values together
with their probabilities is called the p.m.f.

The same story extends to multiple random variables and you know about j.p.m.f., j.c.d.f.,
j-p-d.f. You also know how to calculate E(h(X)). In particular, you recall the variance,
covariance, k-th moment. The vector notation has few secrets for you. For instance, you
know that

cov(AX, BY) = Acov(X,Y)B”.

You also understand the following derivation:
EX'Y) = Etr(X*Y)) = E(tr(YX")) = tr B(YX?T).

You should remember the simple p.m.f. and p.d.f. Here is a list of what [ assume you
know:

B(p), B(n,p),G(p), P(A), Ula,b], Exp(X), N (1, 0%), N (1, ).

You also know the definition (and meaning) of independence and mutual independence
and you know that the mean value of a product of independent random variables is the
product of their mean values. You can also prove that functions of independent random
variables are independent.

Example 7 Give an example of a probability space and a real-valued function on Q that is
not a random variable.

Let Q@ = {0,1,2},F = {0,{0},{1,2},Q}, P({0}) = 1/2 = P({1,2}), and X(w) = w for
w € . The function X is not a random variable since

X7H(=00, 1)) = {0,1} ¢ F.

The meaning of all this is that the probability space is not rich enough to specify P(X <

1).

Example 8 Let X, Y be two points picked independently and uniformly on the circumference
of the unit circle. Define Z = || X —Y||?. Find fz(.).
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By symmetry we can assume that the point X has coordinates (1,0). The point Y then has
coordinates (cos(f),sin(#)) where @ is uniformly distributed in [0, 27]. Consequently, X —Y
has coordinates (1 —cos(f), —sin(#)) and Z = (1 —cos(f))? +sin?(#) = 2(1 —cos(6)) =: g(0).

We now use the basic results on the density of a function of a random variable. To review
how this works, note that if 6 € (6, 0y + €), then

9(0) € (9(00), 9(00 + €)) = (9(60), 9(6) + g7(bo)e)-

Accordingly,
g(0) € (2,2 +9)

if and only if

0 € (Bub+ )

for some 6,, such that g(6,) = z. It follows that, if Z = ¢(#), then

90) = Z gy e

In this expression, the sum is over all the #,, such that g(f,) = z.
Coming back to our example, g(#) = z if 2(1 — cos(f)) = 2. In that case, |g/(f)| =

2|sin(f)| = 2,/1 — (1 — £)%. Note that there are two values of § such that g() = z whenever
z € (0,4). Accordingly,

1 1 1
fz(z) =2 x X —=————for z € (0,4).

2/1—-(1—-2)2 21 op /s 2

Example 9 Let X1, Xs,..., X, be i.i.d. U[0,1] and Y = max{Xy,...,X,}. Calculate
E[X,|Y].

Intuition suggests, and it is not too hard to justify, that if Y = y, then X; = y with prob-
ability 1/n, and with probability (n —1)/n the random variable X is uniformly distributed

in [0, y]. Hence, , Ly ,
n— n+

Example 10 Let X,Y be a pair of random variables. Find the value of a that minimizes
the variance of X —aY .

If we were allowed to choose (a,b) to minimize E((X — aY — b)?) we would pick a =
cov(X,Y)/var(Y). But

E((X —aY —b)?) =var(X —aY —b) + (E(X —aY —b))? = var(X —aY) + (E(X —aY — b))%

Thus, (a,b) would be picked so that E(X — aY — b) = 0 and var(X — aY’) is minimized.
Therefore, we know that the answer is a = cov(X,Y")/var(Y).



Example 11 Let {X,,,n > 1} be i.i.d. B(p). Assume that g,h : R" — R have the property
that if x,y € R" are such that x; < y; for i =1,...,n, then g(x) < g(y) and h(x) < h(y).
Show, by induction on n, that cov(g(X), h(X)) > 0 where X = (Xq,...,X,).

The intuition is that g(X) and h(X) are large together and small together.

For n = 1 this is easy. We must show that cov(g(X;)h(X;)) > 0. By redefining g(z) = g(z)—
9(0) and ha) = h(z) — h(0), we see that it is equivalent to show that cov(§(X1), h(X;)) > 0.
In other words, we can assume without loss of generality that ¢g(0) = h(0) = 0. If we do
that, we need only show that

E(g(X1)h(X1)) = pg(1)h(1) > E(g(X1))E(h(X1)) = pg(1)ph(1)

which is seen to be satisfied since g(1) and h(1) are nonnegative and p < 1.
Assume that the result is true for n. Let X = (Xy,...,X,) and V = X,,.;. We must
show that
E(g(X,V)h(X,V)) = E(9(X,V)E(h(X,V)).

We know, by the induction hypothesis, that
E(g(X,i)h(X,1)) > E(9(X,i)E(h(X,i)), for i =0,1.
Assume, without loss of generality, that
E(9(X,0)) =0.

Then we know that
E(g9(X,1)) > 0 and E(g(X,0)h(X,0)) >0

and

so that

E(g(X,V))E(h
<pE(g(X,1 1
= E(g(X,V)h(X,V

which completes the proof.

3 Discrete Time Markov Chains

Recall that a sequence of random variables X = {X,,,n > 0} taking values in a countable
set S is a Markov chain if

P X, =j|Xn=4X,,m<n-1]=P(i,j),Vi,j € S,n > 0.

The key point of this definition is that, given the present value of X, the future {X,,, m >
n + 1} and the past {X,,,m < n — 1} are independent. That is, the evolution of X starts
afresh from X,,. In other words, the state X,, contains all the information that is useful for
predicting the future evolution.



Example 12 Let {X,,n > 0} be a Markov chain on S with transition probability matriz P
and initial distribution w. Specify the probability space.

The simplest choice is the canonical probability space defined as follows. 2 = S*°; F is the
smallest o-field that contains all the events of the form

{w |wo =g, .. .wn =in};
P is the o-additive set function on F such that

P({w | wo = i, . .wn = in}) = w(io) Plig,ir) X -+ X Plin_1,in).

3.1 Recognizing a Markov Chain

It is essential to be able to determine whether a random sequence is Markov.

Example 13 We flip a biased coin forever. Let X; = 0 and, forn > 2, let X, = 1 if
the outcomes of the n-th and (n — 1)-st coin flips are identical and X, = 0 otherwise. Is
X ={X,,n > 1} a Markov chain?

Designate by Y, the outcome of the n-th coin flip. Let P(H) = p =1 — ¢. If X is a Markov
chain, then
P[X4:1|X3:1,X2:1]:P[X4:1|X3:1,X2:0]

The left-hand side is
P(Y1,Ys, Y3, Ys) € {HHHH,TTTT} | (Vi,Y3,Ys) € {HHH, TTT}]

_ P((",Y2,Y3,Y4) € {HHHH,TTTT}) _ p*+¢*
~ P((Y1,Ya,Ys) € {HHH,TTT})  pPP+g*

Similarly, the right-hand side is

P[(Y1,Y2,Y3,Yy) € {THHH, HTTT} | (Y1,Y,Y3) € {THH, HTT}]
T P((Vi, Y Ys) € {THH,HTTY) g +pf D 1

Algebra shows that the expressions are equal if and only if p = 0.5. Thus, if X is a Markov
chain, p = 0.5. Conversely, if p = 0.5, then we see that the random variables {X,,n > 2}
are i.i.d. B(0.5) and X is therefore a Markov chain.

Example 14 Show that a function of a Markov chain need not be a Markov chain.
Here is a simple example. Let X,, = (X + n)mod3 where X; is uniformly distributed in
{0,1,2}. That is, if Xq = 0, then (X,,n > 0) = (0,1,2,0,1,2,...) whereas if Xy, = 1, then

(Xn,n>0)=(1,2,0,1,2,...), and similarly if X, = 2. Let g(0) = ¢g(1) =5 and ¢(2) = 6.
Then {Y,, = g(X,),n > 0} is not a Markov chain. Indeed,

1
PYo=6Y1=5Y,=5]=1#P);=6|Y =5 =.



3.2 FSE

The First Step Equations are difference equations about some statistics of a Markov chain
{X,,n > 0} that are derived by considering the different possible values of the first step,
i.e., for X;. In the notes we looked at the FSE for the probability of hitting 0 before B
starting from A and for the average time until X,, hits either 0 or B. We look at some
related examples.

Example 15 A clumsy man tries to go up a ladder. At each step, he manages to go up one
rung with probability p, otherwise he falls back to the ground. What is the average time he
takes to go up to the n-th rung.

Let 5(m) be the average time to reach the n-th rung, starting from the m-th one, for
m € {0,1,2,...,n}. The FSE are

B(m) = 14+pB(m+1)+(1—p)p(0), for me {0,1,...,n—1}
pn) = 0

The first equation is of the form f(m + 1) = af(m) + b witha =1/pand b= —1/p — (1 —
p)3(0)/p. The solution is

1 _ m
B(m) =a™B(0) + ¢ bm=0,1,...,n.
—a
Since (n) = 0, we find that
1—-a"
"B(0 b=0.
" B0) +
Substituting the values of a and b, we find
1—-p"
/B(O) = pn _pn+1'

For instance, with p = 0.8 and n = 10, one finds 3(0) = 41.5.

Example 16 Consider a small deck of three cards 1, 2, 3. At each step, you take the
middle card and you place it first with probability 1/2 or last with probability 1/2. What is
the average time until the cards are in the reversed order 3, 2, 17

The possible states are the six permutations {123,132,312,321,231,213}. The state tran-
sition diagram consists of these six states placed around a circle (in the order indicated),
with a probability 1/2 of transition of one step clockwise or counterclockwise. Relabelling
the states 1, 2, ..., 6 for simplicity, with 1 = 321 and 4 = 123, we write the FSE for the
average time [(i) from state 7 to state 1 as follows:

Bli) = 1+058(i+1)+058(i—1),i#1
p1) = 0.

In these equations, the conventions are that 6 + 1 =1 and 1 - 1 = 6. Solving the equations
gives 3(1) = 0,5(2) = 8(6) = 5,5(3) = 5(5) = 8,5(4) = 9. Accordingly, the answer to our
problem is that it takes an average of 9 steps to reverse the order of the cards.
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Figure 1: Graph of F'(n) in example 17
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Figure 2: Graph of P"(4,4) in example 18

Example 17 For the same Markov chain as in the previous example, what it the probability
F(n) that it takes at most n steps to reverse the order of the cards?

Let F(n;i) be the probability that it takes at most n steps to reach state 1 from state 4, for
i€{1,2,...,6}. The FSE for F(n;i) are

F(n;ji) = 05F(n—1;i+1)+05F(n—1;i—1),i #1,n>1
F(n;1) = 1,n>0
F(0;i) = 1{i=1}.

—_

Again we adopt the conventions that 6 + 1 =1 and 1 - 1 = 6. We can solve the equations
numerically and plot the values of F/(n) = F(4;n). The graph is shown in Figure 1.

Example 18 Is the previous Markov chain periodic?

Yes, it takes 2, 4, 6, ... steps to go from state 7 to itself. Thus, the Markov chain is periodic
with period 2. Recall that this implies that the probability of being in state ¢ does not
converge to the invariant distribution (1/6,1/6,...,1/6). The graph in Figure 2 shows the
probability of being in state 4 at time n given that X, = 4. This is derived by calculating
P(4,4)". Since P""(4,7) = ¥, P"(4,9)P(i,7) = 0.5P™(4,7 — 1) + 0.5P™(4,7 + 1), one can
compute recursively by iterating a vector with 6 elements instead of a matrix with 36.

Example 19 We fiip a fair coin repeatedly until we get either the pattern HHH or HTH.
What is the average number of coin flips?
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Figure 3: Transition diagram of X,, in example 19

Let X,, be the last two outcomes. After two flips, we start with X, that is equally likely to
be any of the four pairs in {H,T}?. Look at the transition diagram of Figure 3.

The FSE for the average time to hit one of the two states HT'H or HH H from the other
states are as follows:

B(TT) 1+ 0.58(TT) + 0.58(TH)
B(TH) = 1+0538(HH)+0.53(HT)
B(HT) = 1+ 0.58(TT)
B(HH) = 1+40.58(HT)

Solving these equations we find
(B(TT), B(HT), B(HH), B(TH)) = £(34,22,16,24)

and the answer to our problem is then

24 L(B(TT) + B(TH) + B(HT) + BHH)) = % —68.

4 Continuous Time Markov Chains

Recall that the random process X = {X;,¢ > 0} taking values in the countable set S is a
Markov chain with rate matrix Q and initial distribution 7 if

P[Xt-i-e :] | Xt = i;XSaS S t] = 1{7’ :]} +q(i7j)€+0(€)vi7j € S
P(Xy=1)=m(i),i €S.
In this definition, ¢(i,j) > 0 for i # j and
q(i) :== —q(i,i) = > q(i,j) < 00,i €8S.
J#i
Also, m(i) > 0,i € S and > ;7 (i) = 1.
The definition specifies the Markov property that given X; the past and the future are
independent. Recall that the Markov chain stays in state ¢ for an exponentially distributed

time with rate ¢(i), then jumps to state j with probability ¢(i,)/q(i) for j # i, and the
evolution continues in that way.
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Figure 4: State transitions diagram in example 21

Example 20 Consider n light bulbs that have independent lifetimes exponentially distributed
with mean 1. What is the average time until the last bulb dies?

Let X; be the number of bulbs still alive at time ¢ > 0. Because of the memoryless property
of the exponential distribution, {X;,¢ > 0} is a Markov chain. Also, the rate matrix is seen
to be such that

g(m) =qg(m,m—1)=m,m € {1,2,...,n}.

The average time in state m is 1/m and the Markov chain goes from state n to n — 1 to
n — 2, and so on until it reaches 0. The average time to hit 0 is then

L Loy
n n-—1 3 2 '

To fix ideas, one finds the average time to be about 3.6 when n = 20.

Example 21 In the previous example, assume that the janitor replaces a burned out bulb
after an exponentially distributed time with mean 0.1. What is the average time until all the
bulbs are out?

The rate matrix now corresponds to the state diagram shown in Figure 4. Defining 3(m) as
the average time from state m to state 0, for m € {0,1,...,n}, we can write the FSE as

1 m

pm) = Tt maolm oD

Bln) = —+p(n—1)
3(0) = o.

m+10B(m+1), form € {1,2,...,n— 1}

If we knew S(n — 1), we could solve recursively for all values of 3(m). We could then check
that 5(0) = 0. Choosing n = 20 and adjusting /5(19) so that 5(0) = 0, we find numerically
that 3(20) ~ 2, 488.
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