
EE126: Probability and Random Processes SP’07

Problem Set 7 — Due March, 22

Lecturer: Jean C. Walrand GSI: Daniel Preda, Assane Gueye

Problem 7.1. Let u and v be independent, standard normal random variables (i.e., u and
v are independent Gaussian random variables with means of zero and variances of one). Let

x = u + v

y = u− 2v.

1. Do x and y have a bivariate normal distribution? Explain.

2. Provide a formula for E[x|y].

Solution:

1. Recall that to write the joint p.d.f or a normal random vector, we need to invert its
co-variance matrix. So for the p.d.f to be defined, the co-variance matrix must be
invertible.
Also we know that a jointly gaussian random vector is characterized by its mean and
co-variance matrix. Hence in this exercise we just need to verify that the co-variance
matrix of the vector (x y)T is invertible.
We have (taking into account the fact that the random variables u and v are zero
mean)

Σ =

(
E[x2] E[xy]
E[xy] E[y2]

)
=

(
2 −2
−2 5

)

and det(Σ) = 16 6= 0.
Thus (x y)T has a joint p.d.f.

2. To compute E[x|y], we apply the formula given in the notes

E[x|y] =
σxy

σ2
y

y =
−2

5
y

Problem 7.2. Let X = (X1, X2, X3) be jointly Gaussian with joint pdf

fX1,X2,X3(x1, x2, x3) =
e−(x2

1+x2
2−
√

2x1x2+ 1
2
x2
3)

2π
√

π

Find a transformation A such that Y = AX consists of independent Gaussian random
variables.
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Solution:
In class we have seen that any jointly gaussian random vector X can be written as X = BY
where Y has i.i.d standard normal components, and BBT = ΣX . A formal way to compute B
is to use the eigenvalue decomposition of the matrix ΣX = UDUT where U is an orthogonal
matrix and D is a diagonal matrix with non-negative entries in the diagonal. From this, B
can be written B = D

1
2 U . And, if ΣX is invertible, A can be chosen as A = B−1 = UD− 1

2 .
If you are not familiar with eigenvalue decomposition, you can still compute B by solving
the matrix equation BBT = ΣX .
First let’s figure out what ΣX is. For that, notice that

fX1,X2,X3(x1, x2, x3) =
1√

(2π)2|ΣX |
e−

1
2
(x1,x2,x3)Σ−1

X (x1,x2,x3)T

Developing the term in the exponent and identifying with the p.d.f given in the exercise,
yield to

ΣX = BBT =




2 −√2 0

−√2 2 0
0 0 1


 =



−1.3066 0.5412 0
1.3066 0.5412 0

0 0 1






−1.3066 0.5412 0
1.3066 0.5412 0

0 0 1




T

which gives

A = B−1 =



−0.3827 0.3827 0
0.9239 0.9239 0

0 0 1




Note:
Here, we have solved the exercise for Y having i.i.d standard normal components. . . but
independent is enough and probably easier!

Problem 7.3. A signal of amplitude s = 2 is transmitted from a satellite but is corrupted
by noise, and the received signal is Z = s + W , where W is noise. When the weather is
good, W is normal with zero mean and variance 1. When the weather is bad, W is normal
with zero mean and variance 4. Good and bad weather are equally likely. In the absence of
any weather information:

1. Calculate the PDF of Z.

2. Calculate the probability that Z is between 1 and 3.

Solution:

1. Let G represent the event that the weather is good. We are given P (G) = 1
2
.

To find the PDF of X, we first find the PDF of W , since X = s + W = 2 + W . We
know that given good weather, W ∼ N(0, 1). We also know that given bad weather,

7-2



EE126 Problem Set 7 — Due March, 22 SP’07

W ∼ N(0, 4). To find the unconditional PDF of W , we use the density version of the
total probability theorem.

fW (w) = P (G) · fW |G(w) + P (Gc) · fW |Gc(w)

=
1

2
· 1√

2π
e−

w2

2 +
1

2
· 1

2
√

2π
e−

w2

2(4)

We now perform a change of variables using X = 2 + W to find the PDF of X:

fX(x) = fW (x− 2) =
1

2
· 1√

2π
e−

(x−2)2

2 +
1

2
· 1

2
√

2π
e−

(x−2)2

8 .

2. In principle, one can use the PDF determined in part (a) to compute the desired
probability as ∫ 3

1

fX(x) dx.

It is much easier, however, to translate the event {1 ≤ X ≤ 3} to a statement about
W and then to apply the total probability theorem.

P (1 ≤ X ≤ 3) = P (1 ≤ 2 + W ≤ 3) = P (−1 ≤ W ≤ 1)

We now use the total probability theorem.

P (−1 ≤ W ≤ 1) = P (G) P (−1 ≤ W ≤ 1 | G)︸ ︷︷ ︸
a

+P (Gc) P (−1 ≤ W ≤ 1 | Gc)︸ ︷︷ ︸
b

Since conditional on either G or Gc the random variable W is Gaussian, the conditional

probabilities a and b can be expressed using Φ (Φ(x) = 1√
2π

∫∞
x

e−
x2

2 dx). Conditional

on G, we have W ∼ N(0, 1) so

a = Φ(1)− Φ(−1) = 2Φ(1)− 1.

Try to show that Φ(−x) = 1− Φ(x)!
Conditional on Gc, we have W ∼ N(0, 4) so

b = Φ

(
1

2

)
− Φ

(
−1

2

)
= 2Φ

(
1

2

)
− 1.

The final answer is thus

P (1 ≤ X ≤ 3) =
1

2
(2Φ (1)− 1) +

1

2

(
2Φ

(
1

2

)
− 1

)
.

Problem 7.4. Suppose X, Y are independent gaussian random variables with the same
variance. Show that X − Y and X + Y are independent.
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Solution:

First note that, in general, to show that two random variables U and V are independent,
we need to show that

P (U ∈ (u1, u2), V ∈ (v1, v2)) = P (U ∈ (u1, u2))P (V ∈ (v1, v2)), ∀u1, u2, v1, v2

which can be very hard sometimes.
And also in general un-correlation is weaker than independence.
However for Gaussian random variables, we know that independence is equivalent to un-
correlation. So, to show that U and V are independent, it suffices to show that they are
un-correlated:

E[(U − E(U))(V − E[V ])] = 0

We will apply this to U = X + Y and V = X − Y . First notice that E[U ] = E[X] + E[Y ]
and E[V ] = E[X]− E[Y ]. Thus

E[X + Y − (E[X] + E[Y ])(X − Y − (E[X]− E[Y ])] = E[(X − E[X])2]− E[(Y − E[Y ])2]

+E[(X − E[X])(Y − E[Y ])]

−E[(X − E[X])(Y − E[Y ])]

= E[(X − E[X])2]− E[(Y − E[Y ])2]

= 0

because X and Y have equal variance.
So X−Y and X+Y are uncorrelated; since they are jointly gaussian (because they are linear
combinations of the same independent random variables X and Y ), they are independent.

Problem 7.5. Steve is trying to decide how to invest his wealth in the stock market. He
decides to use a probabilistic model for the shares price changes. He believes that, at the
end of the day, the change of price Zi of a share of a particular company i is the sum of
two components: Xi, due solely to the performance of the company, and the other Y due to
investors’ jitter.

Assuming that Y is a normal random variable, zero-mean and with variance equal to 1,
and independent of Xi. Find the PDF of Zi under the following circumstances in part a) to
c),

1. X1 is Gaussian with a mean of 1 dollar and variance equal to 4.

2. X2 is equal to -1 dollars with probability 0.5, and 3 dollars with probability 0.5.

3. X3 is uniformly distributed between -2.5 dollars and 4.5 dollars (No closed form ex-
pression is necessary.)

7-4



EE126 Problem Set 7 — Due March, 22 SP’07

4. Being risk averse, Steve now decides to invest only in the first two companies. He
uniformly chooses a portion V of his wealth to invest in company 1 (V is uniform
between 0 and 1.) Assuming that a share of company 1 or 2 costs 100 dollars, what is
the expected value of the relative increase/decrease of his wealth?

Solution:

1. Because Z1 is the sum of two independent Gaussian random variables, X1 and Y , the
PDF of Z1 is also Gaussian. The mean and variance of Z1 are equal to the sums of the
expected values of X1 and Y and the sums of the variances of X1 and Y , respectively.

fZ1(z1) = N(1, 5)

2. X2 is a two-valued discrete random variable, so it is convenient to use the total prob-
ability theorem and condition the PDF of Z2 on the outcome of X2. Because linear
transformations of Gaussian random variables are also Gaussian, we obtain:

fZ2(z2) =
1

2
N(−1, 1) +

1

2
N(3, 1)

3. We can use convolution here to get the PDF of Z3.

fZ3(z3) =

∫ ∞

−∞
N(0, 1)fX3(z3 − y)dy

Using the fact that X3 is uniform from -2.5 to 4.5, we can reduce this convolution to:

fZ3(z3) =

∫ z3+2.5

z3−4.5

N(0, 1)
1

7
dy

A normal table is necessary to compute this integral for all values of z3.

4. Given an experimental value V = v, we can draw the following tree:

E[Z] = E[E[Z | V ]] =

∫ 1

0

E[Z | V = v]fV (v)dv
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E[Z | V = v] = v · 1 + (1− v)[−1 · 1

2
+ 3 · 1

2
] = v + (1− v) = 1

Plugging E[Z | V = v] and fV (v) = 1 into our first equation, we get

E[Z] =

∫ 1

0

1 · 1dv = 1.

Since the problem asks for the relative change in wealth, we need to divide E[Z] by
100. Thus the expected relative change in wealth is 1 percent.

Problem 7.6. The Binary Phase-shift Keying (BPSK) and Quadrature Phase-shift Keying
(QPSK) modulation schemes are shown in figure 7.1. We consider that in both cases, the
symbols (S) are sent over an additive gaussian channel with zero mean and variance σ2.
Assuming that the symbols are equally likely, compute the average error probability for each
scheme. Which one is better?

BPSK

QPSK


S1
 S2


S0
 s1


S3
S2


a
-a


a
-a


Figure 7.1. QPSK and BPSK modulations

Solution:(Hint)
Note that the comparison is not fair because the two schemes do not have the same rate
(eggs and apples!). But let us compute the error probabilities and compare them.
In both cases, an error occurs when one symbol is sent and the receiver decides for a different
one. Since the symbols are equally likely, the decoding (or decision) rule will be to decide in
favor of the symbol Si that maximizes the likelihood (assuming that Y is the received signal)

fY (y|Si) =
1√

2π · 2e−
(y−Si)

T ·(y−Si)

2·2

where Si ∈ {−a, a} for BPSK and Si ∈ {(−a,−a), (−a, a), (a,−a), (a, a)}.
It is not hard to see that maximizing the likelihood is the same as minimizing |y − Si)|2
which turns out to be the Euclidean distance between the received point and the symbol Si.
Thus the decision rule is as follows (assuming that Z ∼ N(0, 2) is the channel noise):
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• BPSK: decide for a if X = S + Z ≥ 0 and decide for −a otherwise. Error occurs if
S = a (S = −a) and X = a + Z < 0 ⇔ Z < −a (X = −a + Z ≥ 0 ⇔ Z ≥ a).
The corresponding conditional probabilities are P (Z < −a) = Φ(

√
2a) (P (Z ≥ a) =

Φ(
√

2a)), thus the average error probability is Φ(
√

2a) for BPSK.

• QPSK: decide for (a, a) if X is in the first quartan, (−a, a) if X is in the second quartan,
etc...
For QPSK (which can be modeled as 2 independent BPSK), let’s assume that signal
S1 = (a, a) was sent. Observe that error occurs if the received signal does not fall in
the first quartan. By considering the probability of detecting any other signal, we can
see that given S1 was sent the error probability is equal to

P qpsk
e = Φ(2a) + 2Φ(

√
2a)

which is the average error probability given the symmetry of the problem.
For a large enough we have P qpsk

e ≈ 2P bpsk
e

Problem 7.7. When using a multiple access communication channel, a certain number of
users N try to transmit information to a single receiver. If the real-valued random variable
Xi represents the signal transmitted by user i, the received signal Y is

Y = X1 + X2 + · · ·+ XN + Z,

where Z is an additive noise term that is independent of the transmitted signals and is
assumed to be a zero-mean Gaussian random variable with variance σ2

Z . We assume that
the signals transmitted by different users are mutually independent and, furthermore, we
assume that they are identically distributed, each Gaussian with mean µ and variance σ2

X .

1. If N is deterministically equal to 2, find the transform or the PDF of Y .

2. In most practical schemes, the number of users N is a random variable. Assume now
that N is equally likely to be equal to 0, 1, . . . , 10.

(a) Find the transform or the PDF of Y .

(b) Find the mean and variance of Y .

(c) Given that N ≥ 2, find the transform or PDF of Y .

Solution:

1. Here it is easier to find the PDF of Y . Since Y is the sum of independent Gaussian
random variables, Y is Gaussian with mean 2µ and variance 2σ2

X + σ2
Z .
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2. (a) The transform of N is

MN(s) =
1

11
(1 + es + e2s + · · ·+ e10s) =

1

11

10∑

k=0

eks

Since Y is the sum of

• a random sum of Gaussian random variables

• an independent Gaussian random variable,

MY (s) =

(
MN(s)|es=MX(s)

)
MZ(s) =

(
1

11

10∑

k=0

(esµ+
s2σ2

X
2 )k

)
e

s2σ2
Z

2

=

(
1

11

10∑

k=0

eskµ+
s2kσ2

X
2

)
e

s2σ2
Z

2

=
1

11

10∑

k=0

eskµ+
s2(kσ2

X+σ2
Z )

2

In general, this is not the transform of a Gaussian random variable.

(b) One can differentiate the transform to get the moments, but it is easier to use the
laws of iterated expectation and conditional variance:

EY = EXEN + EZ = 5µ

var(Y ) = ENvar(X) + (EX2)var(N) + var(Z) = 5σ2
X + 10µ2 + σ2

Z

(c) Now, the new transform for N is

MN(s) =
1

9
(e2s + · · ·+ e10s) =

1

9

10∑

k=2

eks

Therefore,

MY (s) =

(
MN(s)|es=MX(s)

)
MZ(s) =

(
1

9

10∑

k=2

(esµ+
s2σ2

X
2 )k

)
e

s2σ2
Z

2

=

(
1

9

10∑

k=2

eskµ+
s2kσ2

X
2

)
e

s2σ2
Z

2

=
1

9

10∑

k=2

eskµ+
s2(kσ2

X+σ2
Z )

2
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