
EE126: Probability and Random Processes SP’07

Problem Set 1 — Due Jan, 18

Lecturer: Jean C. Walrand GSI: Daniel Preda, Assane Gueye

Problem 1.1. Solution
To write the fraction in the form a + ib, we proceed as follows:

1 + 3i

2 + i
=

1 + 3i

2 + i
× 2− i

2− i

=
2− i + 6i + 3

(2)2 − (i)2

=
5 + 5i

4 + 1
= 1 + i

To write it in the form r × eiθ we notice that

1 + i =
√

2(
1√
2

+
i√
2
)

=
√

2
(
cos

(π

4

)
+ sin

(π

4

))

=
√

2ei π
4

Problem 1.2. Solution
We first verify that

1∑

k=1

k3 = 1 =

(
1∑

k=1

k

)2

Thus the equality is true for n=1.
Now assume that it is true for n− 1 i.e.

n−1∑

k=1

k3 =

(
n−1∑

k=1

k

)2

and let’s show that it is true for n i.e

n∑

k=1

k3 =

(
n∑

k=1

k

)2

We have that
n∑

k=1

k3 =
n−1∑

k=1

k3 + n3
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Using the hypothesis that the equality is true for n− 1, we can write

n∑

k=1

k3 =

(
n−1∑

k=1

k

)2

+ n3

But we know that (
n−1∑

k=1

k

)2

=

(
n(n− 1)

2

)2

Thus

n∑

k=1

k3 =

(
n(n− 1)

2

)2

+ n3

= n2(
n2 − 2n + 1

4
+ n)

= n2(
n2 − 2n + 1 + 4n

4
)

= n2(
n2 + 2n + 1

4
)

=
n2(n + 1)2

4

=

(
n(n + 1)

2

)2

=

(
n∑

k=1

k

)2

Problem 1.3. Solution
One example of such function is

f(x) =

{
(
√

2)−
1
x x ∈ (0, 0.5]

1− (
√

2)−
1

1−x x ∈ (0.5, 1)

The function f is strictly increasing and

lim
x→0

f(x) = 0 lim
x→1

f(x) = 1

Thus
inf

x∈(0,1)
f(x) = 0 sup

x∈(0,1)

f(x) = 1

But f(·) does not have a maximum or a minimum in (0, 1).
A plot of this function is shown is Figure 1.1
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Figure 1.1. Plot of the function defined in exercise 3

Problem 1.4. Solution
To compute the integral, we use a small trick.

∫ 1

0

x + 1

x + 2
dx =

∫ 1

0

x + 1 + 1− 1

x + 2
dx

=

∫ 1

0

(1 +
1

x + 2
)dx

= x]10 −
∫ 1

0

1

x + 2
dx

= 1− [log(x + 2)]10
= 1− log(3) + log(2)

Problem 1.5. Solution

1. 0 ∈ (0, 1), False

2. 0 ⊂ (−1, 3), True

3. (0, 1) ∪ (1, 2) = (0, 2), False

4. The set of integers is uncountable, False

Problem 1.6. Solution
To compute the integral, we use integration by parts.
Consider u = x2 and v′ = e−x, we can rewrite the integral as (taking u′ = 2x and v = −e−x):∫ ∞

0

x2e−xdx =
[−x2e−x

]∞
0

+ 2

∫ ∞

0

xe−xdx (1.1)

= 0 + 2

∫ ∞

0

xe−xdx (1.2)

= 2
[−xe−x

]∞
0

+ 2

∫ ∞

0

e−xdx (1.3)

= 0 + 2
[−e−x

]∞
0

(1.4)

= 2 (1.5)
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where in equation 1.2 the first term vanishes as x = 0 and x →∞. In equation 1.3 we apply
again the integration by parts with u = x and v′ = e−x. The first term of the next equation
vanishes and we get the result.

Problem 1.7. Solution
We first write the expression for

B∆C = (B ∪ C)− (B ∩ C) = [0, 4)− (2, 3) = [0, 2] ∪ [3, 4)

Now
A− (B∆C) = (1, 5)− [0, 2] ∪ [3, 4) = (2, 3) ∪ [4, 5)

Problem 1.8. Solution
To compute this double sum, we rewrite it in the following form:

n = 0 n = 1 n = 2 . . . n = N
m = 0 1 1/2 1/3 . . . 1/(N + 1)
m = 1 1/2 1/3 . . . 1/(N + 1)
m = 2 1/3 . . . 1/(N + 1)
...

...
m = N 1/(N + 1)
total = 1 +2 ∗ 1/2 +3 ∗ 1/3 + . . . +N ∗ 1/(N + 1)

= 1 +1 +1 . . . 1

Where in the last two rows we sum over all previous rows and columns.
This gives

N∑
m=0

N∑
n=m

= N + 1

Problem 1.9. Solution

min{A} = inf{A} = 3

max{A} : does not exist

sup{A} = 4.7

Problem 1.10. Solution
To show that inf(A) = − sup(B), we use the definitions of sup and inf. Let x be x = inf(A).

x = inf(A) ⇔ ∀ε, ∃y ∈ A, s.t, x ≤ y < x + ε

⇔ ∀ε, ∃y ∈ A, s.t,−x ≥ −y > −x− ε

But if y ∈ A then −y = z ∈ B and the last equivalence can be written as

x = inf(A) ⇔ ∀ε, ∃z ∈ B, s.t,−x ≥ z > −x− ε

which implies that −x = sup(B).
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Problem 1.11. Solution
If |a| < 1 then we can write

∞∑
n=0

nan = a

∞∑
n=1

nan−1 = a

( ∞∑
n=0

an

)′

= a

(
1

1− a

)′

= a
1

(1− a)2

Similarly

∞∑
n=0

n2an = a

∞∑
n=0

n2an−1 = a

( ∞∑
n=0

nan

)′

= a

(
a

(1− a)2

)′

= a
1− a + 2a

(1− a)3

=
a(a + 1)

(1− a)3

Problem 1.12. Solution
We will first pick 3 red cars from the 26 red cards and 2 black cards from the 26 blacks, then
we will mix them.
There are

(
26
3

)
ways to select 3 red cards form the a deck and

(
26
3

)
ways to select 2 black

cards from the 26 black cards.
Once 5 cards have been selected, there are

(
5
3

)
ways to mix them together.

Finally we have
(
26
3

)(
26
2

)(
5
3

)
ways to select 5 cards with 3 red cards from a deck of 52 cards.

Problem 1.13. Solution
We will show that sup(A) exists by explicitly computing it.
Define

B = {x|x ≥ y, ∀y ∈ A and x ≤ b}
Note that this set is not empty because b ∈ B. Furthermore, B is a closed set, so it admits
a minimum which is equal to its inf (call it b0). Now we want to show that sup(A) = b0.
By definition we have that b0 ≥ y for all y ∈ A, and b0 ≤ b. Since b0 is defined as the inf(B),
we have that for all ε > 0, b0 − ε /∈ B. But since b0 − ε ≤ b, the only way for that to be
possible is b0 − ε < y for some y ∈ A. Thus

∀ε > 0, ∃y ∈ A, s.t. b0 − ε < y ≤ b0

which means that b0 = sup(A)
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Problem 1.14. Solution
To derive an expression for the sum, we use the following trick:

N∑
n=0

an = 1 + a + a2 + · · ·+ aN

a

N∑
n=0

an = a + a2 + · · ·+ aN+1

Now taking the difference of the two equations, and factorizing by
∑N

n=0 an we have

(1− a)
N∑

n=0

an = 1− aN+1 ⇔
N∑

n=0

an =
1− aN+1

1− a

Problem 1.15. Solution
To show this, we will make use of Problem 13.
First let’s define the set A as

A = {xn, n ≥ 1}
We know that A is a set of real numbers and a is an upper bound for A. From Problem 13,
we can deduce that xs = sup(A) exists.
Now let’s show that

lim
n→∞

xn = xs

For that, first notice that xn is a non-decreasing sequence. Thus if xn0 > x, then xn > x for
all n ≥ n0. Since xs = sup(A), we have

∀ε > 0, ∃xε ∈ A, s.t.xs − ε < xε ≤ xs

But xε is one element of the sequence {xn}, and can be written xε = xn1 for some n1. Using
the fact that the sequence is non-decreasing, we have

xs − ε < xn1 ≤ xn ≤ xs, ∀n ≥ n1

Combining all we have:

∀ε > 0, ∃n1 > 0, s.t., ∀n ≥ n1, xs − ε < xn ≤ xs

which means that xn → xs as n →∞.

Problem 1.16. Solution
Let An be the set of all sequences of characters of length n. We have |An| = 29n (all letters
plus comma, dot, space...and whatever you want!). So An is countable.
The set of English sentences of length n is certainly included in An, hence the set of of all
English sentences is included in ∪infty

n An.
But we know from the course note that if An are countable for n ≥ 1, then so is

A = ∪∞n An

which ends the proof.
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